SEISMOLOGY AND GEOLOGY ›› 2023, Vol. 45 ›› Issue (1): 153-171.DOI: 10.3969/j.issn.0253-4967.2023.01.009
Previous Articles Next Articles
JIN Li-zhou1)(), WANG Ying2), CHANG Wen-bin3), TIAN Ying-ying1), YUAN Ren-mao1),*()
Received:
2022-03-23
Revised:
2022-06-08
Online:
2023-02-20
Published:
2023-03-24
靳立周1)(), 王盈2), 常文斌3), 田颖颖1), 袁仁茂1),*()
通讯作者:
* 袁仁茂, 男, 1972年生, 研究员, 主要研究方向为地质灾害、 活动构造, E-mail: yuanrenmao@ies.ac.cn。
作者简介:
靳立周, 男, 1996年生, 2021年于中国地震局地质研究所获构造地质学专业硕士学位, 研究方向为地震地质灾害, E-mail: jinlizhou2021@163.com。
基金资助:
CLC Number:
JIN Li-zhou, WANG Ying, CHANG Wen-bin, TIAN Ying-ying, YUAN Ren-mao. STABILITY ANALYSIS OF THE BAIGE LANDSLIDE USING D-INSAR AND PFC2D MODELING[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 153-171.
靳立周, 王盈, 常文斌, 田颖颖, 袁仁茂. 基于D-InSAR和PFC2D技术的白格滑坡稳定性分析[J]. 地震地质, 2023, 45(1): 153-171.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2023.01.009
区域 | 点位 | 累积形变量/mm |
---|---|---|
1 | (-176, 1352) | 222 |
2 | (-139, 1609) | 227 |
3 | (-97.5, 1969) | 207 |
4 | (206, 1675) | 170 |
Table1 Cumulative deformation amount of the radar monitoring sites
区域 | 点位 | 累积形变量/mm |
---|---|---|
1 | (-176, 1352) | 222 |
2 | (-139, 1609) | 227 |
3 | (-97.5, 1969) | 207 |
4 | (206, 1675) | 170 |
类别 | 杨氏模量E/GPa | 单轴抗压强度UCS/MPa | 泊松比 |
---|---|---|---|
室内单轴压缩试验 | 36.4 | 87.7 | 0.22 |
PFC单轴压缩试验 | 36.2 | 88.1 | 0.23 |
Table2 Rock strength parameters measured indoors
类别 | 杨氏模量E/GPa | 单轴抗压强度UCS/MPa | 泊松比 |
---|---|---|---|
室内单轴压缩试验 | 36.4 | 87.7 | 0.22 |
PFC单轴压缩试验 | 36.2 | 88.1 | 0.23 |
类别 | 自然情况 | 降雨情况 |
---|---|---|
颗粒半径R/m | 0.15~0.5 | 0.15~0.5 |
颗粒数目 | 11 | 11 |
颗粒密度/kg·m-3 | ||
摩擦系数Fric | 0.45 | 0.40 |
法向黏结强度 | 1.8×106 | 1.2×106 |
切向黏结强度 | 9×105 | 6×105 |
平行黏结法向刚度 | 3×108 | 2×108 |
平行黏结切向刚度 | 1.5×108 | 1×108 |
Table3 Meso-mechanical parameters of rock and soil particles from landslide
类别 | 自然情况 | 降雨情况 |
---|---|---|
颗粒半径R/m | 0.15~0.5 | 0.15~0.5 |
颗粒数目 | 11 | 11 |
颗粒密度/kg·m-3 | ||
摩擦系数Fric | 0.45 | 0.40 |
法向黏结强度 | 1.8×106 | 1.2×106 |
切向黏结强度 | 9×105 | 6×105 |
平行黏结法向刚度 | 3×108 | 2×108 |
平行黏结切向刚度 | 1.5×108 | 1×108 |
[1] | 曹文, 李维朝, 唐斌, 等. 2017. PFC滑坡模拟二、 三维建模方法研究[J]. 工程地质学报, 25(2): 455462. |
CAO Wen, LI Wei-chao, TANG Bin, et al. 2017. PFC study on building of 2D and 3D landslide models[J]. Journal of Engineering Geology, 25(2): 455462. (in Chinese) | |
[2] | 柴贺军, 刘汉超, 张倬元. 2000. 中国堵江滑坡发育分布特征[J]. 山地学报, 18(S1): 5154. |
CHAI He-jun, LIU Han-chao, ZHANG Zhuo-yuan. 2000. The temporal-spatial distribution of damming landslides in China[J]. Journal of Mountain Science, 18(S1): 5154. (in Chinese)
DOI |
|
[3] | 陈祖煜, 陈生水, 王琳, 等. 2020. 金沙江上游“11·03”白格堰塞湖溃决洪水反演分析[J]. 中国科学, 50(6): 763774. |
CHEN Zu-yu, CHEN Sheng-shui, WANG Lin, et al. 2020. Back analysis of the breach flood of the “11.03” Baige barrier lake at the Upper Jinsha River[J]. Science in China, 50(6): 763774. (in Chinese) | |
[4] | 邓建辉, 高云建, 余志球, 等. 2019. 堰塞金沙江上游的白格滑坡形成机制与过程分析[J]. 工程科学与技术, 51(1): 916. |
DENG Jian-hui, GAO Yun-jian, YU Zhi-qiu, et al. 2019. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River, China[J]. Advanced Engineering Sciences, 51(1): 916. (in Chinese) | |
[5] | 冯文凯, 张国强, 白慧林, 等. 2019. 金沙江“10·11”白格特大型滑坡形成机制及发展趋势初步分析[J]. 工程地质学报, 27(2): 415425. |
FENG Wen-kai, ZHANG Guo-qiang, BAI Hui-lin, et al. 2019. A preliminary analysis of the formation mechanism and development tendency of the huge Baige landslide in Jinsha River on October 11, 2018[J]. Journal of Engineering Geology, 27(2): 415425. (in Chinese) | |
[6] | 郭晨, 许强, 彭双麒, 等. 2020. 无人机摄影测量技术在金沙江白格滑坡应急抢险中的应用[J]. 灾害学, 35(1): 203210. |
GUO Chen, XU Qiang, PENG Shuang-qi, et al. 2020. Application research of UAV photogrammetry technology in the emergency rescue of Baige landslide[J]. Journal of Catastrophology, 35(1): 203210. (in Chinese) | |
[7] | 胡卸文, 黄润秋, 施裕兵, 等. 2009. 唐家山滑坡堵江机制及堰塞坝溃坝模式分析[J]. 岩石力学与工程学报, 28(1): 181189. |
HU Xie-wen, HUANG Run-qiu, SHI Yu-bing, et al. 2009. Analysis of blocking river mechanism of Tangjiashan landslide and dam-breaking mode of its barrier dam[J]. Journal of Rock Mechanics and Engineering, 28(1): 181189. (in Chinese) | |
[8] | 雷远见, 王水林. 2006. 基于离散元的强度折减法分析岩质边坡稳定性[J]. 岩土力学, 27(10): 16931698. |
LEI Yuan-jian, WANG Shui-lin. 2006. Stability analysis of jointed rock slope by strength reduction method based on UDEC[J]. Rock and Soil Mechanics, 27(10): 16931698. (in Chinese) | |
[9] | 梁鑫, 郑立宁. 2011. 土石碎屑体稳定性离散元数值分析[J]. 铁道建筑, (2): 9193. |
LIANG Xin, ZHENG Li-ning. 2011. Discrete element numerical analysis of the stability for soil-stone fragment body[J]. Railway Engineering, (2): 9193. (in Chinese) | |
[10] | 刘婧雯, 黄博, 邓辉, 等. 2014. 地震作用下堆积体边坡振动台模型试验及抛出现象分析[J]. 岩土工程学报, 36(2): 307311. |
LIU Jing-wen, HUANG Bo, DENG Hui, et al. 2014. Shaking table tests and throwing phenomenon of deposit slopes under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 36(2): 307311. (in Chinese) | |
[11] | 齐麟, 孔祥意, 袁鑫, 等. 2020. 基于D-InSAR技术的金沙江地区滑坡形变监测与分析[J]. 测绘与空间地理信息, 43(2): 175177, 181. |
QI Lin, KONG Xiang-yi, YUAN Xin, et al. 2020. Monitoring and analysis of landslide deformation in Jinshajiang area based on D-InSAR technology[J]. Geomatics and Spatial Information Technology, 43(2): 175177, 181. (in Chinese) | |
[12] | 石崇, 张强, 王盛年. 2012. 颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社. |
SHI Chong, ZHANG Qiang, WANG Sheng-nian. 2012. Numerical Simulation Technology and Application with Partical Flow Code(PFC5.0)[M]. China Building Industry Press, Beijing. (in Chinese) | |
[13] | 王桂杰, 谢谟文, 邱骋, 等. 2010. D-InSAR技术在大范围滑坡监测中的应用[J]. 岩土力学, 31(4): 13371344. |
WANG Gui-jie, XIE Mo-wen, QIU Cheng, et al. 2010. Application of D-InSAR technique to landslide monitoring[J]. Rock and Soil Mechanics, 31(4): 13371344. (in Chinese) | |
[14] | 王立朝, 温铭生, 冯振, 等. 2019. 中国西藏金沙江白格滑坡灾害研究[J]. 中国地质灾害与防治学报, 30(1): 19. |
WANG Li-chao, WEN Ming-sheng, FENG Zhen, et al. 2019. Researches on the Baige landslide at Jinsha River, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control, 30(1): 19. (in Chinese) | |
[15] | 许强, 黄润秋, 殷跃平, 等. 2009. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 17(4): 433444. |
XU Qiang, HUANG Run-qin, YIN Yue-ping, et al. 2009. The Jiweishan landslide of June 5, 2009 in Wulong, Chongqing: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 17(4): 433444. (in Chinese) | |
[16] | 许强, 郑光, 李为乐, 等. 2018. 2018年10月和11月金沙江白格2次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 26(6): 15341551. |
XU Qiang, ZHENG Guang, LI Wei-le, et al. 2018. Study on successive landslide damming events of Jinsha River in Baige Village on October 11 and November 3[J]. Journal of Engineering Geology, 26(6): 15341551. (in Chinese) | |
[17] | 殷跃平, 王文沛, 张楠, 等. 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例[J]. 中国地质, 44(5): 827841. |
YIN Yue-ping, WANG Wen-pei, ZHANG Nan, et al. 2017. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 44(5): 827841. (in Chinese) | |
[18] | 赵程, 范宣梅, 杨帆, 等. 2020. 金沙江白格滑坡运动过程分析及潜在不稳定岩体预测[J]. 科学技术与工程, 20(10): 38603867. |
ZHAO Cheng, FAN Xuan-mei, YANG Fan, et al. 2020. Movement of Baige landslide in Jinsha River and prediction of potential unstable rock mass[J]. Science Technology and Engineering, 20(10): 38603867. (in Chinese) | |
[19] | 赵永辉, 涂国祥, 次仁德吉, 等. 2020. 中国西藏金沙江白格滑坡变形特征及破坏模式研究[J]. 西藏科技, (5): 6770, 72. |
ZHAO Yong-hui, TU Guo-xiang, TSERING De-ji, et al. 2020. Research on deformation characteristics and failure mode on the Baige landslide at Jinsha River, Tibet, China[J]. Tibet’s Science and Technology, (5): 6770, 72. (in Chinese) | |
[20] | 周健, 王家全, 曾远, 等. 2009. 土坡稳定分析的颗粒流模拟[J]. 岩土力学, 30(1): 8690. |
ZHOU Jian, WANG Jia-quan, ZENG Yuan, et al. 2009. Simulation of slope stability analysis by particle flow code[J]. Rock and Soil Mechanics, 30(1): 8690. (in Chinese) | |
[21] | 周礼, 范宣梅, 许强, 等. 2019. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究[J]. 工程地质学报, 27(6): 13951404. |
ZHOU Li, FAN Xuan-mei, XU Qiang, et al. 2019. Numerical simulation and hazard prediction on movement process characteristics of Baige landslide in Jinsha River[J]. Journal of Engineering Geology, 27(6): 13951404. (in Chinese) | |
[22] |
Cundall P A, Hart R D. 1992. Numerical modeling of discontinua[J]. Engineering Computations, 9(2): 101113.
DOI URL |
[23] | Hao M H, Xu Q, Yang L, et al. 2014. Physical modeling and movement mechanism of landslide-debris avalanches[J]. Rock and Soil Mechanics, 35(S1): 127132. |
[24] |
Manzella I, Labiouse V. 2013. Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation[J]. Landslides, 10(1): 2336.
DOI URL |
[25] |
Li M H, Zhang L, Ding C, et al. 2020. Retrieval of historical surface displacements of the Baige landslide from time-series SAR observations for retrospective analysis of the collapse event[J]. Remote Sensing of Environment, 240:111695.
DOI URL |
[26] |
Ren J, Xu X, Zhang S, et al. 2018. Surface rupture of the 1933 M7.5 Diexi earthquake in eastern Tibet: Implications for seismogenic tectonics[J]. Geophysical Journal International, 212(3): 16271644.
DOI URL |
[27] |
Ouyang C J, An H C, Zhou S, et al. 2019a. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China[J]. Landslides, 16(7): 13971414.
DOI |
[28] |
Ouyang C J, Zhao W, An H C, et al. 2019b. Early identification and dynamic processes of ridge-top rockslides: Implications from the Su Village landslide in Suichang County, Zhejiang Province, China[J]. Landslides, 16(4): 799813.
DOI |
[29] | Yuan R M, Tang C L, Hu J C, et al. 2014. Mechanism of the Donghekou landslide triggered by the 2008 Wenchuan earthquake revealed by discrete element modeling[J]. Natural Hazards and Earth System Sciences, 14(5): 11951205. |
[1] | HAN Jiang-tao, WANG Tian-qi, LIU Wen-yu, LIU Guo-xing, HAN Song, LIU Li-jia. DEEP “ARCH-BRIDGE” MAGMATIC SYSTEM OF THE AERSHAN VOLCANIC GROUP AND ITS STABILITY ANALYSIS [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(3): 590-610. |
[2] | ZUO Rong-hu, QU Chun-yan, ZHANG Guo-hong, SHAN Xin-jian, SONG Xiao-gang, WEN Shao-yan, XU Xiao-bo. COSEISMIC DISPLACEMENT AND FAULT SLIP OF THE MW6.1 NAPA EARTHQUAKE IN AMERICA REVEALED BY SENTINEL-1A INSAR DATA [J]. SEISMOLOGY AND GEOLOGY, 2016, 38(2): 278-289. |
[3] | QU Chun-yan, SHAN Xin-jian, SONG Xiao-gang, ZHANG Gui-fang, ZHANG Guo-hong, GUO Li-min, LIU Yun-hua, HAN Yu-fei. SPATIAL ANALYSIS OF COSEISMIC DISPLACEMENT FIELD OF THE WENCHUAN MS 8.0 EARTHQUAKE DERIVED USING D-INSAR [J]. SEISMOLOGY AND GEOLOGY, 2010, 32(2): 175-190. |
[4] | ZHANG Gui-fang, SHAN Xin-jian, ZHANG Guo-hong. OBSERVING COSEISMIC DEFORMATION OF THE GAIZE,XIZANG EARTHQUAKE WITH DIFFERENTIAL INTERFEROMETRIC SAR [J]. SEISMOLOGY AND GEOLOGY, 2009, 31(2): 334-340. |
[5] | SHAN Xin-jian, ZHANG Guo-hong. AN ANALYSIS OF DYNAMIC EVOLUTION OF PRESEISMIC INTERFEROMETRIC DEFORMATION FIELDS IN SEISMIC AREA [J]. SEISMOLOGY AND GEOLOGY, 2006, 28(3): 441-446. |
[6] | Shan Xinjian, Ma Jin, Liu Jiahang, Wang Changlin, Song Xiaoyu. THE THEORY OF D-INSAR AND ITS APPLICATION TO MAPPING THE DISPLACEMENT FIELDS OF EARTHQUAKE [J]. SEISMOLOGY AND EGOLOGY, 2001, 23(3): 439-446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||