SEISMOLOGY AND GEOLOGY ›› 2022, Vol. 44 ›› Issue (6): 1384-1402.DOI: 10.3969/j.issn.0253-4967.2022.06.003
• Research paper • Previous Articles Next Articles
SHI Wen-fang1)(), XU Wei2), YIN Jin-hui1)(), ZHENG Yong-gang1)
Received:
2021-12-31
Revised:
2022-03-22
Online:
2022-12-20
Published:
2023-01-21
Contact:
YIN Jin-hui
通讯作者:
尹金辉
作者简介:
石文芳, 女, 1992年生, 现为中国地震局地质研究所构造地质学专业在读博士研究生, 从事活动构造与年代学研究, E-mail: shiwenfang@ies.ac.cn。
基金资助:
CLC Number:
SHI Wen-fang, XU Wei, YIN Jin-hui, ZHENG Yong-gang. SCHMIDT HAMMER EXPOSURE AGE DATING OF ANCIENT EARTHQUAKE-INDUCED BEDROCK LANDSLIDES AND ROCK AVALANCHES IN THE NORTHERN MARGIN OF QINLING MOUNTAINS[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1384-1402.
石文芳, 徐伟, 尹金辉, 郑勇刚. 秦岭北缘古地震基岩崩塌和滑坡施密特锤暴露年龄[J]. 地震地质, 2022, 44(6): 1384-1402.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.06.003
[1] | 白世彪, 崔鹏, 葛永刚, 等. 2020. 古滑坡测年方法与定年精度的提高途径[J]. 地学前缘, 28(2): 19-34. |
BAI Shi-biao, CUI Peng, GE Yong-gang, et al. 2020. Geochronological analysis of fossil landslides and improvement of dating accuracy[J]. Earth Science Frontiers, 28(2): 19-34. (in Chinese) | |
[2] | 陈立萍, 耿豪鹏, 张建, 等. 2019. 黑河流域基岩回弹值(施密特锤)的空间分布特征及其指示意义[J]. 冰川冻土, 41(2): 364-373. |
CHEN Li-ping, GENG Hao-peng, ZHANG Jian, et al. 2019. Spatial distribution of bedrock rebound value(Schmidt Hammer)across the Heihe River Basin and its implication[J]. Journal of Glaciology and Geocryology, 41(2): 364-373. (in Chinese) | |
[3] |
陈晓利, 刘春国, 传一健, 等. 2021. 鲁甸地震的滑坡物质运移规律与地形特征[J]. 地震地质, 43(1): 92-104. doi: 10.3969/j.issn.0253-4967.2021.01.003.
DOI |
CHEN Xiao-li, LIU Chun-guo, CHUAN Yi-jian, et al. 2021. Study on the distribution of co-seismic landslides and terrain features in the MS6.5 Ludian earthquake affected area[J]. Seismology and Geology, 43(1): 92-104. (in Chinese) | |
[4] | 杜建军, 黎敦朋, 马寅生, 等. 2013. 18.7万年前的高速远程古滑坡: 来自陕西华县莲花寺滑坡体上覆黄土光释光(OSL)测年的证据[J]. 第四纪研究, 33(5): 1005-1015. |
DU Jian-jun, LI Dun-peng, MA Yin-sheng, et al. 2013. The high-speed and long-distance ancient landslides before 187ka: The evidence from the OSL dating of the loess overlying the landslides body of Lianhuasi in Huaxian, Shaanxi Provence, China[J]. Quaternary Sciences, 33(5): 1005-1015. (in Chinese) | |
[5] | 付碧宏, 时丕龙, 王萍, 等. 2009. 2008年汶川地震断层北川段的几何学与运动学特征及地震地质灾害效应[J]. 地球物理学报, 52(2): 485-495. |
FU Bi-hong, SHI Pi-long, WANG Ping, et al. 2009. Geometry and kinematics of the Wenchuan earthquake surface ruptures around the Qushan town of Beichuan County, Sichuan: Implications for mitigation of seismic and geologic disasters[J]. Chinese Journal of Geophysics, 52(2): 485-495. (in Chinese) | |
[6] | 郭海婷. 2015. 黄河上游戈龙布滑坡及其堰塞湖沉积物光释光年代研究[D]. 南京: 南京师范大学:1-77. |
GUO Hai-ting. 2015. The OSL dating of Gelongbu landslide and its barrier lake sediments in the upper reaches of the Yellow River[D]. Nanjing Normal University, Nanjing: 1-77. (in Chinese) | |
[7] | 国家地震局兰州地震研究所, 宁夏回族自治区地震队. 1980. 一九二〇年海原大地震[M]. 北京: 地震出版社. |
Lanzhou Institute of Seismology of State Seismological Bureau, the Seismological Brigade of Ningxia Hui Autonomous Region. 1980. The 1920 Haiyuan Earthquake[M]. Seismological Press, Beijing. (in Chinese) | |
[8] | 贺明静. 1986. 华县大地震与断裂活动[J]. 地震研究, 9(4): 427-432. |
HE Ming-jing. 1986. The great 1556 Huaxian earthquake and the related faulting[J]. Journal of Seismological Research, 9(4): 427-432. (in Chinese) | |
[9] | 贺明静, 孙根年, 于立新. 2006. 翠华山甘湫池景观地质遗迹成因[J]. 地球科学与环境学报, 28(1): 37-40. |
HE Ming-jing, SUN Gen-nian, YU Li-xin. 2006. Genesis of Ganqiu pool scenic and geological remains in Cuihuanshan Mountain[J]. Journal of Earth Sciences and Environment, 28(1): 37-40. (in Chinese) | |
[10] | 洪婷, 白世彪, 王建, 等. 2012. 利用树轮重建九房山滑坡活动年份[J]. 山地学报, 30(1): 57-64. |
HONG Ting, BAI Shi-biao, WANG Jian, et al. 2012. Reconstruct the activity years of Jiufangshan landslide by means of tree-rings[J]. Journal of Mountain Science, 30(1): 57-64. (in Chinese) | |
[11] | 黄润秋, 李为乐. 2009. 汶川地震触发崩塌滑坡数量及其密度特征分析[J]. 地质灾害与环境保护, 20(3): 1-7. |
HUANG Run-qiu, LI Wei-le. 2009. Analysis on the characteristics of the quantity and density of landslides triggered by Wenchuan earthquake[J]. Journal of Geological Hazards and Environment Preservation, 20(3): 1-7. (in Chinese) | |
[12] | 黄伟亮, 杨虔灏, 吕艳, 等. 2020. 秦岭北麓古滑坡分布特征与地震活动关系研究[J]. 工程地质学报, 28(6): 1259-1271. |
HUANG Wei-liang, YANG Qian-hao, LÜ Yan, et al. 2020. Relationship between distribution characteristics of prehistoric landslides and seismic activity along Qinling piedmont fault[J]. Journal of Engineering Geology, 28(6): 1259-1271. (in Chinese) | |
[13] | 蒋瑶, 吴中海, 刘艳辉, 等. 2014. 青海玉树活动断裂带的多期古地震滑坡及其年龄[J]. 地质通报, 32(4): 503-516. |
JIANG Yao, WU Zhong-hai, LIU Yan-hui, et al. 2014. The characteristics of palaeo-earthquake landslides along Yushu faulted zone and their ages[J]. Geological Bulletin of China, 32(4): 503-516. (in Chinese) | |
[14] |
赖忠平, 杨安娜, 丛禄, 等. 2021. 山地灾害沉积物的测年综述[J]. 地学前缘, 28(2): 1-18.
DOI |
LAI Zhong-ping, YANG An-na, CONG Lu, et al. 2021. A review on the dating techniques for mountain hazards-induced sediment[J]. Earth Science Frontier, 28(2): 1-18. (in Chinese) | |
[15] | 李树林, 余利峰, 陈丽霞. 2014. 雅安芦山县地震崩塌滑坡信息提取与发育规律分析[J]. 工程地质学报, 22(5): 861-868. |
LI Shu-lin, YU Li-feng, CHEN Li-xia. 2014. Extraction and analysis of Lushan earthquake triggered landsides: A case study in Baosheng town, Ya’an city[J]. Journal of Engineering Geology, 22(5): 861-868. (in Chinese) | |
[16] | 刘静, 徐锡伟, 李岩峰, 等. 2007. 以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性: 兼论古地震研究中的若干问题[J]. 地质通报, 26(6): 650-660. |
LIU Jing, XU Xi-wei, LI Yan-feng, et al. 2007. On the completeness of paleoseismic records of strike-slip faults: An example from the Laohushan segment of the Haiyuan Fault in Gansu, China, with a discussion of several problems in the paleoearthquake study[J]. Geological Bulletin of China, 26(6): 650-660. (in Chinese) | |
[17] |
刘静, 袁兆德, 徐岳仁, 等. 2021. 古地震学: 活动断裂强震复发规律的研究[J]. 地学前缘, 28(2): 211-231.
DOI |
LIU Jing, YUAN Zhao-de, XU Yue-ren, et al. 2021. Paleoseismic investigation of the recurrence behavior of large earthquakes on active faults[J]. Earth Science Frontier, 28(2): 211-231. (in Chinese) | |
[18] |
马冀, 冯希杰, 李高阳, 等. 2016. 1556年华县地震地表破裂带同震垂直位移[J]. 地震地质, 38(1): 22-30. doi: 10.3969/j.issn.0253-4967.2016.01.002.
DOI |
MA Ji, FENG Xi-jie, LI Gao-yang, et al. 2016. The coseismic vertical displacements of surface rupture zone of the 1556 Huaxian earthquake[J]. Seismology and Geology, 38(1): 22-30. (in Chinese) | |
[19] |
冉勇康, 李彦宝, 杜鹏, 等. 2014. 中国大陆古地震研究的关键技术与案例解析(3): 正断层破裂特征、 环境影响与古地震识别[J]. 地震地质, 36(2): 287-301. doi: 10.3969/j.issn.0253-4967.2014.02.001.
DOI |
RAN Yong-kang, LI Yan-bao, DU Peng, et al. 2014. Key techniques and several cases analysis in paleoseismic studies in mainland China(3): Rupture characteristics, environment impact and paleoseismic indicators on normal faults[J]. Seismology and Geology, 36(2): 287-301. (in Chinese) | |
[20] | 陕西省地震局. 1996. 秦岭北缘活动断裂带[M]. 北京: 地震出版社:1-126. |
Seismological Bureau of Shaanxi Province. 1996. The Active Fault Zone in the North Margin of Qinling Mountains[M]. Seismological Press, Beijing: 1-126. (in Chinese) | |
[21] | 陕西省地震局. 2005. 陕西省地震目录(公元前1189年至公元2001年)[M]. 北京: 地震出版社:1-75. |
Seismological Bureau of Shaanxi Province. 2005. Earthquake Catalogue of Shaanxi Province from 1189BC to 2001AD[M]. Seismological Press, Beijing: 1-75 (in Chinese) | |
[22] | 师亚芹, 李晋, 冯希杰, 等. 2007. 渭河断裂带古地震研究[J]. 地震地质, 29(3): 607-616. |
SHI Ya-qin, LI Jin, FENG Xi-jie, et al. 2007. The study of paleoearthquake on the Weihe fault zone[J]. Seismology and Geology, 29(3): 607-616. (in Chinese) | |
[23] | 王兰生, 杨立铮, 王小群, 等. 2005. 岷江叠溪古堰塞湖的发现[J]. 成都理工大学学报(自然科学版), 32(1): 1-11. |
WANG Lan-sheng, YANG Li-zheng, WANG Xiao-qun, et al. 2005. Discovery of huge ancient dammed lake on upstream of Minjiang River in Sichuan, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 32(1): 1-11. (in Chinese) | |
[24] | 吴成基, 彭永祥. 2001. 西安翠华山山崩地质遗迹及资源评价[J]. 山地学报, 19(4): 359-362. |
WU Cheng-ji, PENG Yong-xiang. 2001. The resource of geological remains by landslide in Cuihua Mountain, Xi'an and resource evaluation[J]. Journal of Mountain Science, 19(4): 359-362. (in Chinese) | |
[25] | 谢新生, 肖振敏. 1989. 地衣测年法研究及其在陕西若干地质事件中的应用[J]. 科学通报, 34(24): 1885-1888. |
XIE Xin-sheng, XIAO Zhen-min. 1989. Study on lichen dating method and its application to some geological events in Shaanxi Province[J]. Chinese Science Bulletin, 34(24): 1885-1888. (in Chinese) | |
[26] |
徐伟, 刘志成, 袁兆德, 等. 2017. 华山山前河流地貌参数及其构造意义[J]. 地震地质, 39(6): 1316-1335. doi: 10.3969/j.issn.0253-4967.2017.06.015.
DOI |
XU Wei, LIU Zhi-cheng, YUAN Zhao-de, et al. 2017. River geomorphic parameters of the Huashan piedmont and their tectonic implications[J]. Seismology and Geology, 39(6): 1316-1335. (in Chinese) | |
[27] | 杨银科, 彭建兵, 刘聪. 2015. 滑坡年代学研究方法应用进展[J]. 灾害学, 30(2): 133-137. |
YANG Yin-ke, PENG Jian-bing, LIU Cong. 2015. The application progress on research methods of landslide chronology[J]. Journal of Catastrophology, 30(2): 133-137. (in Chinese) | |
[28] | 原廷宏, 冯希杰, 吕莲, 等. 2010. 一五五六年华县特大地震[M]. 北京: 地震出版社. |
YUAN Ting-hong, FENG Xi-jie, LÜ Lian, et al. 2010. The 1556 Great Huaxian Earthquake[M]. Seismological Press, Beijing. (in Chinese) | |
[29] | 袁兆德, 陈杰, 李文巧, 等. 2012. 帕米尔高原东部塔合曼大型滑坡体的10Be测年[J]. 第四纪研究, 32(3): 409-416. |
YUAN Zhao-de, CHEN Jie, LI Wen-qiao, et al. 2012. 10Be dating of Taheman large scale landslide in eastern Pamir and paleoseismic implications[J]. Quaternary Sciences, 32(3): 409-416. (in Chinese) | |
[30] |
Aydin A, Basu A. 2005. The Schmidt hammer in rock material characterization[J]. Engineering Geology, 81(1): 1-14.
DOI URL |
[31] |
Balescu S, Ritz J F, Lamothe M, et al. 2007. Luminescence dating of a gigantic palaeolandslide in the Gobi-Altay Mountains, Mongolia[J]. Quaternary Geochronology, 2(1-4): 290-295.
DOI URL |
[32] |
Bertolini G, Casagli N, Ermini L, et al. 2004. Radiocarbon data on lateglacial and Holocene landslides in the northern Apennines[J]. Natural Hazards, 31(3): 645-662.
DOI URL |
[33] |
Dai F C, Lee C F, Deng J H, et al. 2005. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China[J]. Geomorphology, 65(3-4): 205-221.
DOI URL |
[34] |
Duman T Y. 2009. The largest landslide dam in Turkey: Tortum landslide[J]. Engineering Geology, 104(1-2): 66-79.
DOI URL |
[35] |
Ericson K. 2004. Geomorphological surfaces of different age and origin in granite landscapes: An evaluation of the Schmidt hammer test[J]. Earth Surface Processes and Landforms, 29(4): 495-509.
DOI URL |
[36] |
Geertsema M, Clague J J. 2006. 1 000-year record of landslide dams at Halden Creek, northeastern British Columbia[J]. Landslides, 3(3): 217-227.
DOI URL |
[37] |
Hewitt K, Gosse J, Clague J J. 2011. Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya[J]. Geological Society of America Bulletin, 123(9): 1836-1850.
DOI URL |
[38] |
Hughes P D, Fink D, Fletcher W J, et al. 2014. Catastrophic rock avalanches in a glaciated valley of the High Atlas, Morocco: 10Be exposure ages reveal a 4.5ka seismic event[J]. Geological Society of America Bulletin, 126(7-8): 1093-1104.
DOI URL |
[39] | International Society for Rock Mechanics(ISRM). 1978. Commission on Standardization of Laboratory and Field Tests: Suggested methods for determining hardness and abrasiveness of rocks[S]. International Journal of Rock Mechanics & Mining Sciences & Geomechanical Abstracts, 15(3): 89-97. |
[40] |
Ivy-Ochs S, Poschinger A V, Synal H A, et al. 2009. Surface exposure dating of the Flims landslide, Graubünden, Switzerland[J]. Geomorphology, 103(1): 104-112.
DOI URL |
[41] |
Keefer D K. 1984. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 95(4): 406-421.
DOI URL |
[42] |
Lü Y, Peng J B, Wang G L. 2014. Characteristics and genetic mechanism of the Cuihua rock avalanche triggered by a paleo-earthquake in northwest China[J]. Engineering Geology, 182(1): 88-96.
DOI URL |
[43] |
Matthews J A, Owen G, Winkler S, et al. 2016. A rock-surface microweathering index from Schmidt hammer R-values and its preliminary application to some common rock types in southern Norway[J]. Catena, 143(1): 35-44.
DOI URL |
[44] |
Matthews J A, Shakesby R A. 1984. The status of the ‘Little Ice Age’ in southern Norway: Relative-age dating of Neoglacial moraines with Schmidt hammer and lichenometry[J]. Boreas, 13(3): 333-346.
DOI URL |
[45] |
Matthews J A, Wilson P. 2015. Improved Schmidt-hammer exposure ages for active and relict pronival ramparts in southern Norway, and their palaeoenvironmental implications[J]. Geomorphology, 246(1): 7-21.
DOI URL |
[46] |
McCarroll D. 1991. The Schmidt hammer, weathering and rock surface roughness[J]. Earth Surface Processes and Landforms, 16(5): 477-480.
DOI URL |
[47] | McEwen L J, Matthews J A, Owen G. 2020. Development of a Holocene glacier-fed composite alluvial fan based on surface exposure-age dating techniques: The Illåe fan, Jotunheimen, Norway[J]. Geomorphology, 363(1): 107200-1-107200-15. |
[48] |
Niedzielski T, Migon P, Placek A. 2010. A minimum sample size required from Schmidt hammer measurements[J]. Earth Surface Processes and Landforms, 34(13): 1713-1725.
DOI URL |
[49] |
Pánek T, Smolková V, Hradecký J, et al. 2013. Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians(Czech Republic/Slovakia)[J]. Quaternary Research, 80(1): 33-46.
DOI URL |
[50] |
Rao G, Cheng Y L, Lin A M, et al. 2017. Relationship between landslides and active normal faulting in the epicentral area of the AD1556 M-8.5 Huaxian earthquake, SE Weihe Graben(Central China)[J]. Journal of Earth Science, 28(3): 545-554.
DOI URL |
[51] | Schmidt E. 1951. A non-destructive concrete tester[J]. Concrete, 59(8): 34-35. |
[52] |
Stahl T, Tye A. 2020. Schmidt hammer and terrestrial laser scanning(TLS)used to detect single-event displacements on the Pleasant Valley Fault(Nevada, USA)[J]. Earth Surface Processes and Landforms, 45(2): 473-483.
DOI URL |
[53] |
Stahl T, Winkler S, Quigley M, et al. 2013. Schmidt hammer exposure-age dating(SHD)of late Quaternary fluvial terraces in New Zealand[J]. Earth Surface Processes and Landforms, 38(15): 1838-1850.
DOI URL |
[54] |
Sumner P, Nel W. 2002. The effect of rock moisture on Schmidt hammer rebound: Tests on rock samples from Marion Island and South Africa[J]. Earth Surface Processes and Landforms, 27(10): 1137-1142.
DOI URL |
[55] |
Tomkins M D, Dortch J M, Hughes P D, et al. 2018. Rapid age assessment of glacial landforms in the Pyrenees using Schmidt hammer exposure dating(SHED)[J]. Quaternary Research, 90(1): 1-12.
DOI URL |
[56] |
Tye A, Stahl T. 2018. Field estimate of paleoseismic slip on a normal fault using the Schmidt hammer and terrestrial LiDAR: Methods and application to the Hebgen Fault(Montana, USA)[J]. Earth Surface Processes and Landforms, 43(11): 2397-2408.
DOI URL |
[57] |
Weidinger J T, Wang J D, Ma N X. 2002. The earthquake-triggered rock avalanche of Cui Hua, Qin Ling Mountains, P R of China: The benefits of a lake-damming prehistoric natural disaster[J]. Quaternary International, 93-94: 207-214.
DOI URL |
[58] | Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. |
[59] |
Williams R B G, Robinson D A. 1983. The effect of surface texture on the determination of the surface hardness of rock using the Schmidt hammer[J]. Earth Surface Processes and Landforms, 8(3): 289-292.
DOI URL |
[60] |
Wilson P, Linge H, Matthews J A, et al. 2019. Comparative numerical surface exposure-age dating(10Be and Schmidt hammer)of an Early-Holocene rock avalanche at Alstadfjellet, Valldalen, southern Norway[J]. Geografiska Annaler: Series A, Physical Geography, 101(4): 293-309.
DOI URL |
[61] |
Wistuba M, Malik I, Gärtner H, et al. 2013. Application of eccentric growth of trees as a tool for landslide analyses: The example of Piceaabies Karst. in the Carpathian and Sudeten Mountains(Central Europe)[J]. Catena, 111(1): 41-55.
DOI URL |
[62] | Yaalon D H, Singer S. 1974. Vertical variation in strength and porosity of Calcrete(Nari)on Chalk, Shefela, Israel and interpretation of its origin[J]. Journal of Sedimentary Research, 44(4): 1016-1023. |
[63] |
Yin J H, Chen J, Xu X W, et al. 2010. The characteristics of the landslides triggered by the Wenchuan MS8.0 earthquake from Anxian to Beichuan[J]. Journal of Asian Earth Sciences, 37(5-6): 452-459.
DOI URL |
[64] | Zhou B G, Zhang Y M. 1994. Some characteristics of earthquake induced landslides in southwestern China[J]. Northwestern Seismological Journal, 16(1): 95-103. |
[1] | LIU Qing, LIU Shao, ZHANG Shi-min. PALEOSEISMOLOGIC STUDY ON THE YUEXI FAULT IN THE MIDSECTION OF THE DALIANGSHAN FAULT ZONE SINCE THE LATE QUATERNARY [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 321-337. |
[2] | LI An, WAN Bo, WANG Xiao-xian, JI Hao-min, SUO Rui. NEW EVIDENCE OF THE PALEOEARTHQUAKE RUPTURE IN THE NORTH GAIZHOU-ANSHAN SEGMENT OF THE JINZHOU FAULT [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 111-126. |
[3] | ZHENG Hai-gang, YAO Da-quan, ZHAO Peng, YANG Yuan-yuan, HUANG Jin-shui. NEW ACTIVITY CHARACTERISTICS IN THE CHISHAN SECTION OF TAN-LU FAULT ZONE IN HOLOCENE [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 127-138. |
[4] | YANG Yuan-yuan, LI Peng-fei, LU Shuo, SHU Peng, PAN Hao-bo, FANG Liang-hao, ZHENG Hai-gang, ZHAO Peng, ZHENG Ying-ping, YAO Da-quan. PALEOEARTHQUAKES AND VERTICAL SLIP RATES ON THE HUAI RIVER-NÜSHAN LAKE SEGMENT OF FAULT F5 IN THE MIDDLE SECTION OF THE TANLU FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1365-1383. |
[5] | LIU Xing-wan, YUAN Dao-yang, YAO Yun-sheng, ZOU Xiao-bo. PALEOEARTHQUAKE CHARACTERISTICS IN DUNHUANG SEGMENT OF THE SANWEISHAN FAULT [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1398-1411. |
[6] | CHANG Zu-feng, CHANG Hao, LI Jian-lin, MAO Ze-bin, ZANG Yang. HOLOCENE ACTIVITY AND PALEOEARTHQUAKES OF THE WEIXI-QIAOHOU FAULT [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(4): 881-898. |
[7] | FENG Jia-hui, CHEN Li-chun, WANG Hu, LIU Jiao, HAN Ming-ming, LI Yan-bao, GAO Shuai-po, LU Li-li. PALEOSEISMOLOGIC STUDY ON THE SHIMIAN FAULT IN THE NORTHERN SECTION OF THE DALIANGSHAN FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(1): 53-71. |
[8] | HU Zong-kai, YANG Xiao-ping, YANG Hai-bo, WU Guo-dong, LI Jun, ZHOU Ben-gang. STUDY ON PALEOEARTHQUAKES ALONG THE JINGHE SECTION OF BOLOKENU-AQIKEKUDUKE FAULT [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(4): 773-790. |
[9] | YU Xiao-hui, SHEN Jun, DAI Xun-ye, WANG Chang-sheng. THE RESPONSE OF SAG POND SEDIMENT TO THE PALEOEARTHQUAKE EVENT ON THE XIADIAN FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(4): 872-886. |
[10] | LI Xi, RAN Yong-kang, WU Fu-yao, MA Xing-quan, ZHANG Yan-qi, CAO Jun. RUPTURE CHARACTERISTICS OF LATE QUATERNARY STRONG EARTHQUAKES ON THE WESTERN BRANCH OF THE XIAOJIANG FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(6): 1179-1203. |
[11] | HUANG Xiong-nan, YANG Xiao-ping, YANG Hai-bo. STUDY ON PALEOEARTHQUKES ALONG THE FODONGMIAO-HONGYAZI FAULT, GANSU PROVINCE [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(4): 753-772. |
[12] | PANG Wei, ZHANG Bo, HE Wen-gui, WU Ming. PRELIMINARY STUDY OF PALEOEARTHQUAKES ON THE MIDDLE-EASTERN SEGMENT OF JINTA NANSHAN FAULT [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(4): 801-817. |
[13] | DING Rui, REN Jun-jie, ZHANG Shi-min, LÜ Yan-wu, LIU Han-yong. LATE QUATERNARY PALEOEARTHQUAKES ON THE MIDDLE SEGMENT OF THE LIJIANG-XIAOJINHE FAULT, SOUTHEASTERN TIBET [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(3): 622-640. |
[14] | LI Feng, LIU Hua-guo, JIA Qi-chao, XU Xi-wei, ZHANG Xiao-liang, GONG Fei. HOLOCENE ACTIVE CHARACTERISTICS OF THE NORTHERN SEGMENT OF THE MINJIANG FAULT IN THE EASTERN MARGIN OF THE TIBETAN PLATEAU [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(1): 97-106. |
[15] | LIU Xing-wang, YUAN Dao-yang, ZOU Xiao-bo, LIU Yu. ACTIVE CHARACTERISTICS OF THE SANWEISHAN FAULT IN THE NORTHERN MARGIN OF THE TIBETAN PLATEAU DURING LATE PLEISTOCENE [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(1): 121-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||