SEISMOLOGY AND GEOLOGY ›› 2022, Vol. 44 ›› Issue (3): 736-752.DOI: 10.3969/j.issn.0253-4967.2022.03.011
• Special topic on extremely low-frequency seismo-electromagnetic phenomena • Previous Articles Next Articles
HAN Jing1)(), ZHAN Yan1),*(), SUN Xiang-yu1), ZHAO Guo-ze1), LIU Xue-hua1), BAO YU-xin1), SUN Jian-bao1), PENG Yuan-qian2)
Received:
2021-02-23
Revised:
2021-04-22
Online:
2022-06-20
Published:
2022-08-02
Contact:
ZHAN Yan
韩静1)(), 詹艳1),*(), 孙翔宇1), 赵国泽1), 刘雪华1), 包雨鑫1), 孙建宝1), 彭远黔2)
通讯作者:
詹艳
作者简介:
韩静, 女, 1996年生, 2021年于中国地震局地质研究所获固体地球物理学专业硕士学位, 研究方向为大地电磁测深方法与应用, E-mail: han_jing_cd@163.com。
基金资助:
CLC Number:
HAN Jing, ZHAN Yan, SUN Xiang-yu, ZHAO Guo-ze, LIU Xue-hua, BAO YU-xin, SUN Jian-bao, PENG Yuan-qian. CHARACTERISTICS AND PROCESSING OF MAGNETOTELLURIC DATA UNDER STRONG ELECTROMAGNETIC INTERFERENCE ENVIRONMENT[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 736-752.
韩静, 詹艳, 孙翔宇, 赵国泽, 刘雪华, 包雨鑫, 孙建宝, 彭远黔. 强电磁干扰环境下的大地电磁数据特征及处理[J]. 地震地质, 2022, 44(3): 736-752.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.03.011
Fig. 1 Distribution map of magnetotelluric stations in strong electromagnetic interference environment in Yinchuan, Yuncheng, Hebi and Zhangjiakou survey areas.
Fig. 3 Comparison of apparent resistivity and impedance phase curves obtained by remote-reference and non-robust processing for different acquisition time length data of YCL1-11 MT station.
Fig. 4 Comparison of apparent resistivity and impedance phase curves obtained by non-robust processing with different remote-reference of YCL3-23, YCL1-11, YCL1-07 and YCL1-09 MT stations.
Fig. 6 Apparent resistivity and impedance phase curves obtained by different processing methods at six MT stations near high-speed railway in Yuncheng and Hebi survey areas.
Fig. 7 Apparent resistivity and impedance phase curves obtained by different processing methods at six MT stations near electrified railway in Zhangjiakou survey area.
Fig. 8 Apparent resistivity and impedance phase curves obtained by different processing methods at six MT stations near wind power stations in Zhangjiakou survey area.
Fig. 9 Apparent resistivity and impedance phase curves obtained by different processing methods at six MT stations near photovoltaic power stations in Yuncheng survey area.
Fig. 10 Apparent resistivity and impedance phase curves obtained by different processing methods at six MT stations near large-scale high voltage power grids in Hebi survey area.
测点号 | 采集时长/h | 相对干扰源的位置描述 |
---|---|---|
YCL3-24 | 62.62 | 西南侧0.15km有煤矿加工厂 |
YCL3-22 | 67.41 | 东南侧0.5km有煤厂 |
YCL3-23 | 92.13 | 西南侧0.5km有煤厂 |
LFYC522 | 50.93 | 南侧1km有煤窑 |
LFYC528 | 68.93 | 东南侧1km有煤矿 |
LFYC529 | 65.38 | 东侧1km有煤矿 |
Table 1 Information of MT stations in electromagnetic interference environment of colliery
测点号 | 采集时长/h | 相对干扰源的位置描述 |
---|---|---|
YCL3-24 | 62.62 | 西南侧0.15km有煤矿加工厂 |
YCL3-22 | 67.41 | 东南侧0.5km有煤厂 |
YCL3-23 | 92.13 | 西南侧0.5km有煤厂 |
LFYC522 | 50.93 | 南侧1km有煤窑 |
LFYC528 | 68.93 | 东南侧1km有煤矿 |
LFYC529 | 65.38 | 东侧1km有煤矿 |
Fig. 11 Apparent resistivity and impedance phase curves obtained by different processing methods at six MT stations near colliery in Yinchuan and Yuncheng survey areas.
测点号 | 采集时长/h | 相对干扰源的位置描述 |
---|---|---|
YCL1-15 | 66.43 | 北侧0.5km有火力发电站 |
YCL2-15 | 67.77 | 西侧0.3km有变压器 |
YCL4-12 | 93.75 | 西南侧0.8km有火力发电站 |
HNHB146 | 68.16 | 东南侧0.05km有电线 |
ZJKL410 | 68.09 | 南、 东侧0.15km有220V电线 |
ZJKL411 | 69.55 | 北侧0.15km山顶有电力线 |
Table 2 Information of MT stations in urban integrated electromagnetic interference environment
测点号 | 采集时长/h | 相对干扰源的位置描述 |
---|---|---|
YCL1-15 | 66.43 | 北侧0.5km有火力发电站 |
YCL2-15 | 67.77 | 西侧0.3km有变压器 |
YCL4-12 | 93.75 | 西南侧0.8km有火力发电站 |
HNHB146 | 68.16 | 东南侧0.05km有电线 |
ZJKL410 | 68.09 | 南、 东侧0.15km有220V电线 |
ZJKL411 | 69.55 | 北侧0.15km山顶有电力线 |
Fig. 12 Apparent resistivity and impedance phase curves obtained by different processing methods at six MT stations near cities and towns in Yinchuan and Yuncheng survey areas.
[1] | 陈乐寿, 王光锷. 1990. 大地电磁测深法[M]. 北京: 地质出版社. |
CHEN Le-shou, WANG Guang-e. 1990. Magnetotelluric Sounding Method[M]. Geological Publishing House, Beijing (in Chinese). | |
[2] | 陈小斌, 赵国泽, 詹艳. 2004. MT资料处理与解释的Windows可视化集成系统[J]. 石油地球物理勘探, 39(S1): 11—16. |
CHEN Xiao-bin, ZHAO Guo-ze, ZHAN Yan. 2004. A visual integrated windows system for MT data process and interpretation[J]. Oil Geophysical Prospecting, 39(S1): 11—16 (in Chinese). | |
[3] | 邓琰, 汤吉. 2019. 大地电磁测深方法数据处理进展[J]. 地球物理学进展, 34(4): 1411—1422. |
DENG Yan, TANG Ji. 2019. Advances in magnetotelluric data processing[J]. Progress in Geophysics, 34(4): 1411—1422 (in Chinese). | |
[4] | 李晨晶, 白登海, 薛帅, 等. 2017. 鄂尔多斯地块深部岩石圈电性结构研究[J]. 地球物理学报, 60(5): 1788—1799. |
LI Chen-jing, BAI Deng-hai, XUE Shuai, et al. 2017. A magnetotelluric study of deep electric structure beneath the Ordos Block[J]. Chinese Journal of Geophysics, 60(5): 1788—1799 (in Chinese). | |
[5] | 赵国泽, 陈小斌, 汤吉. 2007. 中国地球电磁法新进展和发展趋势[J]. 地球物理学进展, 22(4): 1171—1180. |
ZHAO Guo-ze, CHEN Xiao-bin, TANG Ji. 2007. Advanced geo-electromagnetic methods in China[J]. Progress in Geophysics, 22(4): 1171—1180 (in Chinese). | |
[6] | 詹艳. 2008. 青藏高原东北缘地区深部电性结构及构造涵义[D]. 北京: 中国地震局地质研究所. |
ZHAN Yan. 2008. Deep electric structure beneath the northeastern margin of the Tibetan plateau and its tectonic implications[D]. Institute of Geology, China Earthquake Administration, Beijing (in Chinese). | |
[7] | 詹艳, 杨皓, 赵国泽, 等. 2017. 青藏高原东北缘海原构造带马东山阶区深部电性结构特征及其构造意义[J]. 地球物理学报, 60(6): 2371—2384. |
ZHAN Yan, YANG Hao, ZHAO Guo-ze, et al. 2017. Deep electrical structure of crust beneath the Madong step area at the Haiyuan Fault in the northeastern margin of the Tibetan plateau and tectonic implications[J]. Chinese Journal of Geophysics, 60(6): 2371—2384 (in Chinese). | |
[8] | 张全胜, 王家映. 2004. 大地电磁测深资料的去噪方法[J]. 石油地球物理勘探, 39(S1): 17—23. |
ZHANG Quan-sheng, WANG Jia-ying. 2004. Denoising method of magnetotelluric sounding data[J]. Oil Geophysical Prospecting, 39(S1): 17—23 (in Chinese). | |
[9] | 周聪, 汤井田, 原源, 等. 2020. 强干扰区含噪电磁场的时空分布特征[J]. 吉林大学学报(地球科学版), 50(6): 1870—1886. |
ZHOU Cong, TANG Jing-tian, YUAN Yuan, et al. 2020. Spatial and temporal distribution characteristics of electromagnetic fields in strong noise area[J]. Journal of Jilin University(Earth Science Edition), 50(6): 1870—1886 (in Chinese). | |
[10] |
Dong H, Wei W, Ye G, et al. 2014. Three-dimensional electrical structure of the crust and upper mantle in Ordos block and adjacent area: Evidence of regional lithospheric modification[J]. Geochemistry Geophysics Geosystems, 15(6): 2414—2425. doi: 10.1002/2014GC005270.
DOI URL |
[11] | Egbert G D, Booker J R. 1986. Robust estimation of geomagmetic transfer functions[J]. Geophysical Journal of the Royal Astronomical Society, 87(1): 173—194. |
[12] |
Gamble T D. Goubau W M, Clarke J. 1979. Error analysis for remote reference magnetotellurics[J]. Geophysics, 44(5): 959—968.
DOI URL |
[13] |
Sims W E, Bostick F X, Smith H W. 1971. The estimation of magnetotelluric impedance tensor elements from measured data[J]. Geophysics, 36(5): 938—942.
DOI URL |
[14] |
Wessel P, Smith W H F, Scharroo R, et al. 2013. Generic mapping tools: Improved version released[J]. Eos Transactions American Geophysical Union, 94(45): 409—410. doi: 10.1002/2013EO450001.
DOI |
[1] | DAI Yong, WU Ying-yan, FENG Zhi-sheng, YAO Li, JIANG Chu-feng, SUN Jun-song, ZHANG Xin, FENG Li-li, LI Jun-hui. EVIDENCE AND REFINEMENT OF GEOMAGNETIC DIURNAL INDUCED CURRENT ANOMALY BASED ON HARD BODY SEIS-MOGENIC MODEL: TAKING THE 2016 ZADOI M6.2 EARTH-QUAKE, THE 2017 JIUZHAIGOU M7.0 EARTHQUAKE, AND THE 2017 MILIN M6.9 EARTHQUAKE AS EXAMPLES [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1574-1596. |
[2] | DONG Ze-yi, TANG Ji, ZHAO Guo-ze, CHEN Xiao-bin, CUI Teng-fa, HAN Bing, JIANG Feng, WANG Li-feng. PROBING THE SUBSURFACE ELECTRIC STRUCTURE FOR CSELF NETWORK IN CAPITAL CIRCLE REGION [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 649-668. |
[3] | FAN Ye, TANG Ji, MIAO Jie, YE Qing, CUI Teng-fa, DONG Ze-yi, HAN Bing, SUN Gui-cheng. THE ELECTROMAGNETIC ANOMALY OF TANGSHAN GUYE MS5.1 EARTHQUAKE ON JULY 12, 2020 [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 669-685. |
[4] | ZHAO Ling-qiang, ZHAN Yan, WANG Qing-liang, SUN Xiang-yu, HAN Jing, CAO Cong, ZHANG Song, CAI Yan. THE SEISMOGENIC STRUCTURE OF THE 1303 HONGTONG M8 EARTHQUAKE INFERRED FROM MAGNETOTELLURIC IMAGING [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 686-700. |
[5] | YANG Jing, CHEN Xiao-bin, ZHAO Guo-ze. CALCULATION OF SPATIAL DISTRIBUTION OF CSELF ELECTROMAGNETIC FIELD [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 771-785. |
[6] | ZHANG Yun-yun, WANG Pei-jie, CHEN Xiao-bin, ZHAN Yan, HAN Bing, WANG Li-feng, ZHAO Guo-ze. MAGNETOTELLURIC TIME SERIES PROCESSING IN STRONG INTERFERENCE ENVIRONMENT [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 786-801. |
[7] | LIU Zhong-yin, CHEN Xiao-bin, CAI Jun-tao, CUI Teng-fa, ZHAO Guo-ze, TANG Ji, OUYANG Biao. THE DESIGN AND APPLICATION OF TOPEAK: A THREE-DIMENSIONAL MAGNETOTELLURIC INVERSION CLOUD COMPUTING SYSTEM [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 802-820. |
[8] | CHI Hai-jiang, WEN Jia. REALIZATION OF MONITORING AND MANAGEMENT METHOD FOR EXTREMELY LOW FREQUENCY ELECTROMAGNETIC OBSERVATION IN HUAILAI [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 821-830. |
[9] | SONG Cheng-ke, CHEN Zheng-yu, ZHOU Si-yuan, XU Yu-jian, CHEN Bin. GEOMAGNETIC FIELD CHANGE BEFORE AND AFTER 2021 YANGBI MS6.4 EARTHQUAKE [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(4): 958-971. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||