SEISMOLOGY AND GEOLOGY ›› 2022, Vol. 44 ›› Issue (2): 506-523.DOI: 10.3969/j.issn.0253-4967.2022.02.014
• Focus: Mechanical understanding of the surface ruptures of the 2021 Madoi earthquake • Previous Articles Next Articles
SHAO Yan-xiu1)(), LIU-ZENG Jing1,2),*(), GAO Yun-peng1), WANG Wen-xin1), YAO Wen-qian1), HAN Long-fei1), LIU Zhi-jun1), ZOU Xiao-bo3), WANG Yan1), LI Yun-shuai1), LIU Lu4)
Received:
2022-01-25
Revised:
2022-03-20
Online:
2022-04-20
Published:
2022-06-14
Contact:
LIU-ZENG Jing
邵延秀1)(), 刘静1,2),*(), 高云鹏1), 王文鑫1), 姚文倩1), 韩龙飞1), 刘志军1), 邹小波3), 王焱1), 李云帅1), 刘璐4)
通讯作者:
刘静
作者简介:
邵延秀, 男, 1984年生, 2018年于中国地震局地质研究所获构造地质专业博士学位, 副教授, 主要从事活动构造和构造地貌方面的研究工作, E-mail: shaoyx@tju.edu.cn。
基金资助:
CLC Number:
SHAO Yan-xiu, LIU-ZENG Jing, GAO Yun-peng, WANG Wen-xin, YAO Wen-qian, HAN Long-fei, LIU Zhi-jun, ZOU Xiao-bo, WANG Yan, LI Yun-shuai, LIU Lu. COSEISMIC DISPLACEMENT MEASUREMENT AND DISTRIBUTED DEFORMATION CHARACTERIZATION: A CASE OF 2021 MW7.4 MADOI EARTHQUAKE[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 506-523.
邵延秀, 刘静, 高云鹏, 王文鑫, 姚文倩, 韩龙飞, 刘志军, 邹小波, 王焱, 李云帅, 刘璐. 同震地表破裂的位移测量与弥散变形分析——以2021年青海玛多MW7.4地震为例[J]. 地震地质, 2022, 44(2): 506-523.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.02.014
[1] | 毕海芸, 郑文俊, 曾江源, 等. 2017. SfM摄影测量方法在活动构造定量研究中的应用[J]. 地震地质, 39(4): 656-674. |
BI Hai-yun, ZHENG Wen-jun, ZENG Jiang-yuan,et al. 2017. Application of SfM photogrammetry method to the quantitative study of active tectonics[J]. Seismology and Geology, 39(4): 656-674. (in Chinese) | |
[2] | 邓起东, 高翔, 陈桂华, 等. 2010. 青藏高原昆仑-汶川地震系列与巴颜喀喇断块的最新活动[J]. 地学前缘, 17(5): 163-178. |
DENG Qi-dong, GAO Xiang, CHEN Gui-hua,et al. 2010. Recent tectonic activity of Bayankala fault-block and the Kunlun-Wenchuan earthquake series of the Tibetan plateau[J]. Earth Science Frontiers, 17(5): 163-178. (in Chinese) | |
[3] | 邓起东, 于贵华, 叶文华. 1992. 地震地表破裂参数与震级关系的研究 [G]//邓起东(主编). 活动断裂研究(2)北京: 地震出版社. 247-264. |
DENG Qi-dong, YU Gui-hua, YE Wen-hua. 1992. Research on relationship between surface rupture parameters and magnitude of earthquake [G]//DENG Qi-dong(ed). Research of Active Fault (2). Seismological Press, Beijing: 247-264. (in Chinese) | |
[4] | 邓起东, 张培震, 冉勇康, 等. 2002. 中国活动构造基本特征[J]. 中国科学(D辑), 46(4): 1020-1030, 1057. |
DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang,et al. 2002. Basic characteristics of active tectonics in China[J]. Science in China(Ser D), 46(4): 1020-1030,1057. (in Chinese) | |
[5] | 邓起东, 张培震, 冉勇康, 等. 2003. 中国活动构造与地震活动[J]. 地学前缘, 10(S1): 66-73. |
DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang,et al. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers, 10(S1): 66-73. (in Chinese) | |
[6] | 盖海龙, 姚生海, 杨丽萍, 等, 2021. 青海玛多“5·22” MS7.4 地震的同震地表破裂特征、 成因及意义[J]. 地质力学学报, 27(6): 899-912. |
GAI Hai-long, YAO Sheng-hai, YANG Li-ping,et al. 2021. Characteristics and causes of coseismic surface rupture triggered by the “5·22” MS7.4 earthquake in Maduo, Qinghai, and their significance[J]. Journal of Geomechanics, 27(6): 899-912. (in Chinese) | |
[7] | 国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪-公元1911年)[Z]. 北京: 地震出版社: 1-514. |
Department of Earthquake Disaster Prevention, State Seismological Bureau. 1995. Catalogue of Chinese Historical Strong Earthquakes(23rd Century BC to 1911)[Z]. Seismological Press: Beijing:1-514. (in Chinese) | |
[8] | 韩龙飞, 刘静, 姚文倩, 等. 2022. 2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内的分布式破裂讨论[J]. 地震地质, 44(2): 484-505. |
HAN Long-fei, LIU-ZENG Jing, YAO Wen-qian,et al. 2022. Detailed mapping of the surface rupture near the epicenter segment of the 2021 Madoi MW7.4 earthquake and discussion on distributed rupture in the step-over[J]. Seismology and Geology, 44(2): 484-505. | |
[9] | 侯增谦, 郑远川, 卢占武, 等. 2020. 青藏高原巨厚地壳: 生长、 加厚与演化[J]. 地质学报, 94(10): 2797-2815. |
HOU Zeng-qian, ZHENG Yuan-chuan, LU Zhan-wu,et al. 2020. Growth, thickening and evolution of the thickened crust of the Tibet Plateau[J]. Acta Geologica Sinica, 94(10): 2797-2815. (in Chinese) | |
[10] | 李陈侠, 徐锡伟, 闻学泽, 等. 2009. 东昆仑断裂东段玛沁-玛曲段几何结构特征[J]. 地震地质, 31(3): 441-458. |
LI Chen-xia, XU Xi-wei, WEN Xue-ze,et al. 2009. The segmental characteristics of geometrical structure of the east Kunlun active fault(Maqin-Maqu segment)[J]. Seismology and Geology, 31(3): 441-458. (in Chinese) | |
[11] | 李海兵, 潘家伟, 孙知明, 等. 2021. 大陆构造变形与地震活动: 以青藏高原为例[J]. 地质学报, 95(1): 194-213. |
LI Hai-bing, PAN Jia-wei, SUN Zhi-ming,et al. 2021. Continental tectonic deformation and seismic activity: A case study from the Tibetan plateau[J]. Acta Geologica Sinica, 95(1): 194-213. (in Chinese) | |
[12] | 李智敏, 李文巧, 李涛, 等. 2021. 2021年5月22日青海玛多 MS7.4 地震的发震构造和地表破裂初步调查[J]. 地震地质, 43(3): 722-737. |
LI Zhi-min, LI Wen-qiao, LI Tao,et al. 2021. Seismogenic fault and coseismic surface deformation of the Maduo MS7.4 earthquake in Qinghai, China: A quick report[J]. Seismology and Geology, 43(3): 722-737. (in Chinese) | |
[13] | 刘小利, 夏涛, 刘静, 等. 2022. 2021 年青海玛多 MW7.4 地震分布式同震地表裂缝特征[J]. 地震地质, 44(2): 461-483. |
LIU Xiao-li, XIA Tao, LIU-ZENG Jing,et al. 2022. Distributed characteristics of the surface deformations associated with the 2021 MW 7.4 Madoi earthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 461-483. | |
[14] | 潘家伟, 白明坤, 李超, 等. 2021. 2021年5月22日青海玛多 MS7.4 地震地表破裂带及发震构造[J]. 地质学报, 95(6): 1655-1670. |
PAN Jia-wei, BAI Ming-kun, LI Chao,et al. 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo MS7.4 earthquake[J]. Acta Geologica Sinica, 95(6): 1655-1670. (in Chinese) | |
[15] | 任俊杰, 徐锡伟, 张世民, 等. 2017. 东昆仑断裂带东端的构造转换与2017年九寨沟 MS7.0 地震孕震机制[J]. 地球物理学报, 60(10): 4027-4045. |
REN Jun-jie, XU Xi-wei, ZHANG Shi-min,et al. 2017. Tectonic transformation at the eastern termination of the eastern Kunlun fault zone and seismogenic mechanism of the 8 August 2017 Jiuzhaigou MS7.0 earthquake[J]. Chinese Journal of Geophysics, 60(10): 4027-4045. (in Chinese) | |
[16] | 王朋涛, 邵延秀, 张会平, 等. 2016. sUAV摄影技术在活动构造研究中的应用: 以海原断裂骟马沟为例[J]. 第四纪研究, 36(2): 433-442. |
WANG Peng-tao, SHAO Yan-xiu, ZHANG Hui-ping,et al. 2016. The application of sUAV photogrammetry in active tectonics: Shanmagou site of Haiyuan Fault, for example[J]. Quaternary Sciences, 36(2): 433-442. (in Chinese) | |
[17] | 王文鑫, 邵延秀, 姚文倩, 等. 2022. 基于摄影测量技术对玛多MW7.4地震地表破裂特征的快速提取及三维结构的室内重建[J]. 地震地质, 44(2): 524-540. |
WANG Wen-xin, SHAO Yan-xiu, YAO Wen-qian,et al. 2022. Rapid extraction of features and indoor reconstruction of 3D structures of Madoi MW7.4 earthquake surface ruptures based on photogrammetry method[J]. Seismology and Geology, 44(2): 524-540. | |
[18] | 姚文倩, 王子君, 刘静, 等. 2022. 2021年青海玛多MW7.4地震同震地表破裂长度的讨论[J]. 地震地质, 44(2): 541-559. |
YAO Wen-qian, WANG Zi-jun, LIU-ZENG Jing,et al. 2022. Discussion on coseismic surface rupture length of the 2021 MW7.4 Madoi earthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 541-559. | |
[19] | 张培震, 邓起东, 张国民, 等. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 12-20. |
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min,et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China(Ser D), 33(S1): 12-20. (in Chinese) | |
[20] | 张裕明, 李闵峰, 孟勇琦, 等. 1996. 巴颜喀拉山地区断层活动性研究及其地震地质意义 G//邓起东主编. 活动断裂研究(5). 北京: 地震出版社. 154-171. |
ZHANG Yu-ming, LI Min-feng, MENG Yong-qi, et al. 1996. Research on fault activities and their seismogeological implication in Bayankala Mountain area [G]//DENG Qi-dong(ed). Research of Active Fault (5). Seismological Press, Beijing: 154-171. (in Chinese) | |
[21] | Antoine S L, Klinger Y, Delorme A,et al. 2021. Diffuse deformation and surface faulting distribution from submetric image correlation along the 2019 Ridgecrest, California, ruptures[J]. Bulletin of the Seismological Society of America, 111(5): 2275-2302. |
[22] |
Avouac J P, Ayoub F, Leprince S,et al. 2006. The 2005, MW7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis[J]. Earth and Planetary Science Letters, 249(3-4): 514-528.
DOI URL |
[23] |
Ayoub F, Leprince S, Avouac J P. 2009. Co-registration and correlation of aerial photographs for ground deformation measurements[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6): 551-560.
DOI URL |
[24] |
Barka A. 1999. The 17 August 1999 Izmit earthquake[J]. Science, 285(5435): 1858-1859. doi: 10.1126/science.285.5435.1858.
DOI URL |
[25] | Bemis S P, Micklethwaite S, Turner D,et al. 2014. Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 69(Part A): 163-178. |
[26] |
Bürgmann R, Ergintav S, Segall P,et al. 2002. Time-dependent distributed afterslip on and deep below the Izmit earthquake rupture[J]. Bulletin of the Seismological Society of America, 92(1): 126-137. doi: 10.1785/0120000833.
DOI URL |
[27] |
Bürgmann R, Rosen P A, Fielding E J. 2000. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 28(1): 169-209.
DOI URL |
[28] |
Dolan J F, Haravitch B D. 2014. How well do surface slip measurements track slip at depth in large strike-slip earthquakes?The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation[J]. Earth and Planetary Science Letters, 388: 38-47. doi: 10.1016/j.pngl.2013.11.043.
DOI URL |
[29] |
Elliott A J, Dolan J F, Oglesby D D. 2009. Evidence from coseismic slip gradients for dynamic control on rupture propagation and arrest through stepovers[J]. Journal of Geophysical Research: Solid Earth, 114(B2). doi: 10.1029/2008JB005969.
DOI |
[30] |
Gold R D, Reitman N G, Briggs R W,et al. 2015. On- and off-fault deformation associated with the September 2013 MW7.7 Balochistan earthquake: Implications for geologic slip rate measurements[J]. Tectonophysics, 660: 65-78. doi: 10.1016/j.tecto.2015.08.019.
DOI URL |
[31] |
Jin Z, Fialko Y. 2021. Coseismic and early postseismic deformation due to the 2021 M7.4 Maduo(China)earthquake[J]. Geophysical Research Letters, 48(21). doi: 10.1029/2021GL095213.
DOI |
[32] |
Kirby E, Harkins N, Wang E,et al. 2007. Slip rate gradients along the eastern Kunlun Fault[J]. Tectonics, 26(2). doi: 10.1029/2006TC002033.
DOI |
[33] |
Klinger Y. 2010. Relation between continental strike-slip earthquake segmentation and thickness of the crust[J]. Journal of Geophysical Research: Solid Earth, 115(B7). doi: 10.1029/2009JB006550.
DOI |
[34] | Klinger Y, Michel R, King G. 2006. Evidence for an earthquake barrier model from MW not, vert, similar 7.8 Kokoxili(Tibet)earthquake slip-distribution[J]. Translated World Seismology, 242(3-4): 354-364. |
[35] |
Klinger Y, Okubo K, Vallage A,et al. 2018. Earthquake damage patterns resolve complex rupture processes[J]. Geophysical Research Letters, 45(19): 10279-10287. doi: 10.1029/2018GL078842.
DOI URL |
[36] |
Liu-Zeng J, Yao W, Liu X,et al. 2022. High-resolution Structure-from-Motion models covering 160km long surface ruptures of the 2021 MW7.4 Madoi earthquake in northern Qinghai-Tibetan Plateau[J]. Earthquake Regearch Advances. doi: http://doi.org/10.1016/j.eqrea.2022.100140.
DOI |
[37] |
Milliner C W D, Dolan J F, Hollingsworth J,et al. 2016. Comparison of coseismic near-field and off-fault surface deformation patterns of the 1992 MW7.3 Landers and 1999 MW7.1 Hector Mine earthquakes: Implications for controls on the distribution of surface strain[J]. Geophysical Research Letters, 43(19): 10115-10124. doi: 10.1002/2016GL069841.
DOI URL |
[38] |
Milliner C W D, Dolan J F, Hollingsworth J,et al. 2015. Quantifying near-field and off-fault deformation patterns of the 1992 MW7.3 Landers earthquake[J]. Geochemistry, Geophysics, Geosystems, 16(5): 1577-1598. doi: 10.1002/2014GC005693.
DOI URL |
[39] |
Oglesby D. 2008. Rupture termination and jump on parallel offset faults[J]. Bulletin of the Seismological Society of America, 98(1): 440-447. doi: 10.1785/0120070163.
DOI URL |
[40] |
Oskin M E, Arrowsmith J R, Corona A H,et al. 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LiDAR[J]. Science, 335(6069): 702-705.
DOI URL |
[41] |
Rockwell T K, Klinger Y. 2013. Surface rupture and slip distribution of the 1940 Imperial Valley earthquake, Imperial Fault, southern California: Implications for rupture segmentation and dynamics[J]. Bulletin of the Seismological Society of America, 103(2A): 629-640.
DOI URL |
[42] |
Rockwell T K, Lindvall S, Dawson T,et al. 2002. Lateral offsets on surveyed cultural features resulting from the 1999 Izmit and Düzce earthquakes, Turkey[J]. Bulletin of the Seismological Society of America, 92(1): 79-94. doi: 10.1785/0120000809.
DOI URL |
[43] | Scholz C H. 2019. The Mechanics of Earthquakes and Faulting[M]. Cambridge University Press, Cambridge, United Kingdom. |
[44] |
Shelef E, Oskin M. 2010. Deformation processes adjacent to active faults: Examples from eastern California[J]. Journal of Geophysical Research: Solid Earth, 115(B5). doi: 10.1029/2009JB006289.
DOI |
[45] |
Tapponnier P, Zhiqin X, Roger F,et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677.
PMID |
[46] |
Treiman J A, Kendrick K J, Bryant W A,et al. 2002. Primary surface rupture associated with the MW7.1 16 October 1999 Hector Mine earthquake, San Bernardino County, California[J]. Bulletin of the Seismological Society of America, 92(4): 1171-1191. doi: 10.1785/0120000923.
DOI URL |
[47] |
Ullman S. 1979. The interpretation of structure from motion[J]. Proceedings of the Royal Society B: Biological Sciences, 203(1153): 405-426.
PMID |
[48] |
van der Woerd J, Tapponnier P, Ryerson F J,et al. 2002. Uniform postglacial slip-rate along the central 600km of the Kunlun Fault(Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal International, 148(3): 356-388.
DOI URL |
[49] |
Weldon R, Sieh K E. 1985. Holocene rate of slip and tentative recurrence interval for large earthquakes on the San Andreas Fault, Cajon Pass, Southern California[J]. Geological Society of America Bulletin, 96(6): 793-812.
DOI URL |
[50] | Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. |
[51] |
Wesnousky S G. 2008. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture[J]. Bulletin of the Seismological Society of America, 98(4): 1609-1632. doi: org/10.1785/0120070111.
DOI URL |
[52] |
Xu X, Tong X, Sandwell D T,et al. 2016. Refining the shallow slip deficit[J]. Geophysical Journal International, 204(3): 1867-1886. doi: org/10.1093/gji/ggv563.
DOI |
[53] |
Xu X, Yu G, Klinger Y,et al. 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake( MW7.8 ), northern Tibetan plateau, China[J]. Journal of Geophysical Research, 111(B5). doi: 10.1029/2004JB003488.
DOI |
[54] |
Zhou Y, Parsons B E, Walker R T. 2018. Characterizing complex surface ruptures in the 2013 MW7.7 Balochistan earthquake using three-dimensional displacements[J]. Journal of Geophysical Research: Solid Earth, 123(11): 10191-10211. doi: 10.1029/2018JB016043.
DOI URL |
[1] | YUAN Hao-dong, LI An, HUANG Wei-liang, HU Zong-kai, ZUO Yu-qi, YANG Xiao-ping. GEOLOGICAL DEFORMATION OF THE TUOLI FAULT IN THE WEST JUNGGAR SINCE THE LATE QUATERNARY [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 49-66. |
[2] | YANG Yuan-yuan, LI Peng-fei, LU Shuo, SHU Peng, PAN Hao-bo, FANG Liang-hao, ZHENG Hai-gang, ZHAO Peng, ZHENG Ying-ping, YAO Da-quan. PALEOEARTHQUAKES AND VERTICAL SLIP RATES ON THE HUAI RIVER-NÜSHAN LAKE SEGMENT OF FAULT F5 IN THE MIDDLE SECTION OF THE TANLU FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1365-1383. |
[3] | ZHANG Xiu-li, XIONG Jian-guo, ZHANG Pei-zhen, LIU Qing-ri, YAO Yong, ZHONG Yue-zhi, ZHANG Hui-ping, LI You-li. STUDY ON THE SLIP RATE OF THE NORTH ZHONGTIAO SHAN FAULT SINCE THE LATE MIDDLE PLEISTOCENE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1403-1420. |
[4] | DENG Wen-ze, LIU Jie, YANG Zhi-gao, SUN Li, ZHANG Xue-mei. PRELIMINARY ANALYSIS FOR RUPTURE PROCESS OF THE MAY 22TH, 2021, MADOI(QINGHAI) MS7.4 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 1059-1070. |
[5] | LIU Xiao-li, XIA Tao, LIU-ZENG Jing, YAO Wen-qian, XU Jing, DENG De-bei-er, HAN Long-fei, JIA Zhi-ge, SHAO Yan-xiu, WANG Yan, YUE Zi-yang, GAO Tian-qi. DISTRIBUTED CHARACTERISTICS OF THE SURFACE DEFORMATIONS ASSOCIATED WITH THE 2021 MW7.4 MADOI EARTHQUAKE, QINGHAI, CHINA [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 461-483. |
[6] | HAN Long-fei, LIU-ZENG Jing, YAO Wen-qian, WANG Wen-xin, LIU Xiao-li, GAO Yun-peng, SHAO Yan-xiu, LI Jin-yang. DETAILED MAPPING OF THE SURFACE RUPTURE NEAR THE EPICENTER SEGMENT OF THE 2021 MADOI MW7.4 EARTHQUAKE AND DISCUSSION ON DISTRIBUTED RUPTURE IN THE STEP-OVER [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 484-505. |
[7] | YAO Wen-qian, WANG Zi-jun, LIU-ZENG Jing, LIU Xiao-li, HAN Long-fei, SHAO Yan-xiu, WANG Wen-xin, XU Jing, QIN Ke-xin, GAO Yun-peng, WANG Yan, LI Jin-yang, ZENG Xian-yang. DISCUSSION ON COSEISMIC SURFACE RUPTURE LENGTH OF THE 2021 MW7.4 MADOI EARTHQUAKE, QINGHAI, CHINA [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 541-559. |
[8] | ZHANG Chi, LI Zhi-min, REN Zhi-kun, LIU Jin-rui, ZHANG Zhi-liang, WU Deng-yun. CHARACTERISTICS OF LATE QUATERNARY ACTIVITY OF THE SOUTHERN RIYUESHAN FAULT [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(1): 1-19. |
[9] | WAN Yong-kui, SHEN Xiao-qi, LIU Rui-feng, LIU Xia, ZHENG Zhi-jiang, LI Yuan, ZHANG Yang, WANG Lei. PRESENT SLIP AND STRESS DISTRIBUTION OF BLOCK BOUNDARY FAULTS IN THE SICHUAN-YUNNAN REGION [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1614-1637. |
[10] | LI Jing-wei, CHEN Chang-yun, ZHAN Wei, WU Yan-qiang. RESEARCH ON FAST ACQUISITION OF GNSS COSEISMIC HORIZONTAL DISPLACEMENT OF MADUO MS7.4 EARTHQUAKE IN QINGHAI PROVINCE [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(5): 1073-1084. |
[11] | MIAO Shu-qing, HU Zong-kai, ZHANG Ling, YANG Hai-bo, YANG Xiao-ping. GEOMORPHIC ANALYSIS OF STRIKE-SLIP FAULTING AT THE TOP OF ALLUVIAL FAN: A CASE STUDY AT AHEBIEDOU RIVER ON THE EASTERN MARGIN OF TACHENG BASIN, XINJIANG, CHINA [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 488-503. |
[12] | LIU Rui-chun, ZHANG Jin, GUO Wen-feng, CHEN Hui, ZHENG Ya-di, CHENG Cheng. STUDY ON THE RECENT DEFORMATION CHARACTERISTIC AND STRUCTURAL DEFORMATION MODEL OF THE SOUTH-EASTERN MARGIN OF ORDOS BLOCK [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 540-558. |
[13] | DAI Cheng-long, ZHANG Ling, LIANG Shi-ming, ZHANG Ke-liang, XIONG Xiao-hui, GAN Wei-jun. PRESENT-DAY STRIKE-SLIP RATE AND ITS SEGMENTAL VARIATION OF THE TALAS-FERGHANA FAULT IN CENTRAL ASIA: INSIGHT FROM GPS GEODETIC OBSERVATIONS [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(2): 263-279. |
[14] | LEI Sheng-xue, RAN Yong-kang, LI Yan-bao, LI Hai-ou, GAO Ye, GUO Wei. A POSSIBLE MECHANISM FOR REVERSE CROSS-BASIN FAULT IN GANYANCHI ASYMMETRIC PULL-APART BASIN ALONG THE HAIYUAN FAULT [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(1): 36-52. |
[15] | ZHANG Bo, TIAN Qin-jian, WANG Ai-guo, LI Wen-qiao, XU Yue-ren, GAO Ze-min. STUDIES ON NEW ACTIVITY OF LINTAN-DANGCHANG FAULT, WEST QINLING [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(1): 72-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||