SEISMOLOGY AND GEOLOGY ›› 2023, Vol. 45 ›› Issue (1): 286-303.DOI: 10.3969/j.issn.0253-4967.2023.01.016
YU Shu-yuan1,2)(), HUANG Xian-liang1,2),*(), ZHENG Hai-gang1,2), LI Ling-li1,2), LUO Jia-ji1,2), DING Juan1,2), FAN Xiao-ran3)
Received:
2022-03-31
Revised:
2022-09-16
Online:
2023-02-20
Published:
2023-03-24
于书媛1,2)(), 黄显良1,2),*(), 郑海刚1,2), 李玲利1,2), 骆佳骥1,2), 丁娟1,2), 范晓冉3)
通讯作者:
* 黄显良, 男, 1972年生, 研究员, 主要从事地球物理学和空间物理学研究, E-mail: hxl818@sina.com。
作者简介:
于书媛, 女, 1984年生, 2011年于中国矿业大学获地图学与地理信息系统专业硕士学位, 工程师, 主要研究方向为地震大地测量学的应用研究, E-mail: 819718728@qq.com。
基金资助:
CLC Number:
YU Shu-yuan, HUANG Xian-liang, ZHENG Hai-gang, LI Ling-li, LUO Jia-ji, DING Juan, FAN Xiao-ran. THE COSEISMIC RUPTURE MODEL AND STRESS CHANGE OF THE 2022 MENYUAN MW6.7 EARTHQUAKE[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 286-303.
于书媛, 黄显良, 郑海刚, 李玲利, 骆佳骥, 丁娟, 范晓冉. 2022年门源MW6.7地震的同震破裂模型及应力研究[J]. 地震地质, 2023, 45(1): 286-303.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2023.01.016
来源 | 东经 /(°) | 北纬 /(°) | D /km | 节面Ⅰ/(°) | 节面Ⅱ/(°) | 震级 | ||||
---|---|---|---|---|---|---|---|---|---|---|
走向 | 倾角 | 滑动角 | 走向 | 倾角 | 滑动角 | |||||
GCMTa | 101.31 | 37.8 | 14.8 | 104 | 82 | 1 | 14 | 89 | 172 | MW6.7 |
USGSb | 101.278 | 37.815 | 13 | 13 | 75 | 178 | 104 | 88 | 15 | MW6.6 |
CENCc | 101.26 | 37.77 | 10 | 18 | 51 | 178 | 109 | 81 | 39 | MS6.9 |
IGCEAd | 101.275 | 38.811 | 4 | 192 | 69 | 172 | 284 | 82 | 21 | MW6.7 |
本研究冷龙岭段 | 101.23 | 37.8 | 5 | 126 | 80 | 6.97 | MW6.7 | |||
本研究托莱山段 | 5 | 109 | 60 | 5.8 |
Table1 Focal parameters of the 2022-01-08 Menyuan earthquake obtained by different institutions
来源 | 东经 /(°) | 北纬 /(°) | D /km | 节面Ⅰ/(°) | 节面Ⅱ/(°) | 震级 | ||||
---|---|---|---|---|---|---|---|---|---|---|
走向 | 倾角 | 滑动角 | 走向 | 倾角 | 滑动角 | |||||
GCMTa | 101.31 | 37.8 | 14.8 | 104 | 82 | 1 | 14 | 89 | 172 | MW6.7 |
USGSb | 101.278 | 37.815 | 13 | 13 | 75 | 178 | 104 | 88 | 15 | MW6.6 |
CENCc | 101.26 | 37.77 | 10 | 18 | 51 | 178 | 109 | 81 | 39 | MS6.9 |
IGCEAd | 101.275 | 38.811 | 4 | 192 | 69 | 172 | 284 | 82 | 21 | MW6.7 |
本研究冷龙岭段 | 101.23 | 37.8 | 5 | 126 | 80 | 6.97 | MW6.7 | |||
本研究托莱山段 | 5 | 109 | 60 | 5.8 |
轨道方向 (轨道号) | 成像日期 | 极化 方式 | 视线方位角α /(°) | 视线入射角θ /(°) | 空间基线 /m | 时间基线 /d | |
---|---|---|---|---|---|---|---|
震前 | 震后 | ||||||
升轨(T26) | 2021-12-29 | 2022-01-10 | VV | -13.218 | 34.242 | -110.341 | 12 |
升轨(T128) | 2022-01-05 | 2022-01-17 | VV | -13.237 | 34.096 | 38.432 | 12 |
降轨(T33) | 2021-12-29 | 2022-01-10 | VV | -166.776 | 34.003 | 55.852 | 12 |
Table2 Parameters of ascending and descending scenes
轨道方向 (轨道号) | 成像日期 | 极化 方式 | 视线方位角α /(°) | 视线入射角θ /(°) | 空间基线 /m | 时间基线 /d | |
---|---|---|---|---|---|---|---|
震前 | 震后 | ||||||
升轨(T26) | 2021-12-29 | 2022-01-10 | VV | -13.218 | 34.242 | -110.341 | 12 |
升轨(T128) | 2022-01-05 | 2022-01-17 | VV | -13.237 | 34.096 | 38.432 | 12 |
降轨(T33) | 2021-12-29 | 2022-01-10 | VV | -166.776 | 34.003 | 55.852 | 12 |
断层 | 东经/(°) | 北纬/(°) | 长/km | 宽/km | 走向/(°) | 倾角/(°) | 滑动角/(°) |
---|---|---|---|---|---|---|---|
托莱山断裂 | 101.27 | 37.8 | 100 | 30 | 109 | 58 | 21 |
肃南-祁连断裂俄堡段 | 101.22 | 37.81 | 70 | 30 | 290 | 58 | 21 |
冷龙岭断裂西段 | 101.30 | 37.8 | 140 | 30 | 125 | 50 | 21 |
Table3 Fault geometric parameters
断层 | 东经/(°) | 北纬/(°) | 长/km | 宽/km | 走向/(°) | 倾角/(°) | 滑动角/(°) |
---|---|---|---|---|---|---|---|
托莱山断裂 | 101.27 | 37.8 | 100 | 30 | 109 | 58 | 21 |
肃南-祁连断裂俄堡段 | 101.22 | 37.81 | 70 | 30 | 290 | 58 | 21 |
冷龙岭断裂西段 | 101.30 | 37.8 | 140 | 30 | 125 | 50 | 21 |
[1] | 陈文彬. 2003. 河西走廊及邻近地区最新构造变形基本特征及构造成因分析[D]. 北京: 中国地震局地质研究所:3545. |
CHEN Wen-bin. 2003. Principal features of tectonic deformation and their generation mechanism in the Hexi Corridor and its adjacent regions since Late Quaternary[D]. Institute of Geology, China Earthquake Administration, Beijing: 3545. (in Chinese) | |
[2] | 邓起东, 张培震, 冉勇康, 等. 2003. 中国活动构造与地震活动[J]. 地学前缘, 10(S1): 6673. |
DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. 2003. Active tectonics and seismicity in China[J]. Earth Science Frontiers, 10(S1): 6673. (in Chinese) | |
[3] | 何文贵, 刘百篪, 袁道阳, 等. 2000. 冷龙岭活动断裂的滑动速率研究[J]. 西北地震学报, 22(1): 9097. |
HE Wen-gui, LIU Bai-chi, YUAN Dao-yang, et al. 2000. Research on slip rates of the Lenglongling active fault zone[J]. Northwestern Seismological Journal, 22(1): 9097. (in Chinese) | |
[4] | 何文贵, 刘百篪, 袁道阳, 等. 2001. 冷龙岭断裂古地震初步研究[G]∥《活动断裂研究》编委会. 活动断裂研究(8). 北京: 地震出版社: 6473. |
HE Wen-gui, LIU Bai-chi, YUAN Dao-yang, et al. 2001. Preliminary study on paleoearthquakes in Lenglongling Fault[G]∥ Editorial Committee of Active Faults Research(8). Seismological Press, Beijing: 6474. (in Chinese) | |
[5] | 何文贵, 袁道阳, 葛伟鹏, 等. 2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J]. 地震, 30(1): 131137. |
HE Wen-gui, YUAN Dao-yang, GE Wei-peng, et al. 2010. Determination of the slip rate of the Lenglongling Fault in the middle and eastern segments of the Qilian Mountain active fault zone[J]. Earthquake, 30(1): 131137. (in Chinese) | |
[6] | 侯康明. 1998. 皇城-双塔断裂带的几何分段及运动学特征[J]. 华南地震, 18(3): 2834. |
HOH Kang-ming. 1998. The geometric segmentation and kinematics characteristics of Huangcheng-Shuangta fault zone[J]. South China Journal of Seismology, 18(3): 2834. (in Chinese) | |
[7] | 胡朝忠, 杨攀新, 李智敏, 等. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报, 59(5): 16371646. |
HU Chao-zhong, YANG Pan-xin, LI Zhi-min, et al. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai MS6. 4 earthquake[J]. Chinses Journal of Geophysics, 59(5): 16371646. (in Chinese) | |
[8] | 姜文亮. 2018. 冷龙岭断裂带全新世破裂模式、 大震复发特征研究及其区域构造意义[D]. 北京: 中国地震局地质研究所:3540. |
JIANG Wen-liang. 2018. Holocene rupture pattern, seismic recurrence feature of the Lenglongling fault zone and its tectonic implication for the northeast Tibetan plateau[D]. Institute of Geology, China Earthquake Administration, Beijing: 3540. (in Chinese) | |
[9] | 李振洪, 韩炳权, 刘振江, 等. 2022. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 47(6): 887897. |
LI Zhen-hong, HAN Bing-quan, LIU Zhen-jiang, et al. 2022. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 47(6): 887897. (in Chinese) | |
[10] | 李智敏, 盖海龙, 李鑫, 等. 2022. 2022年青海门源 MS6.9 地震发震构造和地表破裂初步调查[J]. 地质学报, 96(1): 330335. |
LI Zhi-min, GAI Hai-long, LI Xin, et al. 2022. Seismogenic fault and coseismic surface deformation of the Menyuan MS6.9 earthquake in Qinghai, China[J]. Acta Geologica Sinica, 96(1): 330335. (in Chinese) | |
[11] | 潘家伟, 李海兵, Chevalier M, 等. 2022. 2022年青海门源 MS6.9 地震地表破裂带及发震构造研究[J]. 地质学报, 96(1): 215231. |
PAN Jia-wei, LI Hai-bing, Chevalierr M, et al. 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake, Qinghai Province, China[J]. Acta Geologica Sinica, 96(1): 215231. (in Chinese) | |
[12] | 万永革. 2001. “地震静态应力触发”问题的研究[D]. 北京: 中国地震局地球物理研究所:710. |
WAN Yong-ge. 2001. Study on seismic static stress triggering problem[D]. Institute of Geophysics, China Earthquake Administration, Beijing: 710. (in Chinese) | |
[13] | 王琼, 肖卓, 武粤, 等. 2022. 2022年1月8日青海门源 MS6.9 地震深部构造背景浅析[J]. 地震学报, 44(2): 211222. |
WANG Qiong, XIAO Zhuo, WU Yue, et al. 2022. The deep tectonic background of the MS6.9 Menyuan earthquake on January 8, 2022 in Qinghai Province[J]. Acta Seismologica Sinica, 44(2): 211222. (in Chinese) | |
[14] | 张国民, 马宏生, 王辉, 等. 2005. 中国大陆活动地块边界带与强震活动. 地球物理学报, 48(3): 602610. |
ZHANG Guo-min, MA Hong-sheng, WANG hui, et al. 2005. Boundaries between active tectonic blocks and strong earthquakes in the China mainland[J]. Chinese Journal of Geophysics, 48(3): 602610. (in Chinese)
DOI URL |
|
[15] | 颜丙囤, 季灵运, 蒋锋云, 等. 2022. InSAR数据约束的2022年1月8日青海门源 MS6.9 地震发震构造研究[J]. 地震工程学报, 44(2): 450457. |
YAN Bing-tun, JI Ling-yun, JIANG Feng-yun, et al. 2022. Seismogenic structure of Menyuan, Qinghai MS6.9 earthquake on January 8, 2022 constrained by InSAR data[J]. China Earthquake Engineering Journal, 44(2): 450457. (in Chinese) | |
[16] | 余鹏飞, 陈威, 乔学军, 等. 2022. 基于多源SAR数据的2022年门源 MS6.9 地震同震破裂模型反演研究[J]. 武汉大学学报(信息科学版), 47(6): 898906. |
YU Peng-fei, CHEN Wei, QIAO Xue-jun, et al. 2022. Slip model of the 2022 Menyuan MS6.9 earthquake constrained by multi-source SAR data[J]. Geomatics and Information Science of Wuhan University, 47(6): 898906. (in Chinese) | |
[17] | 郑博文. 2017. 2016年门源地震InSAR形变场及发震断层参数反演[D]. 北京: 中国地震局地质研究所:2630. |
ZHENG Bo-wen. 2017. InSAR deformation field and inversion of causative fault parameters for the 2016 Menyuan earthquake[D]. Institute of Geology, China Earthquake Administration, Beijing: 2630. (in Chinese) | |
[18] |
Daout S, Jolivet R, Lasserre C, et al. 2016. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR[J]. Geophysical Journal International, 205(1): 536547.
DOI URL |
[19] | Farr T G, Rosen P A, Caro E, et al. 2007. The shuttle radar topography mission[J]. Reviews of Geophysics. 45(2): 133. |
[20] |
Gaudemer Y, Tapponnier P, Meyer B, et al. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the “Tianzhu gap”, on the western Haiyuan Fault, Gansu(China)[J]. Geophysical Journal International, 120(3): 599645.
DOI URL |
[21] |
Goldstein R M, Werner C L. 1998. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 25(21): 40354038.
DOI URL |
[22] | Lasserre C, Gaudmer Y, Tapponnier P, et al. 2002. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan Fault, Qinghai, China[J]. Journal of Geophysical Research, 107(B11): 115. |
[23] | Lin J, Ross S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 109(B2): 119. |
[24] | Lohman R B, Simons M. 2005. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling[J]. Geochem Geophys Geosystems, 6(1): 359361. |
[25] |
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 11351154.
DOI URL |
[26] |
Savage J C, Gan W, Svarc J L. 2001. Strain accumulation and rotation in the eastern California shear zone[J]. Journal of Geophysical Research, 106(B10): 2199522007.
DOI URL |
[27] | Toda S, Stein R S, Richards-Dinger K, et al. 2005. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer[J]. Journal of Geophysical Research: Solid Earth, 110(B5): B05S16. |
[28] | Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. |
[29] |
Wang R, Parolai S, Ge M, et al. 2013. The 2011 MW9.0 Tohoku earthquake: Comparison of GPS and strong-motion data[J]. Bulletin of the Seismological Society of America, 103(2B): 13361347.
DOI URL |
[30] | Werner C, Wegmüller U, Strozzi T, et al. 2002. Processing strategies for phase unwrapping for InSAR applications[J]. Proceedings EUSAR 2002, Cologne, 1: 46. |
[31] |
Wu Y, Jiang Z, Yang G, et al. 2011. Comparison of GPS strain rate computing methods and their reliability[J]. Geophysical Journal International, 185(2): 703717.
DOI URL |
[32] | Ziv A, Rubin A M. 2000. Static stress transfer and earthquake triggering: No lower threshold in sight[J]. Journal of Geophysical Research(Solid Earth), 105(B6): 1363113642. |
[1] | ZHANG Li-juan, WAN Yong-ge, WANG Fu-chang, JIN Zhi-tong, CUI Hua-wei. GEOMETRY OF SEISMOGENIC FAULTS OF THE 2021 YANGBI EARTHQUAKE SEQUENCE DETERMINED BY FUZZY CLUSTERING ALGORITHM [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1634-1647. |
[2] | GAI Hai-long, LI Zhi-min, YAO Sheng-hai, LI Xin. PRELIMINARY INVESTIGATION AND RESEARCH ON SURFACE RUPTURE CHARACTERISTICS OF THE 2022 QINGHAI MENYUAN MS6.9 EARTHQUAKE [J]. SEISMOLOGY AND EGOLOGY, 2022, 44(1): 238-255. |
[3] | HE Xiang, DU Xing-xing, LIU Jian, LI Yi-hao, LI Qun. SEDIMENTARY PROCESS AND TECTONIC SIGNIFICANCE OF WUWEI BASIN DURING THE QUATERNARY [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(1): 76-97. |
[4] | LI Jia-ni, HAN Zhu-jun, LUO Jia-hong, GUO Peng. CHARACTERISTICS AND IMPLICATIONS OF SEISMIC ACTIVITY AROUND MINSHAN ACTIVE BLOCK IN EASTERN MARGIN OF QINGHAI-TIBET PLATEAU [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1459-1484. |
[5] | ZANG Yang, YU Yan-xiang, MENG Ling-yuan, HAN Yan-yan. STUDY ON ATTENUATION CHARACTERISTICS OF SEISMIC WAVES AND SEISMIC SOURCE PARAMETERS IN THE NORTH-EAST MARGIN OF QINGHAI-TIBET PLATEAU [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1638-1656. |
[6] | FANG Dong, HU Min-zhang, HAO Hong-tao. MULTI-SCALE ANALYSIS OF THE GRAVITY FIELD IN THE SOUTHEASTERN QINGHAI-TIBET PLATEAU AND ITS TECTONIC IMPLICATIONS [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(5): 1208-1232. |
[7] | LI Chuan-you, ZHANG Jin-yu, WANG Wei, SUN Kai, SHAN Xin-jian. THE SEISMOGENIC FAULT OF THE 2021 YUNNAN YANGBI MS6.4 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 706-721. |
[8] | LI Zhi-min, LI Wen-qiao, LI Tao, XU Yue-ren, SU Peng, GUO Peng, SUN Hao-yue, HA Guang-hao, CHEN Gui-hua, YUAN Zhao-de, LI Zhong-wu, LI Xin, YANG Li-chen, MA Zhen, YAO Sheng-hai, XIONG Ren-wei, ZHANG Yan-bo, GAI Hai-long, YIN Xiang, XU Wei-yang, DONG Jin-yuan. SEISMOGENIC FAULT AND COSEISMIC SURFACE DEFORMATION OF THE MADUO MS7.4 EARTHQUAKE IN QINGHAI, CHINA: A QUICK REPORT [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 722-737. |
[9] | CUI Ren-sheng, ZHAO Cui-ping, ZHOU Lian-qing, CHEN Yang. SEISMICITY FEATURE AND SEISMOGENIC FAULT OF THE MS6.4 EARTHQUAKE SEQUENCE ON JANUARY 19, 2020 IN JIASHI, XINJIANG [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(2): 329-344. |
[10] | LIU Xu-zhou, SHEN Xu-zhang, HE Xiao-hui, PU Ju. RELOCATION OF THE 28 OCTOBER 2019 XIAHE M5.7 EARTHQUAKE SEQUENCE AND ANALYSIS OF SEISMOGENIC FAULT [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(1): 197-208. |
[11] | XU Liang-xin, RAN Yong-kang, LIANG Ming-jian, WU Fu-yao, GAO Shuai-po, WANG Hu. GEOMETRIC DISTRIBUTION AND CHARACTERISTICS OF THE SURFACE RUPTURE OF TWO HISTORICAL EARTHQUAKES IN THE BARKOL BASIN, XINJIANG [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(1): 1-17. |
[12] | LI Zhi-min, LI Wen-qiao, YIN Xiang, HUANG Shuai-tang, ZHANG Jun-long. ANALYSIS OF EVOLUTION OF THE RIYUESHAN FAULT SINCE LATE PLEISTOCENE USING STRUCTURAL GEOMORPHOLOGY [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(5): 1077-1090. |
[13] | XIE Zhang-di, HAN Zhu-jun. STUDY ON THE SEISMOGENIC FAULT AND DYNAMICS PARAME-TERS OF THE 2014 MS6.6 JINGGU EARTHQUAKE IN YUNNAN [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(4): 887-912. |
[14] | LI Cui-ping, TANG Mao-yun, GUO Wei-ying, HUANG Shi-yuan, WANG Xiao-long, GAO Jian. RELOCATION OF THE 23 NOVEMBER 2017 WULONG MS5.0 EARTHQUAKE SEQUENCE AND ANALYSIS OF ITS SEISMOGENIC FAULT [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(3): 603-618. |
[15] | ZHENG Bo-wen, GONG Wen-yu, WEN Shao-yan, ZHANG Ying-feng, SHAN Xin-jian, SONG Xiao-gang, LIU Yun-hua. STUDY ON THE SEISMOGENIC FAULT CHARACTERSTICS OF 2016 MW5.9 MENYUAN EARTHQUAKE BASED ON Sentinel -1A DATA [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(4): 872-882. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||