SEISMOLOGY AND GEOLOGY ›› 2022, Vol. 44 ›› Issue (2): 461-483.DOI: 10.3969/j.issn.0253-4967.2022.02.012
• Focus: Mechanical understanding of the surface ruptures of the 2021 Madoi earthquake • Previous Articles Next Articles
LIU Xiao-li1,5)(), XIA Tao1), LIU-ZENG Jing2,4),*(), YAO Wen-qian2), XU Jing3), DENG De-bei-er1), HAN Long-fei2), JIA Zhi-ge1), SHAO Yan-xiu2), WANG Yan2), YUE Zi-yang5), GAO Tian-qi5)
Received:
2022-01-02
Revised:
2022-03-18
Online:
2022-04-20
Published:
2022-06-14
Contact:
LIU-ZENG Jing
刘小利1,5)(), 夏涛1), 刘静2,4),*(), 姚文倩2), 徐晶3), 邓德贝尔1), 韩龙飞2), 贾治革1), 邵延秀2), 王焱2), 乐子扬5), 高天琪5)
通讯作者:
刘静
作者简介:
刘小利, 女, 1977年生, 2008年于武汉大学获摄影测量与遥感专业博士学位, 副研究员, 研究方向为遥感减灾应用、 构造地貌学, E-mail: liuxl_j@163.com。
基金资助:
CLC Number:
LIU Xiao-li, XIA Tao, LIU-ZENG Jing, YAO Wen-qian, XU Jing, DENG De-bei-er, HAN Long-fei, JIA Zhi-ge, SHAO Yan-xiu, WANG Yan, YUE Zi-yang, GAO Tian-qi. DISTRIBUTED CHARACTERISTICS OF THE SURFACE DEFORMATIONS ASSOCIATED WITH THE 2021 MW7.4 MADOI EARTHQUAKE, QINGHAI, CHINA[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 461-483.
刘小利, 夏涛, 刘静, 姚文倩, 徐晶, 邓德贝尔, 韩龙飞, 贾治革, 邵延秀, 王焱, 乐子扬, 高天琪. 2021年青海玛多MW7.4地震分布式同震地表裂缝特征[J]. 地震地质, 2022, 44(2): 461-483.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.02.012
[1] | 戴华光. 1983. 1947年青海达日$7\frac{3}{4}$级地震[J]. 西北地震学报, 5(3): 71-77. |
DAI Hua-guang. 1983. On the Dari earthquake of 1947 in Qinghai Province[J]. Northwestern Seismological Journal, 5(3): 71-77. (in Chinese) | |
[2] | 杜方, 闻学泽, 张培震, 等. 2009. 2008年汶川8.0级地震前横跨龙门山断裂带的震间形变[J]. 地球物理学报, 52(11): 2729-2738. |
DU Fang, WEN Xue-ze, ZHANG Pei-zhen,et al. 2009. Interseismic deformation across the Longmenshan fault zone before the 2008 M8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 52(11): 2729-2738. (in Chinese) | |
[3] | 盖海龙, 姚生海, 杨丽萍, 等. 2021. 青海玛多“5·22” MS7.4级地震的同震地表破裂特征、 成因及意义[J]. 地质力学学报, 27(6): 899-912. |
GAI Hai-long, YAO Sheng-hai, YANG Li-ping,et al. 2021. Characteristics and causes of coseismic surface rupture triggered by the “5·22” MS7.4 earthquake in Maduo, Qinghai, and their significance[J]. Journal of Geomechanics, 27(6): 899-912. (in Chinese) | |
[4] | 韩龙飞, 刘静, 姚文倩, 等. 2022. 2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内分布式破裂的讨论[J]. 地震地质, 44(2): 484-505. |
HAN Long-fei, LIU-ZENG Jing, YAO Wen-qian,et al. 2022. Detailed mapping of the surface rupture near the epicenter segment of the 2021 Madoi MW7.4 earthquake and discussion on distributed rupture in the step-over[J]. Seismology and Geology, 44(2): 484-505. (in Chinese) | |
[5] | 李智敏, 李文巧, 李涛, 等. 2021. 2021年5月22日青海玛多 MS7.4 地震的发震构造和地表破裂初步调查[J]. 地震地质, 43(3): 722-737. |
LI Zhi-min, LI Wen-qiao, LI Tao,et al. 2021. Seismogenic fault and coseismic surface deformation of the Maduo MS7.4 earthquake in Qinghai, China: A quick report[J]. Seismology and Geology, 43(3): 722-737. (in Chinese) | |
[6] | 潘家伟, 白明坤, 李超, 等. 2021. 2021年5月22日青海玛多 MS7.4 地震地表破裂带及发震构造[J]. 地质学报, 95(6): 1655-1670. |
PAN Jia-wei, BAI Ming-kun, LI Chao,et al. 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo(Qinghai) MS7.4 earthquake[J]. Acta Geologica Sinica, 95(6): 1655-1670. (in Chinese) | |
[7] | 闻学泽. 2018. 巴颜喀拉块体东边界千年破裂历史与2008年汶川、 2013年芦山和2017年九寨沟地震[J]. 地震学报, 40(3): 255-267. |
WEN Xue-ze. 2018. The 2008 Wenchuan, 2013 Lushan and 2017 Jiuzhaigou earthquakes, Sichuan, in the last more than one thousand years of rupture history of the eastern margin of the Bayan Har block[J]. Acta Seismologica Sinica, 40(3): 255-267. (in Chinese) | |
[8] | 熊仁伟, 任金卫, 张军龙, 等. 2010. 玛多-甘德断裂甘德段晚第四纪活动特征[J]. 地震, 30(4): 65-73. |
XIONG Ren-wei, REN Jin-wei, ZHANG Jun-long,et al. 2010. Late Quaternary active characteristics of the Gande segment of the Maduo-Gande fault zone[J]. Earthquake, 30(4): 65-73. (in Chinese) | |
[9] | 徐锡伟, 陈桂华, 王启欣, 等. 2017. 九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论[J]. 地球物理学报, 60(10): 4018-4026. |
XU Xi-wei, CHEN Gui-hua, WANG Qi-xin,et al. 2017. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 60(10): 4018-4026. (in Chinese) | |
[10] | 徐锡伟, 闻学泽, 叶建青, 等. 2008a. 汶川 MS8.0 地震地表破裂带及其发震构造[J]. 地震地质, 30(3): 597-629. |
XU Xi-wei, WEN Xue-ze, YE Jian-qing,et al. 2008a. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 30(3): 597-629. (in Chinese) | |
[11] | 徐锡伟, 于贵华, 马文涛, 等. 2008b. 昆仑山地震 MW7.8 破裂行为、 变形局部化特征及其构造内涵讨论[J]. 中国科学(D辑), 38(7): 785-796. |
XU Xi-wei, YU Gui-hua, MA Wen-tao,et al. 2008b. Rupture behavior and deformation localization of the Kunlunshan earthquake( MW7.8 )and their tectonic implications[J]. Science in China(Ser D), 38(7): 785-796. (in Chinese) | |
[12] | 徐志国, 梁姗姗, 张广伟, 等. 2021. 2021年5月22日青海玛多 MS7.4 地震发震构造分析[J]. 地球物理学报, 64(8): 2657-2670. |
XU Zhi-guo, LIANG Shan-shan, ZHANG Guang-wei,et al. 2021. Analysis of seismogenic structure of Madoi, Qinghai MS7.4 earthquake on May 22, 2021[J]. Chinese Journal of Geophysics, 64(8): 2657-2670. (in Chinese) | |
[13] | 姚文倩, 王子君, 刘静, 等. 2022. 2021年青海玛多MW7.4 地震同震地表破裂长度的讨论[J]. 地震地质, 44(2): 541-559. |
YAO Wen-qian, WANG Zi-jun, LIU-ZENG Jing,et al. 2022 Discussion on coseismic surface rupture length of the 2021 MW7.4 Madoi earthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 541-559. (in Chinese) | |
[14] | 詹艳, 梁明剑, 孙翔宇, 等. 2021. 2021年5月22日青海玛多 MS7.4 地震深部环境及发震构造模式[J]. 地球物理学报, 64(7): 2232-2252. |
ZHAN Yan, LIANG Ming-jian, SUN Xiang-yu,et al. 2021. Deep structure and seismogenic pattern of the 2021.5.22 Madoi(Qinghai) MS7.4 earthquake[J]. Chinese Journal of Geophysics, 64(7): 2232-2252. (in Chinese) | |
[15] | 张培震, 邓起东, 张国民, 等. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 12-20. |
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min,et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China(Ser D), 33(S1): 12-20. (in Chinese) | |
[16] | Antoine S L, Klinger Y, Delorme A,et al. 2021. Diffuse deformation and surface faulting distribution from sub-metric image correlation along the 2019 Ridgecrest ruptures(California, USA)[J]. Bulletin of the Seismological Society of America, 111(5): 2275-2302. |
[17] | Barnhart W D, Gold R D, Hollingsworth J. 2020. Displacement and strain field from the 2019 Ridgecrest earthquakes derived from analysis of World View optical satellite imagery[EB/OL]. [2022-1-28] https://doi.org/10.5066/P9QRZ6NR. |
[18] | Benjelloun Y, Klinger Y, Antoine S,et al. 2020. Coseismic slip distribution and earthquake recurrence along the Bulnay-Tsetserleg fault zone(Mongolia): Insights from UAV-based photogrammetry and paleoseismology[C]. American Geophysical Union, Fall Meeting 2020, T035-09. |
[19] | Bryant W A, Sawyer T L. 2002. Quaternary fault and fold database of the United States, Owens Valley fault zone, 1872 rupture section[EB/OL]. [2022-1-28] https://earthquakes.usgs.gov/hazards/qfaults. |
[20] |
DuRoss C B, Gold R D, Dawson T E,et al. 2020. Surface displacement distributions for the July 2019 Ridgecrest, California, earthquake ruptures[J]. Bulletin of the Seismological Society of America, 110(4): 1400-1418.
DOI URL |
[21] |
Ferrario M F, Livio F. 2021. Conditional probability of distributed surface rupturing during normal-faulting earthquakes[J]. Solid Earth, 12(5): 1197-1209.
DOI URL |
[22] | Ferrario M F, Livio F, Michetti A M. 2018. Distributed faulting and partitioning of the deformation in normal-faulting events: Insights from the October 30, 2016 central Italy earthquake( MW6.5 )[C]. SGI-SIMP Congress, Catania. |
[23] |
Gold R D, Clark D, Barnhart W D,et al. 2019. Surface rupture and distributed deformation revealed by optical satellite imagery: The intraplate 2016 MW6.0 Petermann Ranges earthquake, Australia[J]. Geophysical Research Letters, 46(10): 10394-10403.
DOI URL |
[24] | Gold R D, DuRoss C B, Barnhart W D. 2021. Coseismic surface displacement in the 2019 Ridgecrest earthquakes: Comparison of field measurements and optical image correlation results[J]. Geochemistry, Geophysics, Geosystems, 22(3): 1-22. |
[25] | Handy M R, Hirth G, Bürgmann R. 2007. Continental fault structure and rheology from the frictional-to-viscous transition downward [G]//Handy M R, Hirth G, Hovius N. Tectonic Faults: Agents of Change on a Dynamic Earth. MIT Press, Cambridge: 139-182. |
[26] | Hudnut K, Seeber L, Rockwell T,et al. 1989. Surface ruptures on cross-faults in the 24 November 1987 Superstition Hills, California, earthquake sequence[J]. Bulletin of the Seismological Society of America, 79(2): 282-296. |
[27] |
Klinger Y, Okubo K, Vallage A,et al. 2018. Earthquake damage patterns resolve complex rupture processes[J]. Geophysical Research Letters, 45(19): 10279-10287.
DOI URL |
[28] |
Koehler R D, Dee S, Elliott A,et al. 2021. Field response and surface-rupture characteristics of the 2020 M6.5 Monte Cristo Range earthquake, Central Walker Lane, Nevada[J]. Seismological Research Letters, 92(2A): 823-839.
DOI URL |
[29] |
Liu J, Sieh K, Hauksson E. 2003. A structural interpretation of the aftershock “cloud” of the 1992 MW7.3 Landers earthquake[J]. Bulletin of the Seismological Society of America, 93: 1333-1344.
DOI URL |
[30] |
Liu-Zeng J, Zhang Z, Wen L,et al. 2009. Co-seismic ruptures of the 12 May 2008, MS8.0 Wenchuan earthquake, Sichuan: East-west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet[J]. Earth and Planetary Science Letters, 286(3-4): 355-370.
DOI URL |
[31] |
Livio F, Serva L, Gürpinar A. 2016. Locating distributed faulting: Contributions from InSAR imaging to probabilistic fault displacement hazard analysis(PFDHA)[J]. Quaternary International, 451: 223-233.
DOI URL |
[32] |
Michel R, Avouac J P. 2006. Coseismic surface deformation from air photos: The Kickapoo step over in the 1992 Landers rupture[J]. Journal of Geophysical Research, 111(B3): B03408. doi: 10.1029/2005JB003776.
DOI |
[33] |
Nurminen F, Boncio P, Visini F,et al. 2020. Probability of occurrence and displacement regression of distributed surface rupturing for reverse earthquakes[J]. Frontiers in Earth Science, 8: 293-306.
DOI URL |
[34] |
Oskin M E, Arrowsmith J R, Corona A H,et al. 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LIDAR[J]. Science, 335(6069): 702-705.
DOI URL |
[35] | Parker J, Donnellan A, Bilham R,et al. 2021. Buried aseismic slip and off-fault deformation on the southernmost San Andreas Fault triggered by the 2010 El Mayor Cucapah earthquake revealed by UAVSAR[J]. Earth and Space Science, 8(8): 1-19. |
[36] |
Petersen M, Dawson T E, Chen R,et al. 2011. Fault displacement hazard for strike-slip faults[J]. Bulletin of the Seismological Society of America, 101(2): 805-825.
DOI URL |
[37] |
Ponti D J, Blair J L, Rosa C M,et al. 2020. Documentation of surface fault rupture and ground-deformation features produced by the 4 and 5 July 2019 MW6.4 and MW7.1 Ridgecrest earthquake sequence[J]. Seismological Research Letters, 91(5): 2942-2959.
DOI URL |
[38] | Scholz C H. 1982. Scaling laws for large earthquakes: Consequences for physical models[J]. Bulletin of the Seismological Society of America, 72(1): 1-14. |
[39] |
Sibson R H, Scott J. 1998. Stress/fault controls on the containment and release of overpressured fluids: Examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand[J]. Ore Geology Reviews, 13(1-5): 293-306.
DOI URL |
[40] |
Sylvester A G. 1988. Strike-slip faults[J]. Geological Society of America Bulletin, 100(11): 1666-1703.
DOI URL |
[41] |
Tapponnier P, Peltzer G, Le Dain A Y,et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616.
DOI URL |
[42] |
Tapponnier P, Xu Z Q, Roger F,et al. 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 294(5547): 1671-1677.
PMID |
[43] |
Thompson J J A, Philibosian B, Chupik C,et al. 2020. Evidence of previous faulting along the 2019 Ridgecrest, California, earthquake ruptures[J]. Bulletin of the Seismological Society of America, 110(4): 1427-1456.
DOI URL |
[44] | Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. |
[45] |
Wesnousky S G. 2008. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture[J]. Bulletin of the Seismological Society of America, 98(4): 1609-1632.
DOI URL |
[46] |
Youngs R R, Arabasz W J, Anderson R E,et al. 2003. A methodology for probabilistic fault displacement hazard analysis(PFDHA)[J]. Earthquake Spectra, 19(1): 191-219.
DOI URL |
[47] |
Zachariasen J, Sieh K. 1995. The transfer of slip between two en echelon strike-slip faults: A case study from the 1992 Landers earthquake, southern California[J]. Journal of Geophysical Research, 100(B8): 15281-15301. doi: 10.1029/95JB00918.
DOI URL |
[48] | Zhao D, Qu C, Chen H,et al. 2021. Tectonic and geometric control on fault kinematics of the 2021 MW7.3 Maduo(China)earthquake inferred from interseismic, coseismic, and postseismic InSAR observations[J]. Geophysical Research Letters, 48(18): 1-12. |
[1] | LI Chuan-you, SUN Kai, MA Jun, LI Jun-jie, LIANG Ming-jian, FANG Li-hua. THE 2022 M6.8 LUDING EARTHQUAKE: A COMPLICATED EVENT BY FAULTING OF THE MOXI SEGMENT OF THE XIANSHUIHE FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1648-1666. |
[2] | DENG Wen-ze, LIU Jie, YANG Zhi-gao, SUN Li, ZHANG Xue-mei. PRELIMINARY ANALYSIS FOR RUPTURE PROCESS OF THE MAY 22TH, 2021, MADOI(QINGHAI) MS7.4 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 1059-1070. |
[3] | YAO Wen-qian, WANG Zi-jun, LIU-ZENG Jing, LIU Xiao-li, HAN Long-fei, SHAO Yan-xiu, WANG Wen-xin, XU Jing, QIN Ke-xin, GAO Yun-peng, WANG Yan, LI Jin-yang, ZENG Xian-yang. DISCUSSION ON COSEISMIC SURFACE RUPTURE LENGTH OF THE 2021 MW7.4 MADOI EARTHQUAKE, QINGHAI, CHINA [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 541-559. |
[4] | SHAO Yan-xiu, LIU-ZENG Jing, GAO Yun-peng, WANG Wen-xin, YAO Wen-qian, HAN Long-fei, LIU Zhi-jun, ZOU Xiao-bo, WANG Yan, LI Yun-shuai, LIU Lu. COSEISMIC DISPLACEMENT MEASUREMENT AND DISTRIBUTED DEFORMATION CHARACTERIZATION: A CASE OF 2021 MW7.4 MADOI EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 506-523. |
[5] | HAN Long-fei, LIU-ZENG Jing, YAO Wen-qian, WANG Wen-xin, LIU Xiao-li, GAO Yun-peng, SHAO Yan-xiu, LI Jin-yang. DETAILED MAPPING OF THE SURFACE RUPTURE NEAR THE EPICENTER SEGMENT OF THE 2021 MADOI MW7.4 EARTHQUAKE AND DISCUSSION ON DISTRIBUTED RUPTURE IN THE STEP-OVER [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 484-505. |
[6] | GAI Hai-long, LI Zhi-min, YAO Sheng-hai, LI Xin. PRELIMINARY INVESTIGATION AND RESEARCH ON SURFACE RUPTURE CHARACTERISTICS OF THE 2022 QINGHAI MENYUAN MS6.9 EARTHQUAKE [J]. SEISMOLOGY AND EGOLOGY, 2022, 44(1): 238-255. |
[7] | LI Zhi-min, LI Wen-qiao, LI Tao, XU Yue-ren, SU Peng, GUO Peng, SUN Hao-yue, HA Guang-hao, CHEN Gui-hua, YUAN Zhao-de, LI Zhong-wu, LI Xin, YANG Li-chen, MA Zhen, YAO Sheng-hai, XIONG Ren-wei, ZHANG Yan-bo, GAI Hai-long, YIN Xiang, XU Wei-yang, DONG Jin-yuan. SEISMOGENIC FAULT AND COSEISMIC SURFACE DEFORMATION OF THE MADUO MS7.4 EARTHQUAKE IN QINGHAI, CHINA: A QUICK REPORT [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 722-737. |
[8] | MA Wen-tao, XU Chang-peng, ZHANG Xin-dong, XU Xi-wei, LI Hai-ou, YUAN Jing-li. STUDY ON THE RELATIONSHIP BETWEEN THE RESERVOIR-INDUCED SEISMICITY AT ZIPINGPU RESERVOIR AND THE MS 8.0 WENCHUAN EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2011, 33(1): 175-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||