Loading...

Table of Content

    20 October 2017, Volume 39 Issue 5
    PRESENT KINEMATICS CHARACTERISTICS OF THE NORTHERN YUMUSHAN ACTIVE FAULT AND ITS RESPONSE TO THE NORTHEASTWARD GROWTH OF THE TIBETAN PLATEAU
    CHEN Gan, ZHENG Wen-jun, WANG Xu-long, ZHANG Pei-zhen, XIONG Jian-guo, YU Jin-xing, LIU Xing-wang, BI Hai-yun, LIU Jin-rui, AI Ming
    2017, 39(5):  871-888.  DOI: 10.3969/j.issn.0253-4967.2017.05.001
    Asbtract ( )   HTML   PDF (9442KB) ( )  
    References | Related Articles | Metrics
    Qilian Shan and Hexi Corridor, located in the north of Tibetan plateau, are the margin of Tibetan plateau's tectonic deformation and pushing. Its internal deformations and activities can greatly conserve the extension process and characteristics of the Plateau. The research of Qilian Shan and Hexi Corridor consequentially plays a significant role in understanding tectonic deformation mechanism of Tibetan plateau. The northern Yumushan Fault, located in the middle of the northern Qilian Shan thrust belt, is a significant component of Qilian Shan thrust belt which divides Yumushan and intramontane basins in Hexi Corridor. Carrying out the research of Yumushan Fault will help explain the kinematics characteristics of the northern Yumushan active fault and its response to the northeastward growth of the Tibetan plateau.Because of limited technology conditions of the time, different research emphases and some other reasons, previous research results differ dramatically. This paper summarizes the last 20 years researches from the perspectives of fault slip rates, paleao-earthquake characteristics and tectonic deformation. Using aerial-photo morphological analysis, field investigation, optical simulated luminescence(OSL)dating of alluvial surfaces and topographic profiles, we calculate the vertical slip rate and strike-slip rate at the typical site in the northern Yumushan Fault, which is(0.55±0.15)mm/a and(0.95±0.11), respectively. On the controversial problems, namely "the Luotuo(Camel)city scarp" and the 180 A.D. Biaoshi earthquake, we use aerial-photo analysis, particular field investigation and typical profile dating. We concluded that "Luotuo city scarp" is the ruin of ancient diversion works rather than the fault scarp of the 180 A.D. Biaoshi earthquake. Combining the topographic profiles of the mountain range with fault characteristics, we believe Yumu Shan is a part of Qilian Shan. The uplift of Yumu Shan is the result of Qilian Shan and Yumu Shan itself pushing northwards. Topographic profile along the crest of the Yumu Shan illustrates the decrease from its center to the tips, which is similar to the vertical slip rates and the height of fault scarp. These show that Yumu Shan is controlled by fault extension and grows laterally and vertically. At present, fault activities are still concentrated near the north foot of Yumu Shan, and the mountain ranges continue to rise since late Cenozoic.
    A NEW DISCOVERY OF ACTIVITY OF FUSHAN SECTION OF THE TAN-LU FAULT ZONE IN THE LATE QUATERNARY
    ZHAO Peng, YAO Da-quan, YANG Yuan-yuan, ZHENG Hai-gang, WANG Xing-zhou, XU Hong-tai, FANG Zhen
    2017, 39(5):  889-903.  DOI: 10.3969/j.issn.0253-4967.2017.05.002
    Asbtract ( )   HTML   PDF (8774KB) ( )  
    References | Related Articles | Metrics
    The east branch fault of Tan-Lu fault zone extends from Fengshan Town of Sihong County on the north shore of the Huaihe River in Jiangsu Province, into Fushan Town of Mingguang City on the south shore of Huaihe River in Anhui Province. The landform changes from Subei plain on the north of Huaihe River to Zhangbaling uplift area on the south of Huaihe River. The terrain rises gradually with larger relief amplitude. The Fushan section of the Tan-Lu fault zone is located in Ziyang to Fushan area of Mingguang City. The fault is shown in the satellite image as a clear linear image, and the fault extends along the east side of a NNE-trending hillock. In this section the Quaternary strata are unevenly distributed, which causes some difficulties in the study of recent fault activity.In recent years, the author has found that the fault of the Fushan section of the Tan-Lu fault zone on the south of the Huaihe River still has a certain control effect on the landform and the Quaternary strata. Based on satellite imagery and geological data, we select the appropriate location in the Fushan section to excavate the Santang trench Tc1 and Fushannan trench Tc2, and clean up the Fushannan profile Pm, which reveals rich phenomena of recent fault activity. Santang trench reveals three faults, and the faulting phenomenon is obvious. One of the faults shows the characteristic of right-lateral strike-slip normal faulting; Fushannan profile reveals one fault, with the same faulting behavior of right-lateral strike-slip normal fault. Comprehensive stratigraphic sample dating results indicate that the fault dislocated the middle Pleistocene strata, late Quaternary strata and early Holocene strata. All our work shows that the fault of Fushan section has intensive activity since late Pleistocene, and the latest active age can reach early Holocene. The latest earthquake occurred at(10.6±0.8)~(7.6±0.5)ka BP. The faults exposed by trenches and profiles show the characteristics of right-lateral strike-slip normal faulting, which reflects the complexity of the tectonic stress field in the area where the fault locates.
    TYPE AND DISPLACEMENT CHARACTERISTICS OF LINGSHAN M6¾ EARTHQUAKE SURFACE RUPTURE ZONE IN 1936, GUANGXI
    LI Xi-guang, PAN Li-li, LI Bing-su, NIE Guan-jun, WU Jiao-bing, LU Jun-hong, YAN Xiao-min
    2017, 39(5):  904-916.  DOI: 10.3969/j.issn.0253-4967.2017.05.003
    Asbtract ( )   HTML   PDF (7336KB) ( )  
    References | Related Articles | Metrics
    On April 1, 1936, an M6¾ earthquake occurred on the Fangcheng-lingshan Fault. So far, the Lingshan M6¾ earthquake is the biggest one in South China. There are some reports about the Lingshan earthquake fissures, but its surface rupture hasn't been systemically studied. Based on the geological mapping and measurement of the right-lateral displacement and vertical offset, the surface rupture zone caused by the Lingshan M6¾ earthquake was found, which contains two secondary surface rupture zones in the east and west respectively, its strike varies from N55°E to N60°E with en echelon-like distribution along the north section of Lingshan Fault, and its total length is about 12.5km. The western surface rupture zone locates intermittently along Gaotang-Xiatang-Liumeng, about 9.4km in length, with a right-lateral displacement of 0.54~2.9m and a vertical offset of 0.23~1.02m; the other one appears between Jiaogenping and Hekou, about 3.1km in length, with a right-lateral displacement of 0.36~1.3m and a vertical offset of 0.15~0.57m. The maximum right-lateral displacement and vertical offset are 2.9m and 1.02m, appearing at the east of Xiatang reservoir. The types of surface rupture mainly contain earthquake fault, earthquake scarp, earthquake fissure, earthquake colluvial wedge, earthquake caused landslide and liquefaction of sand and so on. The earthquake fault develops at the east of Xiatang and Jiaogenping, earthquake scarp appears at Xiaoyilu and Xiatang, earthquake fissure locates at Xiatang, there are multiple earthquake landslides along the surface rupture zone, and the trench LSTC03 exposes the earthquake colluvial wedge. In order to further investigate the Lingshan earthquake surface rupture zones, the author compares the parameters of Lingshan M6¾ earthquake with the similar typical earthquakes in western China, the results show that the parameters of Lingshan earthquake are similar to the typical earthquakes in western China. The length of Lingshan earthquake surface rupture is shorter, but the dislocation is bigger. The author considers that this is mainly related with the parameters of Lingshan earthquake, site condition and structural environment of surface rupture zone, the symbols of dislocation measuring, human activity and weather condition and so on. The research of surface rupture zone features and analysis of Lingshan M6¾ earthquake provides important and basic data for exploring the seismogenic structure of Lingshan M6¾ earthquake, and it has important scientific significance.
    FRICTIONAL PROPERTIES OF A NATURAL FAULT GOUGE FROM DRILLED CORES IN THE LONGMENSHAN FAULT ZONE CUTTING GRANITIC ROCK
    LIU Yang, HE Chang-rong
    2017, 39(5):  917-933.  DOI: 10.3969/j.issn.0253-4967.2017.05.004
    Asbtract ( )   HTML   PDF (6888KB) ( )  
    References | Related Articles | Metrics
    In this paper, we report friction experiments performed on natural fault gouge samples embedded in granitic rock from drilled core by a project entitled "the Longmenshan Fault Shallow Drilling(LMFD)". Compared with other natural fault gouge, this yellow-greenish gouge(YGG)is dominantly chlorite-rich. The maximum content of chlorite reaches 47%in the YGG. To understand the frictional properties of the YGG sample, experiments were performed at constant confining pressure of 130MPa, with constant pore pressure of 50MPa and at different temperatures from 25℃ to 150℃. The experiments aim to address the frictional behavior of the YGG under shallow, upper crustal pressure, and temperature conditions. Compared with previous studies of natural gouge, our results show that the YGG is stronger and shows a steady state friction coefficient of 0.47~0.51. Comparison with previous studies of natural gouge with similar content of clay minerals indicates a sequence of strengths of different clay minerals:chlorite > illite > smectite. At temperatures up to 150℃ hence depths up to~8km in the Longmenshan region, the YGG shows stable velocity-strengthening behavior at shallow crustal conditions. Combined with the fact of strong direct velocity effect, i.e., (a-b)/a>0.5, faults cutting the present clastic lithology up to~8km depth in the Longmenshan fault zone(LFZ)are likely to offer stable sliding resistance, damping co-seismic rupture propagating from below at not-too-high slip rates. However, as the fault gouge generally has low permeability, co-seismic weakening through thermal pressurization may occur at high slip rates(>0.05m/s), leading to additional hazards.
    SPECTRAL STRUCTURE OF VELOCITY INHOMOGENEITY OF CRUST MEDIUM BELOW THE SOUTHEASTERN MARGIN OF TIBETAN PLATEAU AND ITS ADJACENT REGIONS
    FAN Xiao-ping, HE Yi-cheng, RUAN Xiang
    2017, 39(5):  934-948.  DOI: 10.3969/j.issn.0253-4967.2017.05.005
    Asbtract ( )   HTML   PDF (6650KB) ( )  
    References | Related Articles | Metrics
    In this paper we present results of spectral structure of crustal velocity inhomogeneity beneath the southeastern margin of Tibetan plateau and its adjacent region based on the S wave envelope broadening algorithm. The spectral structure of 8~16Hz band is selected to analyze the special character of crustal inhomogeneity and discuss the correlation between strong earthquakes and inhomogeneities. The result shows that strong and complex inhomogeneities of crustal medium are found in the southeastern margin of Tibetan plateau and its adjacent region. In the upper part of upper crust, the strong and small scale inhomogeneities are imaged in the Longmengshan fault zone and the north of the Anninghe fault zone, the weak and large scale inhomogeneites are imaged in the section from Huolu to Daofu of Xianshuihe fault zone and the south of the Anninghe fault zone. In the lower part of upper crust, strong inhomogeneites are found in the Longmengshan fault zone, Lianfeng fault zone, the north of the Anninghe fault zone and the sections from Huolu to Daofu of the Xianshuihe fault zone, weak inhomogeneites are found in the section from Daofu to Kangding of Xianshuihe fault zone. In the middle crust, strong inhomogeneities are observed in the section of the Baoxing to Dujiangyan, the Baoxing to Kangding, and Kangding to Shimian, and weak inhomogeneities are observed in the northwestern section from Huolu to Kangding, and the Lianfeng fault zone. Comparing the medium inhomogeneities with the location of the strong earthquakes, our results suggest existence of high correlation between them. Strong earthquakes are often located in the transitionary zone between the strong and the weak inhomogeneities. The spatial distribution of the strong and the weak medium inhomogeneities may be related to the broken medium from the strong movement of geological tectonic and the heat flow upwelling along active faults induced by frequent tectonic and volcanic activity.
    SEISMOGENIC STRUCTURE OF THE M4.9 AND M5.1 LITANG EARTHQUAKES ON 23 SEPTEMBER 2016 IN SOUTHWESTERN CHINA
    YI Gui-xi, LONG Feng, LIANG Ming-jian, ZHANG Zhi-wei, ZHAO Min, QI Yu-ping, GONG Yue, QIAO Hui-zhen, WANG Zhi, WANG Si-wei, SHUAI Li-rong
    2017, 39(5):  949-963.  DOI: 10.3969/j.issn.0253-4967.2017.05.006
    Asbtract ( )   HTML   PDF (5345KB) ( )  
    References | Related Articles | Metrics
    On 23 September 2016, two earthquakes with magnitude of M4.9 and M5.1 occurred successively near Litang city in Sichuan Province, southwestern China. These two events are located between two large-scale fault zones, i.e., the Jinshajiang and Litang faults, in the northwest of the Sichuan-Yuannan active block, eastern Tibetan plateau. Based on the phase data and waveform data from the Sichuan regional seismic network, the M4.9 and M5.0 mainshocks and 390 aftershocks have been relocated using the multi-step locating method, and the focal mechanism solutions and centroid depths for the two mainshocks were calculated by the CAP waveform inversion method. From the spatial distribution of the relocated aftershocks and fault plane solutions of the two mainshocks, combining with the seismic intensity map and tectonic setting, we suggested that the two earthquakes were generated by the E-W trending northward dipping Hagala fault. The nodal plane consistent with the strike and dip of the Hagala fault is interpreted as the coseismic rupture plane with a dip angle of 44° for both the M4.9 and M5.1 earthquakes. And we inferred that the M4.9 and M5.1 earthquakes may be resulted from the nearly E-W striking Hagala normal faulting in the upper crust between the Litang and Batang regions due to the continuous eastward extrusion of the material of the Qiangtang block in the west.
    EXPERIMENT STUDY ON ACOUSTIC EMISSION, MICROSEISM AND CHARGE INDUCTION DURING FRACTURE PROCESS OF GRANITE WITH FAULT ZONE UNDER UNIAXIAL COMPRESSION
    ZHAO Yang-feng, LIU Li-qiang, PAN Yi-shan
    2017, 39(5):  964-980.  DOI: 10.3969/j.issn.0253-4967.2017.05.007
    Asbtract ( )   HTML   PDF (4557KB) ( )  
    References | Related Articles | Metrics
    As the rock samples will produce abnormal signals of acoustic emission, microseismic and charge signals under external loading, the waveform comprehensive monitoring devices are used to synchronously monitor acoustic emission, microseismic and charge signals during the deformation and failure process of granite with fault zone under uniaxial compression. The results show that, the granite with fault zone has obvious synchronous precursory signals of acoustic emission, microseism and charge induction in the elastic deformation stage, and has high amplitude synchronous precursory signals in the instability destruction stage. The influence of fault zone on granite samples strength is remarkable, and the uniaxial compressive strength of samples with the fault zone is greatly reduced. With the angle of the fault zone decreasing, the uniaxial compressive strength of the specimens is reduced, the samples are more liable to instability and the energy of instability destruction is greater. With the fault zone angle of granite samples decreasing, the acoustic emission, microseismic and charge induction signals increase in the deformation and failure process of samples. The samples stress decreases when the acoustic emission, microseismic and charge induction precursory signals appear synchronously. The duration of acoustic emission, microseismic and charge induction precursory signals is increasing in the instability destruction stage. When the angle of the fault zone reaches 30°, the mutability of acoustic emission, microseismic and charge induction signal increases, the time to enter the dangerous stage is much earlier, and the acoustic emission events of large magnitude increase significantly, and the large angle faults of coal mine are more dangerous. The intensive and high amplitude synchronous precursory signals of acoustic emission, microseism and charge induction are produced before the instability destruction, and the signals duration is shorter. The intensive and strongest synchronous precursory signals of acoustic emission, microseism and charge induction are produced in the instability destruction, and the signals duration is longer. Acoustic emission monitoring data can better reflect the micro rupture of rock. And combined with the acoustic emission, microseismic and charge induction precursory signals, the precursory information of rock instability destruction can be obtained more accurately.
    RELOCATIONS AND FOCAL MECHANISM SOLOTIONS OF MS5.5 QIANGUO EARTHQUAKE SWARM IN JILIN PROVINCE IN 2013
    LIU Jun-qing, GAN Wei-jun, LIU Cai, ZHANG Chen-xia, GAO Jin-zhe, LIANG Shi-ming
    2017, 39(5):  981-993.  DOI: 10.3969/j.issn.0253-4967.2017.05.008
    Asbtract ( )   HTML   PDF (6397KB) ( )  
    References | Related Articles | Metrics
    We relocated a seismic swarm, which started in a mass from 31 October, 2013 in Qianguo County of Jilin Province, by using double difference location method, based on the phase data of regional digital seismic network and the crustal velocity model of Sunliao Basin. The characteristics of seismogenic fault have been investigated based on the spatial distribution image of the seismic swarm and the geophysical data near the epicenter area. The relocated epicenters of the swarm earthquakes have a precision of 0.9km in E-W, 0.7km in N-S and 1.2km in U-D direction, and show an apparent concentrated seismic belt trending N-W, with a length and width of 12km and 6km, respectively. The source depths of all events are shallow, with 80%in a range of 6~8km, and the events are apparently crowded together on the depth cross section. According to the relocated spatial distribution characteristics of the seismic swarm, the features that the medium size events happened successively, and the focal mechanism of the large size events in the swarm, we infer that the seismogenic tectonics of Qianguo seismic swarm is the thrust nappe structure inside the Keshan-Da'an fault zone. The fault plane inclines to the East direction, and is steep when close to the ground surface, which shows the typical characteristics of a listric thrust fault. The longitudinal length of the rupture plane is greater than the transverse length. According to the features of seismogenic tectonics, we infer that the three MS ≥ 5.0 earthquakes occurred at the lower layer of the thrust rupture surface of the fault, while the aftershocks were triggered by the three events and occurred mainly at the upper layer of the rupture surface.
    REANALYSIS OF BEDROCK GROUND TEMPERATURE CHANGES PRIOR TO 2013 LUSHAN MS7.0 EARTHQUAKE
    ZENG Di, CHEN Li-chun, CHEN Shun-yun, LI Dong-yu
    2017, 39(5):  994-1006.  DOI: 10.3969/j.issn.0253-4967.2017.05.009
    Asbtract ( )   HTML   PDF (5400KB) ( )  
    References | Related Articles | Metrics
    Before 2013 Lushan MS7.0 earthquake, the bedrock ground temperature in Kangding station, the cross-fault deformation and the borehole strain in Guza station all show that regional stress changes possibly occurred along the Xianshuihe Fault. In this paper, further analysis is made on the observation data of bedrock ground temperature in the three stations in the Xianshuihe fault zone, and the results are compared with borehole strain, seismometry and cross-fault deformation data. Stress temperature in the three stations dropped suddenly synchronously a few days before the Lushan earthquake, indicating the enhanced tension characteristics of the regional stress in the Qianning-Kangding zone. High-frequency components of bedrock temperature in the three stations also showed synchronous changes in the 80 days before the Lushan earthquake, with an estimated stress change range of 0.98~1.96MPa, an average of about 1.47MPa, which is close to the seismometry results. Besides, tensional mutation in borehole strain is consistent with the enhanced tensional characteristics of regional stress revealed by bedrock ground temperature. Comparison with cross-fault deformation shows that the stress change was different in different active segments of the Xianshuihe Fault in different time periods before the Lushan earthquake, but the regional stress change did appear along the Xianshuihe fault zone before the Lushan earthquake.
    DISCUSSION ON THE SPECTRA SHAPE OF SEISMIC MARGIN EARTHQUAKE OF NUCLEAR POWER PLANT IN CHINA
    JING Xu, CHANG Xiang-dong, XIAO Jun
    2017, 39(5):  1007-1016.  DOI: 10.3969/j.issn.0253-4967.2017.05.010
    Asbtract ( )   HTML   PDF (1310KB) ( )  
    References | Related Articles | Metrics
    Fukushima nuclear accident caused widespread concern of earthquake initiated severe accident. Under this background, China nuclear utilities carried out research and application of seismic margin assessment(SMA)approach to evaluate the seismic margin of the existing nuclear power plants(NPP)by different spectra shape of seismic margin earthquake(SME). By reviewing the method used to determine SME of operational NPP in central and eastern United States(CEUS), this paper analyzed the seismic hazard characteristic of China NPP sites, contrasted the design basis ground motion between NPP in CEUS and China, and suggested giving priority to evaluating the seismic margin of operational NPP that adopted the improved second generation technology for the urgency and importance of assessment on the actual seismic capacity of NPP. Comparing RG1.60 spectrum to normalized site-specific SL-2 level acceleration spectra, we found that some normalized spectra overtook the RG1.60's in high frequency range, so it is not always adequate to scale RG1.60 spectrum to evaluate the seismic margin for sites of the improved second generation NPP. We selected a sample site whose site-specific SL-2 level ground motion is close to the standard design of improved second generation NPP(0.2g scaled RG1.60 spectrum)to determine the seismic margin earthquake by probabilistic seismic hazard analysis method of the sample site. Compared to the given PGA(0.3g)scaled scenario earthquake ground motions and the uniform hazard response spectrum(UHRS), whose PGA is 0.3g to PGA(0.3g)scaled standard spectra(median NUREG/CR0098 spectrum and RG1.60 spectrum), the results demonstrated that uniform hazard response spectrum and scaled scenario earthquake ground motions are both significantly higher than the PGA scaled median NUREG/CR0098 spectrum, and all the three spectra are enveloped by PGA scaled RG1.60 spectrum. Then, this paper suggests adopting the uniform hazard response spectrum or scenario earthquake ground motions to evaluate the seismic margin of improved second generation NPP beyond site SL-2 ground motion; and to evaluate the seismic margin of improved second generation NPP beyond standard design, we recommend to use PGA scaled RG1.60 spectrum.
    THE STATIC STRESS TRIGGERING INFLUENCES OF THE 2015 MW6.4 PISHAN, XINJIANG EARTHQUAKE ON THE NEIGHBORING AREAS
    JIN Zhi-tong, WAN Yong-ge, HUANG Ji-chao, LI Xiang, ZHANG Shan-shan
    2017, 39(5):  1017-1029.  DOI: 10.3969/j.issn.0253-4967.2017.05.011
    Asbtract ( )   HTML   PDF (2938KB) ( )  
    References | Related Articles | Metrics
    Based on the rupture models of the 2015 Pishan MW6.4 earthquake and half space homogeneous elastic model, the Coulomb stress changes generated by the earthquake are calculated on the active faults near the earthquake region. The horizontal stress changes and the displacement field are estimated on the area around the epicenter. Results show that:(1)The Coulomb stress is decreased in the west of the western Kunlun frontal thrust fault(9.5×103Pa), and increased in the east of the western Kunlun frontal thrust fault and the middle of the Kangxiwa faults. More attention should be taken to the seismic rick of the east of the western Kunlun frontal thrust fault; (2)Based on the analysis on the location of the aftershocks, it is found that most of the aftershocks are triggered by the earthquake. In the region of increased Coulomb attraction, the aftershock distribution is more intensive, and in the area of the Coulomb stress reduction, the distribution of aftershocks is relatively sparse; (3)The horizontal area stress increases in the north and south of the earthquake(most part of the Qaidam Basin and the northwest of the Qinghai-Tibet plateau), and decreases in the east and west of the earthquake(northern part of the Qinghai-Tibet plateau and eastern part of the Pamir Mountains). In the epicenter area, the principal compressive stress presents nearly NS direction and the principal extensional stress presents nearly EW direction. The principal compressive stress shows an outward radiation pattern centered on the epicenter with the principal extensional stress along the direction of concentric circles. The principal compressive stress presents NW direction to the west of the epicenter, and NE to the east of the epicenter. With the increase of radius, the stress level gradually decays with 107Pa in the epicenter and hundreds Pa in the Maidan Fault which is in the north of the Qaidam Basin.
    CHARACTERISTICS AND FORMATION MECHANISM OF LARGE ROCK AVALANCHES TRIGGERED BY THE LUDIAN MS6.5 EARTHQUAKE AT HONGSHIYAN AND GANJIAZHAI
    CHANG Zu-feng, CHANG Hao, YANG Sheng-yong, CHEN Gang, LI Jian-lin
    2017, 39(5):  1030-1047.  DOI: 10.3969/j.issn.0253-4967.2017.05.012
    Asbtract ( )   HTML   PDF (7111KB) ( )  
    References | Related Articles | Metrics
    The 3 August 2014 Ludian, Yunnan MS6.5 earthquake has spawned more than 1, 000 landslides which are from several tens to several millions and over ten millions of cubic meters in volumes. Among them, the Hongshiya and Ganjiazai landslides are the biggest two with volumes over 1 000×104m3. The Hongshiya and Ganjiazai landslides are two typical landslides, the former belongs to tremendous rock avalanche, and the latter belongs to unconsolidated werthering deposit landslide developed in concave mountain slope. Based on field investigations, causes and formation mechanism of the two landslides are discussed in this study. The neotectonic movement in the area maintains sustainable uplifting violently all the time since Cenozoic. The landform process accompanied with the regional tectonic uplifting is the violent downward erosion along the Jinshajiang River and its tributary, forming landforms of high mountains and canyons, deeply cut valleys, with great height difference. The regional seismo-tectonics situation suggests that:Ludian earthquake region is situated on the southern frontier boundary of Daliangshan secondary active block, and is seismically the strongest active area with one earthquake of magnitude greater than M5.0 occurring every 6 years. Frequent and strong seismicity produces accumulated effects on the ground rock to gradually lower the mechanical strength of slopes and their stability, which is the basis condition to generate large-scale collapse and landslide at Hongshiyan and Ganjiazhai. The occurring of Hongshiyan special large rock avalanche is associated with the large terrain height difference, steep slope, soft interlayer structure and unloading fissures and high-angle joints. The formation mechanism of Hongshiyan rock avalanche may have three stages as follows:Stage 1, when P wave arriving, under the situation of free surface, rocks shake violently, the pre-existent joints(in red)parallel to and normal to the river and unloading cracks are opened and connected. Stage 2, on the basis of the first stage, when S wave arriving, the ground movement aggravates. Joints(in green)along beds develop further, resulting in rock masses intersecting each other. Stage 3, rock masses lose stability, sliding downward, collapsing, and moving over a short distance along the sliding surface to the inside of the valley, blocking the river to form the dammed lake. The special large landslide at Ganjiazhai is a weathering layer landslide occurring in the middle-lower of a large concave slope. Its formation process may have two stages as follows:Firstly, under strong ground shaking and gravity, the ground rock-soil body around moves and assembles to the lower of the central axis of the large concave slope, which suffers the largest earthquake inertia force and firstly yields plastic damage to generate compression-expansion deformation, because of the largest water content and volume-weight within the loose soil of it. Secondly, in view of the steep slope, along with the compression, the plastic deformation area enlarges further in the lower of slope, giving rise to a tensional stress area along the middle of the slope. As soon as the tensional stress exceeds the tensile strength of the weathering layer, a tensional fracture will occur and the landslide rolls away immediately making use of momentum. This two large landslides are the basic typical ones triggered by the MS6.5 Ludian earthquake, and their causes and mechanism have a certain popular implication for the landslides occurring in this earthquake region.
    THE DIFFERENCE OF DEPOSITION RATE IN THE BOREHOLES AT THE JUNCTION BETWEEN NANKOU-SUNHE FAULT AND HUANGZHUANG-GAOLIYING FAULT AND ITS RESPONSE TO FAULT ACTIVITY IN THE BEIJING AREA
    ZHANG Lei, BAI Ling-yan, ZHAO Yong, ZHANG Xiao-liang, YANG Tian-shui, CAI Xiang-min, HE Fu-bing
    2017, 39(5):  1048-1065.  DOI: 10.3969/j.issn.0253-4967.2017.05.013
    Asbtract ( )   HTML   PDF (3224KB) ( )  
    References | Related Articles | Metrics
    Beijing plain area has been always characterized by the tectonic subsidence movement since the Pliocene. Influenced and affected by the extensional tectonic environment, tensional normal faulting occurred on the buried NE-trending faults in this area, forming the "two uplifts and one sag" tectonic pattern. Since Quaternary, the Neocathaysian stress field caused the NW-directed tensional shear faulting, and two groups of active faults are developed. The NE-trending active faults include three major faults, namely, from west to east, the Huangzhuang-Gaoliying Fault, Shunyi Fault and Xiadian Fault. The NW-trending active faults include the Nankou-Sunke Fault, which strikes in the direction of NW320°~330°, with a total length of about 50km in the Beijing area. The northwestern segment of the fault dips SW, forming a NW-directed collapse zone, which controls the NW-directed Machikou Quaternary depression. The thickness of the Quaternary is more than 600 meters; the southeastern segment of the fault dips NE, with a small vertical throw between the two walls of the fault. Huangzhuang-Gaoliying Fault is a discontinuous buried active fault, a boundary line between the Beijing sag and Xishan tectonic uplift. In the Beijing area, it has a total length of 110km, striking NE, dipping SE, with a dip angle of about 50~80 degrees. It is a normal fault, with the maximum fault throw of more than 1 000m since the Tertiary. The fault was formed in the last phase of Yanshan movement and controls the Cretaceous, Paleogene, Neogene and Quaternary sediments.There are four holes drilled at the junction between Nankou-Sunhe Fault and Huangzhuang-Gaoliying Fault in Beijing area. The geographic coordinates of ZK17 is 40°5'51"N, 116°25'40"E, the hole depth is 416.6 meters. The geographic coordinates of ZK18 is 40°5'16"N, 116°25'32"E, the hole depth is 247.6 meters. The geographic coordinates of ZK19 is 40°5'32"N, 116°26'51"E, the hole depth is 500.9 meters. The geographic coordinates of ZK20 is 40°4'27"N, 116°26'30"E, the hole depth is 308.2 meters. The total number of paleomagnetism samples is 687, and 460 of them are selected for thermal demagnetization. Based on the magnetostratigraphic study and analysis on the characteristics of sedimentary rock assemblage and shallow dating data, Quaternary stratigraphic framework of drilling profiles is established. As the sedimentation rate of strata has a good response to the activity of the basin-controlling fault, we discussed the activity of target fault during the Quaternary by studying variations of deposition rate. The results show that the fault block in the junction between the Nankou-Sunhe Fault and the Huangzhuang-Gaoliying Fault is characteristic of obvious differential subsidence. The average deposition rate difference of fault-controlled stratum reflects the control of the neotectonic movement on the sediment distribution of different tectonic units. The activity of Nankou-Sunhe Fault shows the strong-weak alternating pattern from the early Pleistocene to Holocene. In the early Pleistocene the activity intensity of Huangzhuang-Gaoliying Fault is stronger than Nankou-Sunhe Fault. After the early Pleistocene the activity intensity of Nankou-Sunhe Fault is stronger than Huangzhuang-Gaoliying Fault. The activity of the two faults tends to consistent till the Holocene.
    THE CHARACTERISTICS OF VOLCANIC ROCKS STRUCTURE AND LITHOFACIES OF DALIUCHONG VOLCANO IN THE TENGCHONG VOLCANIC FIELD, YUNNAN PROVINCE
    ZHANG Chuan-jie, LI Ni, FAN Qi-cheng, ZHAO Yong-wei, WANG Jia-long
    2017, 39(5):  1066-1078.  DOI: 10.3969/j.issn.0253-4967.2017.05.014
    Asbtract ( )   HTML   PDF (7727KB) ( )  
    References | Related Articles | Metrics
    A set of grey-purple layered volcanic rocks are found widely distributed from the mountain flank to the main peak of Daliuchong volcano, but it's difficult to identify whether they are volcaniclastic rock or lava rock just by field investigation and the crystal structure observation under microscope. The study of matrix microstructure of the volcanic rocks can help to identify the volcanic facies. We recognize the eruptive facies rocks through observation of the matrix microstructure and pore shape with comparison to those of the volcanic vent facies, extrusive facies and effusive facies rocks under microscope, thus the mentioned layered volcanic rocks could be named as dacitic crystal fragment tuff. Combining the joint work of field investigation, systematic sampling, chemical analyzing and microscopic observation, we summary the Daliuchong volcanic facies as follows:1. The effusive facies lava constitutes the base of Daliuchong volcano and was produced by early eruption.2. The explosive facies is composed of dacite crystal fragment welded tuff and volcanic breccia and mainly distributes on the W, S and NE flank of the volcanic cone.3. The volcanic conduit with its diameter more than one hundred meters is located about 100 meters south of the main peak of the Daliuchong volcano.4. The extrusive facies rock is only exposed near the peak of Daliuchong volcano.Therefore, the volcanism of Daliuchong volcano can be speculated as:Large-scale lava overflowing occurred in the early eruption period; then explosive eruptions happened; at last, the volcanisms ceased marked with magma extrusion as lava dome and plug.
    THE HISTORICAL RECORDS OF VOLCANIC ERUPTION IN THE KOREAN PENINSULA
    LI Yu-che
    2017, 39(5):  1079-1089.  DOI: 10.3969/j.issn.0253-4967.2017.05.015
    Asbtract ( )   HTML   PDF (1646KB) ( )  
    References | Related Articles | Metrics
    The historical document record is of vital significance to determine the volcanic eruption history age in the volcanology research and it cannot be replaced by 14C dating and other methods. The volcanoes are widely distributed in the northeast area of China, but there is lack of relevant historical records. However, there are the records of the volcanic eruption in the historical documents of Goryeo Dynasty(AD918-1392)and Joseon Dynasty(AD1391-1910)in the Korean Peninsula which is separated by a river with China only. Some of the records have been widely used as important information to the research of Changbaishan Tianchi volcano eruption history by researchers both at home and abroad, but they have different opinions. On the basis of the historical documents in the Korean Peninsula, that is, the History of Goryeo Dynasty and the Annals of the Joseon Dynasty so on, the phenomena of volcanic eruptions, including the intuitive eruptive events and the doubtful volcanic eruption phenomenon such as "the ash fall", "the white hair fall", "the sky fire", "the dust fall" are investigated and put in order systematically in this paper. The results are as follows:1)The intuitive eruptive events are the 1002AD eruption of Mt. Halla volcano on Jeju Island, Korea Peninsula, and the 1007AD volcanic eruption offshore to the west of Jeju Island, Korea Peninsula, as well as the 1597AD eruption of Mt. Wangtian'e volcano in Changbai County, Jilin Province, China; 2)"The ash fall" is airborne volcanic ash, and those "ash falls" happening in 1265, 1401-1405, 1668, 1673 and 1702AD are possibly the tephra of Changbaishan Tianchi volcano; 3)"The white hair fall" is Pele's hair and it is speculated that the "white hair fall "happening in 1737AD is related to Changbaishan Tianchi volcanic eruption; 4)If regarding "the sky fire" as the volcanic eruption phenomenon, "the sky fire" happening in 1533AD is possibly the Changbaishan volcanic eruption event, and "the sky fire" in 1601-1609AD may be the eruptive event of the Longgang volcano in Jilin Province, China or Changbaishan Tianchi volcano; 5)"The dust fall" is recorded in many historical documents. However, "the dust fall" is not the volcanic ash fall but the phenomenon of loess fall. So, it is improper to determine the eruptive events of Changbaishan Tianchi volcano on the basis of "the dust fall".