Loading...

Table of Content

    20 March 2016, Volume 38 Issue 1
    Research Paper
    GEOLOGICAL AND GEOMORPHIC EXPRESSIONS OF LATE QUATERNARY STRIKE-SLIP ACTIVITY ON JINTA NANSHAN FAULT IN NORTHERN EDGE OF QING-ZANG BLOCK
    ZHANG Bo, HE Wen-gui, PANG Wei, WU Zhao, SHAO Yan-xiu, YUAN Dao-yang
    2016, 38(1):  1-21.  DOI: 10.3969/j.issn.0253-4967.2016.01.001
    Asbtract ( )   PDF (15317KB) ( )  
    References | Related Articles | Metrics

    Jinta Nanshan Fault is an important fault in northeast front of Qing-Zang Plateau, and it is crucial for determining the eastern end of Altyn Tagh Fault. However, there is still debate on its significant strike-slip movement.
    In this paper, we study the Late Quaternary activity of Jinta Nanshan Fault and its geological and geomorphic expressions by interpreting aerial photographs and high-resolution remote sensing images, surveying and mapping of geological and geomorphic appearances, digging and clarifying fault profiles and mapping deformation characteristics of micro-topographies, then we analyze whether strike-slip activity exists on Jinta Nanshan Fault.
    We get a more complete fault geometry than previous studies from most recent remote sensing images. Active fault traces of Jinta Nanshan mainly include 2 nearly parallel, striking 100°~90° fault scarps, and can be divided into 3 segments. West segment and middle segment form a left stepover with 2~2.5km width, and another stepover with 1.2km width separates the middle and east segment.
    We summarize geomorphic and geologic evidence relating to strike slip activity of Jinta Nanshan Fault. Geomorphic expressions are as follows:First, fault scarps with alternating facing directions; second, sinistral offset of stream channels and micro-topographies; third, pull-apart basins and compressive-ridges at discontinuous part of Jinta Nanshan Fault. Geologic expressions are as follows:First, fault plane characteristics, including extremely high fault plane angle, unstable dip directions and coexistence of normal fault and reverse fault; second, flower structures.
    Strike-slip rate was estimated by using geomorphic surface age of Zheng et al.(2013)and left-lateral offset with differential GPS measurements of the same geomorphic surface at field site in Fig. 4e. We calculated a strike-slip rate of (0.19±0.05)mm/a, which is slightly larger than or almost the same with vertical slip rate of (0.11±0.03)mm/a from Zheng et al.(2013).
    When we confirm the strike-slip activity of Jinta Nanshan, we discuss its potential dynamic sources:First, eastern extension of Altyn Tagh Fault and second, strain partitioning of northeastward extension of Qilian Shan thrust belt. The first one is explainable when it came to geometric pattern of several E-W striking fault and eastward decreasing strike slip rate, but the former cannot explain why the Heishan Fault, which locates between the the Altyn Tagh Fault and Jinta Nanshan Fault, is a pure high angle reverse fault. The latter seems more explainable, because oblique vectors may indeed partition onto a fault and manifest strike-slip activity.

    THE COSEISMIC VERTICAL DISPLACEMENTS OF SURFACE RUPTURE ZONE OF THE 1556 HUAXIAN EARTHQUAKE
    MA Ji, FENG Xi-jie, LI Gao-yang, LI Xiao-ni, ZHANG Yi
    2016, 38(1):  22-30.  DOI: 10.3969/j.issn.0253-4967.2016.01.002
    Asbtract ( )   PDF (4715KB) ( )  
    References | Related Articles | Metrics

    Coseismic displacement plays a role in earthquake surface rupture, which not only reflects the magnitude scale but also has effect on estimates of fault slip rate and earthquake recurrence intervals. A great historical earthquake occurred in Huaxian County on the 23rd January 1556, however, there was lack of surface rupture records and precise coseismic vertical displacements. It's known that the 1556 Huaxian earthquake was caused by Huashan front fault and Weinan plateau front fault, which are large normal faults in the east part of the southern boundary faults in Weihe Basin controlling the development of the basin in Quaternary. Here, we made a study on three drilling sites in order to unveil the coseismic vertical displacements.
    It is for the first time to get the accurate coseismic vertical displacements, which is 6m at Lijiapo site of Huashan front fault, 7m at Caiguocun site, and 6m at Guadicun site of Weinan plateau front fault. These coseismic displacements measured based on same layers of drilling profiles both at footwall and hanging wall are different from the results measured by former geomorphological fault scarps. It's estimated that some scarps are related with the nature reformation and the human beings' activities, for example, fluviation or terracing field, instead of earthquake acticity, which leads to some misjudgment on earthquake displacements. Moreover, the vertical displacements from the measurement of geomorphological scarps alone do not always agree with the virtual ones. Hence, we assume that the inconsistency between the results from drilling profiles and geomorphological scarps in this case demonstrates that the fault scarp surface may have been demolished and rebuilt by erosion or human activities.

    NEW EVIDENCES OF THE HOLOCENE FAULT IN SUQIAN SEGMENT OF THE TANLU FAULT ZONE DISCOVERED BY SHALLOW SEISMIC EXPLORATION METHOD
    XU Han-gang, FAN Xiao-ping, RAN Yong-kang, GU Qin-ping, ZHANG Peng, LI Li-mei, ZHAO Qi-guang, WANG Jin-yan
    2016, 38(1):  31-43.  DOI: 10.3969/j.issn.0253-4967.2016.01.003
    Asbtract ( )   PDF (10420KB) ( )  
    References | Related Articles | Metrics

    The fault F5 is considered as the most active fault in the Tanlu fault zone(Yi-Shu fault zone), which is located from Weifang of Shandong Province to Jiashan of Anhui Province, with a length of 360km. It has always been a focus of concern to many geoscientists because of its complexity and importance. But, for a long period of time, there exists biggish indetermination in the accurate position and active ages of the fault F5 in Suqian section of Tanlu fault zone. Seismic reflection exploration is the main technique in present urban active faults detecting. In order to investigate the spatial distribution, characteristics and activities of the fault F5 in covered terrains, we carried out a systematic survey to the fault with shallow seismic prospecting method and obtained the accurate position and development characteristics of the fault. The results show that the fault F5 continues to develop toward south rather than ending at the Huancheng South Road of Suqian City. F5 is mainly composed of two main faults, which dip in opposite directions and almost vertically. Near the Sankeshu town, F5 is composed of three faults with right-stepping, forming a small pull-apart basin with length of 6km, width of 2.5km, controlling the deposition of Neogene and Quaternary strata. By combining the results of composite drilling section and trenching, we make a conclusion that the western branch of fault F5 is a Holocene active fault, and the eastern branch is a Pleistocene active fault. Our general view is that fault F5 is a Holocene active fault.

    THE TECTONIC ACTIVITY CHARACTERISTICS OF AWANCANG FAULT IN THE LATE QUATERNARY, THE SUB-STRAND OF THE EASTERN KUNLUN FAULT
    LI Chen-xia, YUAN Dao-yang, YANG Hu, XU Xi-wei
    2016, 38(1):  44-64.  DOI: 10.3969/j.issn.0253-4967.2016.01.004
    Asbtract ( )   PDF (15616KB) ( )  
    References | Related Articles | Metrics

    It is well known that the slip rate of Kunlun Fault descends at the east segment, but little known about the Awancang Fault and its role in strain partitioning with Kunlun Fault. Whether the sub-strand(Awancang Fault) can rupture simultaneously with Kunlun Fault remains unknown. Based on field investigations, aerial-photo morphological analysis, topographic surveys and 14C dating of alluvial surfaces, we used displaced terrace risers to estimate geological slip rates along the Awancang Fault, which lies on the western margin of the Ruoergai Basin and the eastern edge of the Tibetan plateau, the results indicate that the slip rate is 3mm/a in the middle Holocene, similar to the reduced value of the Kunlun Fault. The fault consists of two segments with strike N50° W, located at distance about 16km, and converged to single stand to the SE direction. Our results demonstrate that the Awancang fault zone is predominantly left-lateral with a small amount of northeast-verging thrust component. The slip rates decrease sharply about 4mm/a from west to east between the intersection zone of the Awancang Fault and Kunlun Fault. Together with our previous trenching results on the Kunlun Fault, the comparison with slip rates at the Kunlun fault zone suggests that the Awancang fault zone has an important role in strain partitioning for east extension of Kunlun Fault in eastern Tibet. At the same time, the 15km long surface rupture zone of the southeast segment was found at the Awancang Fault. By dating the latest faulted geomorphologic surface, the last event may be since the 1766±54 Cal a BP. Through analysis of the trench, there are four paleoearthquake events identified recurring in situ on the Awancang Fault and the latest event is since (850±30)a BP. The slip rate of the Awancang Fault is almost equivalent to the descending value of the eastern part of the east Kunlun Fault, which can well explain the slip rate decreasing of the eastern part of the east Kunlun Fault(the Maqin-Maqu segment)and the characteristics of the structure dynamics of the eastern edge of the Tibet Plateau. The falling slip rate gradient of the eastern Kunlun Fault corresponds to the geometric characteristic. It is the Awancang Fault, the strand of the East Kunlun Fault that accommodates the strain distribution of the eastward extension of the east Kunlun Fault. This study is helpful to seismic hazard assessment and understanding the deformation mechanism in eastern Tibet.

    EXPERIMENTAL STUDY OF TEMPERATURE EVOLUTION AND IDENTIFICATION OF INSTABILITY POSITION OF PLANAR STRIKE-SLIP FAULT DURING PROCESS OF STICK-SLIP
    REN Ya-qiong, MA Jin, LIU Pei-xun, CHEN Shun-yun
    2016, 38(1):  65-76.  DOI: 10.3969/j.issn.0253-4967.2016.01.005
    Asbtract ( )   PDF (4775KB) ( )  
    References | Related Articles | Metrics

    Stick-slip of fault in laboratory accompanies change of temperature. Temperature change is not only concerned with sliding friction, but also with the stress state of the sample. In this article, we use infra-red thermal imaging system as wide-range observation means to study the temperature variation of different stages during the deformation of sample. The rock sample for the experiment is made of granodiorite from Fangshan County with a size of 300mm×300mm×50mm. It is cut obliquely at an angle of 45°, forming a planar fault. Two-direction servo-control system was used to apply load on the sample. The load in both directions was forced to 5MPa and maintained constant (5MPa) in the X direction, then the load in the Y direction was applied by a displacement rate of 0.5μm/s, 0.1μm/s and 0.05μm/s successively. The left and below lateral of the sample were fixed, and the right and top lateral of the sample were slidable when loaded. The experiment results show not only the temperature change from increase to decrease caused by conversion of stress accumulation to relaxation before and after the peak stress, but also opposite variation of temperature increase on fault and temperature decrease in rock during instability stage. Most important of all, we have found the temperature precursor identifying the position of instability through the temperature variation with time along the fault. It shows that rate of temperature increase of instability position keeps relative high value since the stage of strongly off-linear stage, and accelerates in stage of meta-instability. After separating the effect of friction and stress, we found that temperature increase occurs in the rock near the fault instead of on the fault, which means the mechanism of temperature increase is stress accumulation. Temperature of fault at the instability position does not increase, which means the position is locked. We speculate that the position of locked area on fault with high stress accumulation near the fault may be the future instability position. It is of significance of studying temperature variation during stick-slip to the monitoring of earthquake precursors. Heat caused by friction of earthquake needs long time to transfer to the surface and could not be detected as a precursor. While the stress of surface rock near the fault would change as the stress of interior rock changes, which could cause detectable temperature variations. The research purpose of this article is to find special change positions before instability. As the temperature variations are caused by stress and slip of fault, the results are also meaningful to analysis of stress and displacement data related to earthquake precursors.

    DISTRIBUTION OF 3 EARTHQUAKE RUPTURE ZONES IN ESATERN TIENSHAN AND ITS RELATIONSHIP WITH 2 HISTORICAL EARTHQUAKES
    WU Fu-yao, RAN Yong-kang, CHEN Li-chun, LI An
    2016, 38(1):  77-90.  DOI: 10.3969/j.issn.0253-4967.2016.01.006
    Asbtract ( )   PDF (10549KB) ( )  
    References | Related Articles | Metrics

    The distribution of earthquake rupture zone plays a very important role in determining location of epicenter and magnitude of historical earthquake. There is still argument about the seismogenic structure of the 1842 M7 Balikun earthquake and the 1914 M7 1/2 Balikun earthquake in the historical records in eastern Tienshan. Through field geological survey, we confirm that there exist 3 rupture zones in Eastern Tienshan. These rupture zones, Tazibulake rupture zone on the Jian Quanzi-Luo Baoquan Fault, north of Shanshan, Xiong Kuer rupture zone on the south Balikun Basin Fault and Yanchi rupture zone on the south Yiwu Basin Fault, are closely related to 2 historical earthquakes. Based on historical literature and current geological evidence analysis, we infer that Xiong Kuer rupture zone was produced by 1842 M7 earthquake and Yanchi rupture zone by 1914 M7 1/2 earthquake, while Tazibukale rupture zone may represent another unrecorded historical event. South Balikun Basin Fault disturbs Quaternary stratigraphy which has a 14C age of 3110±30 B.P in the south of Balikun County, ~100km to the east of Xiong Kuer rupture zone, therefore we can't preclude the possibility that Xiong Kuer rupture zone extends to the south of Balikun County. This region overlaps with the meizoseismal area based on the literature document, together with the fact that the impact of 1842 earthquake is no less than 1914 earthquake, we believe that the magnitude of 1842 earthquake is no less than that of the 1914 earthquake.

    CRUSTAL STRUCTURE FROM YUNXIAN-NINGLANG WIDE-ANGLE SEISMIC REFLECTION AND REFRACTION PROFILE IN NORTHWESTERN YUNNAN, CHINA
    CHEN Si-wen, WANG Bao-shan, TIAN Xiao-feng, WANG Fu-yun, LIU Bao-feng, LI Lu
    2016, 38(1):  91-106.  DOI: 10.3969/j.issn.0253-4967.2016.01.007
    Asbtract ( )   PDF (5779KB) ( )  
    References | Related Articles | Metrics

    The Red River Fault in western Yunnan is one of the longest strike-slip faults in China and has a high seismic potential. To investigate its complicated structure, a near-NS directed 300km long wide-angle reflection/refraction seismic profile was laid out from Yunxian to Ninglang, across the Red River Fault. The 2-D velocity structure model along the profile was obtained through 1-D and 2-D analysis and fitting the observed data with combination of first-arrival traveltime tomography and forward modeling. The results indicate:In the crust, the average P-wave velocity is 6.2~6.3km/s and basically shows a positive gradient structure, but there are some low velocity anomalies at different area in upper and lower crust. Regarding the crust boundary, a relative large lateral variation exists in the depth of Moho, which goes deeper from south to north, ranging from 45km to as deep as 54km; compared to other typical continental crust, the study area demonstrates a striking thickening. It should be mentioned that the crustal thickening is mainly observed in the lower crust, while the upper and middle crust possess nearly constant thickness. We observed strong seismic velocity contrast across the Red River Fault, which emphasizes the role of the fault as an important tectonic boundary between Yangtze paraplatform and Sanjiang geosynclinal system. Along the profile, the Moho depth has no remarkable variation when crossing the Red River Fault. Combining with other study results on nearby area, it proves that there is notable heterogeneity between different parts of the Red River Fault.

    DEEP ELECTRIC STRUCTURE BENEATH NORTHEASTERN BOUNDARY AREAS OF THE NORTH CHINA CRATON
    DONG Ze-yi, TANG Ji, CHEN Xiao-bin, WANG Li-feng, WANG Ji-jun, MENG Bu-zai, BAI Yun
    2016, 38(1):  107-120.  DOI: 10.3969/j.issn.0253-4967.2016.01.008
    Asbtract ( )   PDF (4854KB) ( )  
    References | Related Articles | Metrics

    Magnetotelluric data are collected along a NW-SE trending and about 900km long profile within northeastern boundary areas of the North China craton(NCC). This profile extends from the Hegenshan belt within the Central Asian orogenic belt(CAOB), across the Baolidao arc, Solonker-Linxi suture zone, Ondor Sum accretion complex, Bainaimiao arc, Inner Mongolia paleo-uplift, Yanshan belt, and ends on the Liaohe depression of the NCC. Impedance tensor decomposition methods are used to study the dimensionality and geo-electric strike of MT data of the region. Two-dimension (2D) analysis is appropriate for this profile. The 2-D subsurface electrical resistivity structure along profile is obtained using the non-linear conjugate gradient (NLCG) algorithm. The electrical resistivity structure is characterized by lateral segmentation, and divided into high resistive, low resistive, and high resistive areas; The lateral variation of electrical resistivity is significant within the CAOB, but it is smooth in the NCC; The extensive high conductive body(HRB)is observed in the mid-low crust beneath the Solonker-Linxi suture zone and Inner Mongolia paleo-uplift, respectively; The low resistivity could be due to the partial melts and crustal flows. Based on our electrical resistivity structure and other geological, geophysical observations, we speculate that (1)the final suturing of the Siberian craton to the NCC could be along the areas between Xilinhot Fault and Xar Moron Fault; (2)the relatively thick high resistive body beneath the Yanshan belt may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection system, and lower the effect of tectonic evolution of CAOB on the destruction to NCC.

    RESEARCH ON GENESIS OF M4.2 AND M4.5 EARTHQUAKE SEQUENCES IN MARCH 2014 IN ZIGUI COUNTY, HUBEI PROVINCE
    WANG Qiu-liang, ZHANG Li-fen, LIAO Wu-lin, LI Jing-gang
    2016, 38(1):  121-130.  DOI: 10.3969/j.issn.0253-4967.2016.01.009
    Asbtract ( )   PDF (2782KB) ( )  
    References | Related Articles | Metrics

    On 27th and 30th March 2014, an M4.2 and M4.5 earthquake sequence occurred in Zigui County, Hubei Province, and the earthquake sequence type is double seismic type. The two earthquake sequences occurred at the water unloading stage of the 175m trial impounding, and G-R relations showed the similar characteristics with that of the tectonic earthquakes. In order to verify the influences of dam reservoir on earthquake triggering, ETAS model was introduced, the results showed that the slow water level changes had little impact on the occurrence of earthquake. Double difference precision relocation results indicated that the two earthquake sequences occurred at the intersection part of a NE-striking fault and the NNW-striking Xiannvshan Fault, and the preferred direction of aftershock distribution was separately NE and NNW. Moment tensor inversion method and P wave initial motion method were used to determine the focal mechanisms of the two earthquakes, and the results indicated that the two earthquakes were controlled by the regional tectonic stress field and were of reverse-slip type. Comprehensive analysis showed that the M4.2 earthquake was caused by a small-scale fault striking NE with a big dip angle. From the hypocenter profile, it can be seen that the M4.2 earthquake sequence was restrained by an east-dip fault, and the M4.5 earthquake sequence was the product under the conjugate action of the NE-striking fault and the NNW-striking Xiannvshan fault.

    THE STRUCTURAL CHARACTERISTICS OF PANGUSI-XINXIANG FAULT IN THE SOUTHERN MARGIN OF TAIHANG MOUNTAINS
    QIN Jing-jing, ZHAO Cheng-bin, LIU Ming-jun, TAN Ya-li, ZUO Ying, LIU Ying-ying
    2016, 38(1):  131-140.  DOI: 10.3969/j.issn.0253-4967.2016.01.010
    Asbtract ( )   PDF (4536KB) ( )  
    References | Related Articles | Metrics

    Pangusi-Xinxiang Fault is a great-scale, deep-incising buried active fault in the southern margin of the Taihang Mountains. In order to find out the location, characteristics, structure and activities of Pangusi-Xinxiang Fault, shallow reflection profiles with six lines crossing the buried faults were carried out. In this paper, based on the high-resolution seismic data acquisition technology and high-precision processing technology, we obtained clear images of underground structures. The results show that Pangusi-Xinxiang Fault is a near EW-trending Quaternary active fault and its structural features are different in different segment. The middle part of the fault behaves as a south-dipping normal fault and controls the north boundary of Jiyuan sag; The eastern part of the fault is a north-dipping normal fault and a dividing line of Wuzhi uplift and Xiuwu sag. The shallow seismic profiles reveal that the up-breakpoint of the Pangusi-Xinxiang Fault is at depth of 60~70m, which offsets the lower strata of upper Pleistocene. We infer that the activity time of this fault is in the lower strata of late Pleistocene. In this study, not only the location and characteristics of Pangusi-Xinxiang Fault are determined, but also the reliable geological and seismological evidences for the fault activity estimation are provided.

    DISTRIBUTION OF YANGJIA VILLAGE-YAODIAN SECTION OF WEIHE FAULT AND THE CHARACTERISTICS OF ITS LATE QUATERNARY ACTIVITY
    TIAN Qin-hu, ZHOU Ben-gang, LI Xiao-ni, SHI Jin-hu, WEI Qing-ke, BIAN Ju-mei
    2016, 38(1):  141-151.  DOI: 10.3969/j.issn.0253-4967.2016.01.011
    Asbtract ( )   PDF (8737KB) ( )  
    References | Related Articles | Metrics

    The Yangjia Village-Yaodian segment of Weihe Fault, starting from Yangjia Village in the west, passing through Weijiaquan, Jinjiazhuang, Donger Village, Chenjiatai to Yaodian, occurs as a NE-striking fault dipping south with a total length of 33 kilometers. As a syn-depositional normal fault, it extends along the leading and trail edge of T1, T2 and T3 terrace at the northern bank of Weihe River. Results of remote sensing interpretation, shallow seismic exploration, exploratory trench, and drilling show that the Yangjia Village-Yaodian section of Weihe Fault manifests as fault scarps, overlapping with the NE-extending terrace scarp at the northern bank of Weihe River. Weihe Fault broke the T1 that can be distinguished on the shallow seismic profile and multiple profiles with broken signs from T1 to the ground, which is the same with the cracks through the Han Tomb at the top of the exploratory trench in Yangjia Village. It shows that the fault may still be active from the late Pleistocene to Holocene. Through composite drilling section and the analysis of exploratory trench, there is no significant difference in activity between the Yangjia Village-Jinjiazhuang and Donger Village-Yaodian section. This segment has experienced a large displacement event since (46.0±3.3)ka BP, approximately 11.0~16.5m, with a vertical slip rate of 0.34~0.45mm/a. The most recent activity occurred approximately around 2.0ka BP. The left-step en echelon fracture zone at Jingjiazhuang separates this section into two minor ones, Yangjia Village-Jinjiazhuang section and Donger Villag-Yaodian section. Yangjia Village-Yaodian section in Weihe Fault and Yaodian-Zhangjiawan section which was found out in the Xi'an active fault detection and seismic risk assessment project can be combined into the Yangjia Village-Zhangjiawan section.

    THE STATIC COULOMB STRESS CHANGE OF THE 2014 LUDIAN EARTHQUAKE AND ITS INFLUENCE ON THE AFTERSHOCKS AND SURROUNDING FAULTS
    MIAO Miao, ZHU Shou-biao
    2016, 38(1):  169-181.  DOI: 10.3969/j.issn.0253-4967.2016.01.013
    Asbtract ( )   PDF (5505KB) ( )  
    References | Related Articles | Metrics

    On Aug. 3rd, 2014, a MS6.5 earthquake struck Ludian County, Yunnan Province. It is a typical left-lateral strike-slip event. With the purpose of understanding the influence of the Ludian earthquake, this paper firstly calculates the co-seismic Coulomb failure stress changes of the mainshock with the employment of the finite dislocation source model inversed by other researchers and studies the triggering effect to the aftershocks within a month. We find that 82.43% of the aftershocks are located in the Coulomb stress increasing area(ΔCFS>0.01MPa), therefore, most of the aftershocks are triggered by the mainshock. Then, regarding the surrounding active faults as the receive faults, the Coulomb stress changes of the mainshock are calculated to investigate the impact on the faults nearby. The result shows that only the northeast end of the west branch and northeast part of the east branch of Zhaotong-Ludian faults have been brought to failure. However, the other faults such as Daliangshan Fault, Lianfeng Fault, Zemuhe Fault, Xiaojiang Fault and Mabian-Yanjin Fault are unloaded after the Luidian event, so the possibility of future earthquake is decreased around these faults. Besides, when the optimal failure plane is chosen as the receive fault of the Coulomb stress changes, the Ludian earthquake always has good triggering effect to the aftershocks no matter which source models and effective friction coefficients are chosen.

    Academic discussion
    ASSESSING THE SEISMIC RISK OF CITIES AT FINE-SCALE: A CASE STUDY OF HAIDIAN DISTRICT IN BEIJING, CHINA
    YUAN Hai-hong, GAO Xiao-lu, QI Wei
    2016, 38(1):  197-210.  DOI: 10.3969/j.issn.0253-4967.2016.01.015
    Asbtract ( )   PDF (2635KB) ( )  
    References | Related Articles | Metrics

    In order to provide practical and useful information for the disaster prevention and relief actions, it is necessary to take into account spatial differences and temporal changes of seismic risk in evaluating seismic risk at a proper temporal and spatial scale. From the perspectives of identifying spatial difference of seismic risk within the city and performing disaster relief operations, the evaluation of urban seismic risk is done in this paper at the spatial scale of 500m*500m grids for day time and night time separately. For this purpose, this paper proposes the methods for the assessment of seismic risk, establishing the correspondence relations between the population and land use, and between the floor area of buildings destroyed and casualties at more reasonable spatial and temporal scales. Taking a case study of Haidian District in Beijing using these methods, we estimate the floor area and the value of buildings destroyed and the casualties at daytime and nighttime separately at the 500m grid scale. Results show that:a total of 185, 000m2 of areas is expected to be destroyed annually in Haidian District, and the total loss of the houses is 325 million Yuan(excluding properties within the houses). During the day(night)time, 3, 159(2, 037)victims are expected to be killed and 12, 071(7, 790) injured. Destruction of buildings and loss of houses is spatially concentrated in the downtowns in the south and the industrial parks in the east. The casualties inflicted during the day and night descend from southeast to northwest, i.e. from urban core areas, urban fringes, urban outskirts, to village. Several regions suffer heavy casualties during the day, but nighttime casualties are scattered across different regions. The conclusions in this paper efficiently identify the spatial distribution of areas at the level of high and the very high seismic risk, which provides reliable decision support for identifying priority areas for pre-disaster prevention and mitigation, emergency rescue and the distribution of various relief supplies.

    Special Review
    THE DEVELOPMENT OF OPTICAL REMOTE SENSING TECHNOLOGY AND ITS APPLICATION TO THE ACTIVE TECTONICS RESEARCH
    SUN Xin-zhe, TANG Sheng-quan
    2016, 38(1):  211-220.  DOI: 10.3969/j.issn.0253-4967.2016.01.016
    Asbtract ( )   PDF (4271KB) ( )  
    References | Related Articles | Metrics

    Remote sensing technology has brought great convenience to our understanding of the macroscopic geological features since its inception. Especially, great progress has been made in manufacturing techniques of remote sensing platforms and sensors since the mid 20th century, and a huge number of global remote sensing data have been acquired. The quality of the data has been greatly improved based on the sensor's development. This article briefly reviews the processes of development of the remote sensing technology, elaborates on several satellites' parameters which have important significance for active tectonics interpretation, such as Landsat, SPOT, QuickBird, etc., and systematically reviews the progress in optical image interpretation made with the improvement of image resolution. The paper also briefly introduces the latest optical imaging correlation techniques, the detailed geomorphological mapping techniques based high-resolution satellite images, and the perspective of application of the remote sensing technology to active tectonics research.