SEISMOLOGY AND GEOLOGY ›› 2022, Vol. 44 ›› Issue (2): 428-447.DOI: 10.3969/j.issn.0253-4967.2022.02.010
• Research paper • Previous Articles Next Articles
WANG Bo1,2)(), ZHOU Yong-sheng1),*(), ZHONG Jun2), HU Xiao-jing3), ZHANG Xiang3), ZHOU Qing-yun3), LI Xu-mao2)
Received:
2021-03-15
Revised:
2021-06-07
Online:
2022-04-20
Published:
2022-06-14
Contact:
ZHOU Yong-sheng
王博1,2)(), 周永胜1),*(), 钟骏2), 胡小静3), 张翔3), 周青云3), 李旭茂2)
通讯作者:
周永胜
作者简介:
王博, 男, 1984年生, 现为中国地震局地质研究所构造地质专业在读博士研究生, 主要研究方向为构造物理实验及流体动力学, 电话: 010-59959322, E-mail: wangbo313@163.com。
基金资助:
CLC Number:
WANG Bo, ZHOU Yong-sheng, ZHONG Jun, HU Xiao-jing, ZHANG Xiang, ZHOU Qing-yun, LI Xu-mao. GEOCHEMICAL CHARACTERISTICS OF SOIL GAS IN ACTIVE FAULT ZONE IN NORTHWEST YUNNAN AND ITS ENLIGHTENMENT TO FAULT ACTIVITY[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 428-447.
王博, 周永胜, 钟骏, 胡小静, 张翔, 周青云, 李旭茂. 滇西北断裂带土壤气地球化学特征及对断层活动性的启示[J]. 地震地质, 2022, 44(2): 428-447.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.02.010
测线编号 | 测线名称 | 断层编号 | 断层名称 | 气体组分 | 最大值 | 最小值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|---|---|
Ⅰ | 寅街 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 142.34 | 2.85 | 43.92 | 45.64 |
H2/ppm | 62.52 | 3.61 | 15.6 | 16.09 | ||||
CO2/% | 1.88 | 0.25 | 0.62 | 0.45 | ||||
Ⅱ | 羊旺村 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 37.87 | 15.35 | 25.54 | 6.89 |
H2/ ppm | 310.25 | 11.05 | 96.04 | 83.34 | ||||
CO2/% | 4.04 | 0.5 | 2.24 | 1.2 | ||||
Ⅲ | 蝴蝶泉 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 25.32 | 7.4 | 16.74 | 5.79 |
H2/ ppm | 44.71 | 5.13 | 23.08 | 13.61 | ||||
CO2/% | 0.99 | 0.43 | 0.72 | 0.14 | ||||
Ⅳ | 牛街 | F2 | 鹤庆-洱源断裂带 | Rn/kBq·m-3 | 93.61 | 16.48 | 43.52 | 23.84 |
H2/ ppm | 17.9 | 0.72 | 6.37 | 4.54 | ||||
CO2/% | 0.89 | 0.16 | 0.41 | 0.21 | ||||
Ⅴ | 后箐 | F6 | 龙蟠-乔后断裂 | Rn/kBq·m-3 | 81.75 | 11.71 | 37.29 | 21.52 |
H2/ ppm | 193.33 | 29.19 | 75.88 | 41.19 | ||||
CO2/% | 1.11 | 0.19 | 0.57 | 0.33 | ||||
Ⅵ | 九河 | F6 | 龙蟠-乔后断裂 | Rn/kBq·m-3 | 34.84 | 4.89 | 12.73 | 8 |
H2/ ppm | 93.64 | 2.34 | 30.28 | 26.85 | ||||
CO2/% | 1.6 | 0.13 | 0.77 | 0.48 | ||||
Ⅶ | 束河 | F7 | 玉龙雪山东麓断裂 | Rn/kBq·m-3 | 63.23 | 1.93 | 25.83 | 16.27 |
H2/ ppm | 85.81 | 7.29 | 37.13 | 30.9 | ||||
CO2/% | 0.63 | 0.19 | 0.36 | 0.14 | ||||
Ⅷ | 玉湖 | F7 | 玉龙雪山东麓断裂 | Rn/kBq·m-3 | 51.33 | 7.71 | 23.41 | 10.73 |
H2/ ppm | 19.65 | 3.45 | 10.14 | 5.22 | ||||
CO2/% | 1.14 | 0.43 | 0.71 | 0.23 | ||||
Ⅸ | 达瓦 | F2 | 鹤庆-洱源断裂带 | Rn/kBq·m-3 | 25.38 | 7.65 | 15.77 | 4.88 |
H2/ ppm | 99.7 | 6.66 | 25.79 | 25.93 | ||||
CO2/% | 1.8 | 0.09 | 0.49 | 0.46 | ||||
Ⅹ | 干塘子 | F5 | 丽江-剑川断裂 | Rn/kBq·m-3 | 168.32 | 64.38 | 87.12 | 28.32 |
H2/ ppm | 7.72 | 1.08 | 3.55 | 1.93 | ||||
CO2/% | 0.97 | 0.32 | 0.55 | 0.18 | ||||
Ⅺ | 虎跳峡 | F8 | 德钦-中甸-大具断裂 | Rn/Bq·L-1 | 6.18 | 2.13 | 4.64 | 1.18 |
H2/ ppm | 429 | 1.98 | 71.01 | 125.08 | ||||
CO2/% | 0.36 | 0.07 | 0.17 | 0.09 | ||||
Ⅻ | 恩努 | F8 | 德钦-中甸-大具断裂 | Rn/kBq·m-3 | 24.32 | 0.12 | 6.78 | 7.61 |
H2/ ppm | 53.8 | 1.22 | 24.36 | 13.48 | ||||
CO2/% | 1.6 | 0.06 | 0.33 | 0.39 | ||||
XⅢ | 龙潭 | F4 | 程海断裂 | Rn/kBq·m-3 | 61.7 | 3.22 | 29.73 | 16.13 |
H2/ ppm | 74.59 | 1.88 | 13.66 | 18.86 | ||||
CO2/% | 0.73 | 0.16 | 0.39 | 0.2 | ||||
XⅣ | 秧草箐 | F4 | 程海断裂 | Rn/kBq·m-3 | 72.7 | 12.45 | 32.43 | 16.72 |
H2/ ppm | 102.5 | 17.58 | 70.76 | 32.28 | ||||
CO2/% | 1.23 | 0.12 | 0.33 | 0.34 |
Table1 The gas concentration of survey lines in the study area
测线编号 | 测线名称 | 断层编号 | 断层名称 | 气体组分 | 最大值 | 最小值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|---|---|
Ⅰ | 寅街 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 142.34 | 2.85 | 43.92 | 45.64 |
H2/ppm | 62.52 | 3.61 | 15.6 | 16.09 | ||||
CO2/% | 1.88 | 0.25 | 0.62 | 0.45 | ||||
Ⅱ | 羊旺村 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 37.87 | 15.35 | 25.54 | 6.89 |
H2/ ppm | 310.25 | 11.05 | 96.04 | 83.34 | ||||
CO2/% | 4.04 | 0.5 | 2.24 | 1.2 | ||||
Ⅲ | 蝴蝶泉 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 25.32 | 7.4 | 16.74 | 5.79 |
H2/ ppm | 44.71 | 5.13 | 23.08 | 13.61 | ||||
CO2/% | 0.99 | 0.43 | 0.72 | 0.14 | ||||
Ⅳ | 牛街 | F2 | 鹤庆-洱源断裂带 | Rn/kBq·m-3 | 93.61 | 16.48 | 43.52 | 23.84 |
H2/ ppm | 17.9 | 0.72 | 6.37 | 4.54 | ||||
CO2/% | 0.89 | 0.16 | 0.41 | 0.21 | ||||
Ⅴ | 后箐 | F6 | 龙蟠-乔后断裂 | Rn/kBq·m-3 | 81.75 | 11.71 | 37.29 | 21.52 |
H2/ ppm | 193.33 | 29.19 | 75.88 | 41.19 | ||||
CO2/% | 1.11 | 0.19 | 0.57 | 0.33 | ||||
Ⅵ | 九河 | F6 | 龙蟠-乔后断裂 | Rn/kBq·m-3 | 34.84 | 4.89 | 12.73 | 8 |
H2/ ppm | 93.64 | 2.34 | 30.28 | 26.85 | ||||
CO2/% | 1.6 | 0.13 | 0.77 | 0.48 | ||||
Ⅶ | 束河 | F7 | 玉龙雪山东麓断裂 | Rn/kBq·m-3 | 63.23 | 1.93 | 25.83 | 16.27 |
H2/ ppm | 85.81 | 7.29 | 37.13 | 30.9 | ||||
CO2/% | 0.63 | 0.19 | 0.36 | 0.14 | ||||
Ⅷ | 玉湖 | F7 | 玉龙雪山东麓断裂 | Rn/kBq·m-3 | 51.33 | 7.71 | 23.41 | 10.73 |
H2/ ppm | 19.65 | 3.45 | 10.14 | 5.22 | ||||
CO2/% | 1.14 | 0.43 | 0.71 | 0.23 | ||||
Ⅸ | 达瓦 | F2 | 鹤庆-洱源断裂带 | Rn/kBq·m-3 | 25.38 | 7.65 | 15.77 | 4.88 |
H2/ ppm | 99.7 | 6.66 | 25.79 | 25.93 | ||||
CO2/% | 1.8 | 0.09 | 0.49 | 0.46 | ||||
Ⅹ | 干塘子 | F5 | 丽江-剑川断裂 | Rn/kBq·m-3 | 168.32 | 64.38 | 87.12 | 28.32 |
H2/ ppm | 7.72 | 1.08 | 3.55 | 1.93 | ||||
CO2/% | 0.97 | 0.32 | 0.55 | 0.18 | ||||
Ⅺ | 虎跳峡 | F8 | 德钦-中甸-大具断裂 | Rn/Bq·L-1 | 6.18 | 2.13 | 4.64 | 1.18 |
H2/ ppm | 429 | 1.98 | 71.01 | 125.08 | ||||
CO2/% | 0.36 | 0.07 | 0.17 | 0.09 | ||||
Ⅻ | 恩努 | F8 | 德钦-中甸-大具断裂 | Rn/kBq·m-3 | 24.32 | 0.12 | 6.78 | 7.61 |
H2/ ppm | 53.8 | 1.22 | 24.36 | 13.48 | ||||
CO2/% | 1.6 | 0.06 | 0.33 | 0.39 | ||||
XⅢ | 龙潭 | F4 | 程海断裂 | Rn/kBq·m-3 | 61.7 | 3.22 | 29.73 | 16.13 |
H2/ ppm | 74.59 | 1.88 | 13.66 | 18.86 | ||||
CO2/% | 0.73 | 0.16 | 0.39 | 0.2 | ||||
XⅣ | 秧草箐 | F4 | 程海断裂 | Rn/kBq·m-3 | 72.7 | 12.45 | 32.43 | 16.72 |
H2/ ppm | 102.5 | 17.58 | 70.76 | 32.28 | ||||
CO2/% | 1.23 | 0.12 | 0.33 | 0.34 |
断裂带名称 | 测线 | 测线所在 断裂段位置 | 第四纪位错幅度 /m | 断裂位错速率/mm·a-1 | ||
---|---|---|---|---|---|---|
垂直 | 水平 | 时 代 | ||||
红河断裂 | 蝴蝶泉 | 苍山东麓北段 | 5.2 | <1.5 | 晚更新世以来 | |
羊旺村 | 凤仪—定西岭 | <2 | 4 | 晚更新世以来 | ||
寅街 | 弥渡盆地 | 600 | 0.8 | 0.4 | 中更新世以来 | |
龙蟠-乔后断裂 | 后箐 | 剑川盆地 | 1 000~1 100 | 2 | 0.76 | 中更新世以来 |
九河 | 九河盆地 | 700~800 | 0.31 | 早更新世以来 | ||
鹤庆-洱源断裂 | 牛街 | 洱源盆地 | 1 250 | 1.3~1.7 | 中更新世以来 | |
达瓦 | 1 300 | 晚更新世以来 | ||||
玉龙雪山东麓断裂 | 束河 | 丽江盆地 | 1 200 | 0.84 | 0.70 | 早更新世时期 |
玉湖 | 丽江盆地北部区 | 0.84 | 0.70 | 早更新世时期 | ||
丽江-剑川断裂 | 干塘子 | 1.8 | 晚更新世以来 |
Table2 The characteristics and dislocation rate of the active faults in northwest of Yunnan, China
断裂带名称 | 测线 | 测线所在 断裂段位置 | 第四纪位错幅度 /m | 断裂位错速率/mm·a-1 | ||
---|---|---|---|---|---|---|
垂直 | 水平 | 时 代 | ||||
红河断裂 | 蝴蝶泉 | 苍山东麓北段 | 5.2 | <1.5 | 晚更新世以来 | |
羊旺村 | 凤仪—定西岭 | <2 | 4 | 晚更新世以来 | ||
寅街 | 弥渡盆地 | 600 | 0.8 | 0.4 | 中更新世以来 | |
龙蟠-乔后断裂 | 后箐 | 剑川盆地 | 1 000~1 100 | 2 | 0.76 | 中更新世以来 |
九河 | 九河盆地 | 700~800 | 0.31 | 早更新世以来 | ||
鹤庆-洱源断裂 | 牛街 | 洱源盆地 | 1 250 | 1.3~1.7 | 中更新世以来 | |
达瓦 | 1 300 | 晚更新世以来 | ||||
玉龙雪山东麓断裂 | 束河 | 丽江盆地 | 1 200 | 0.84 | 0.70 | 早更新世时期 |
玉湖 | 丽江盆地北部区 | 0.84 | 0.70 | 早更新世时期 | ||
丽江-剑川断裂 | 干塘子 | 1.8 | 晚更新世以来 |
[1] | 车用太, 刘耀炜, 何钄. 2015. 断层带土壤气中H2观测: 探索地震短临预报的新途径[J]. 地震, 35(4): 1-10. |
CHE Yong-tai, LIU Yao-wei, HE Lan. 2015. Hydrogen monitoring in fault zone soil gas: A new approach to short/immediate earthquake prediction[J]. Earthquake, 35(4): 1-10. (in Chinese) | |
[2] | 车用太, 鱼金子, 张培仁, 等. 2002. H2与He的映震灵敏性及其干扰初析[J]. 地震, 22(2): 94-103. |
CHE Yong-tai, YU Jin-zi, ZHANG Pei-ren,et al. 2002. The preliminary analysis of earthquake-reflecting sensitivity and interference of H2 and He[J]. Earthquake, 22(2): 94-103. (in Chinese) | |
[3] | 车用太, 张大维, 鱼金子, 等. 1995. 断层带土壤气的映震效能与地震短期预报[J]. 中国地震, 11(4): 374-380. |
CHE Yong-tai, ZHANG Da-wei, YU Jin-zi,et al. 1995. Reflective capacity of soil gas in fault zone to earthquake and short-term prediction[J]. Earthquake Research in China, 11(4): 374-380. (in Chinese) | |
[4] | 邓起东, 冉勇康, 杨晓平, 等. 2007. 中国活动构造图(1︰400万) [CM]. 北京: 地震出版社. |
DENG Qi-dong, RAN Yong-kang, YANG Xiao-ping, et al. 2007. Map of Active Tectonics in China(1︰4000000)[CM]. Seismological Press, Beijing. (in Chinese) | |
[5] | 杜建国, 李圣强, 刘连柱, 等. 1999. 五大连池火山区气体地球化学特征[J]. 地球化学, 28(2): 171-176. |
DU Jian-guo, LI Sheng-qiang, LIU Lian-zhu,et al. 1999. Geochemistry of gases from Wudalianchi volcanic district, northeastern China[J]. Geochimica, 28(2): 171-176. (in Chinese) | |
[6] | 杜建国, 宇文欣, 李圣强, 等. 1998. 八宝山断裂带逸出氡的地球化学特征及其映震效能[J]. 地震, 18(2): 155-162. |
DU Jian-guo, YU Wen-xin, LI Sheng-qiang,et al. 1998. The geochemical characteristics of escaped radon from the Babaoshan fault zone and its earthquake reflecting effect[J]. Earthquake, 18(2): 155-162. (in Chinese) | |
[7] | 国家地震局地质研究所, 云南省地震局. 1990. 滇西北地区活动断裂[M]. 北京: 地震出版社. |
Institute of Geology, State Seismological Bureau, Seismological Bureau of Yunnan Province. 1990. A Monograph of Active Faults in the Northwest Yunnan Region[M]. Seismological Press, Beijing. (in Chinese) | |
[8] | 虢顺民, 计凤桔, 向宏发, 等. 2001. 红河活动断裂带[M]. 北京: 海洋出版社. |
GUO shun-min, JI Feng-ju, XIANG Hong-fa,et al. 2001. The Honghe Active Fault Zone[M]. China Ocean Press, Beijing. (in Chinese) | |
[9] | 韩竹军, 向宏发, 虢顺民. 2004. 滇西北丽江盆地北部区第四纪时期的左旋剪切拉张[J]. 科学通报, 50(4): 356-362. |
HAN Zhu-jun, XIANG Hong-fa, GUO Shun-min. 2004. Left-handed shear extension in the Quaternary period in the northern part of the Lijiang Basin, northwestern Yunnan[J]. Chinese Science Bulletin, 50(4): 356-362.
DOI URL |
|
[10] | 黄小巾, 吴中海, 李家存, 等. 2014. 滇西北裂陷带的构造地貌特征与第四纪构造活动性[J]. 地质通报, 33(4): 578-593. |
HUANG Xiao-jin, WU Zhong-hai, LI Jia-cun,et al. 2014. Tectonic geomorphology and Quaternary tectonic activity in the northwest Yunnan rift zone[J]. Geological Bulletin of China, 33(4): 578-593. (in Chinese) | |
[11] | 金之钧, 张刘平, 曾溅辉, 等. 2002. 东营凹陷与幔源富CO2流体有关的复合成因烷烃[J]. 科学通报, 47(16): 1276-1280. |
JIN Zhi-jun, ZHANG Liu-ping, ZENG Jian-hui,et al. 2002. Multi-origin alkanes related to CO2-rich mantle-drived fluid in Dongying Sag, Bohai Bay Basin[J]. Chinese Science Bulletin, 47(16): 1276-1280. (in Chinese) | |
[12] | 李营, 杜建国, 王富宽, 等. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报, 31(1): 82-91. |
LI Ying, DU Jian-guo, WANG Fu-kuan,et al. 2009. Geochemical characteristics of soil gas in Yanqing-Huailai Basin[J]. Acta Seismological Sinica, 31(1): 82-91. (in Chinese) | |
[13] | 上官志冠. 1988. 滇西实验场区主要活动断裂地球化学特征[J]. 地震地质, 10(4): 134-142. |
SHANGGUAN Zhi-guan. 1988. Geochemical characteristics of the main active faults in western Yunnan earthquake prediction test site[J]. Seismology and Geology, 10(4): 134-142. (in Chinese) | |
[14] | 上官志冠. 1989. 滇西地区断层气体成因研究[J]. 中国地震, 5(2): 51-56. |
SHANGGUAN Zhi-guan. 1989. A study on the origin of the fault gas in west Yunnan Province[J]. Earthquake Research in China, 5(2): 51-56. (in Chinese) | |
[15] | 上官志冠, 霍卫国. 2001. 腾冲热海地热区逸出H2的δD值及其成因[J]. 科学通报, 46(15): 1316-1320. |
SHANGGUAN Zhi-guan, HUO Wei-guo. 2001. The δD values of H2 in the geothermal region of Tengchong Rehai and its genesis[J]. Chinese Science Bulletin, 46(15): 1316-1320. (in Chinese) | |
[16] | 邵济安, 赵谊, 陆永发, 等. 2010. 黑龙江省氢气释放与地震及断块构造关系的探讨[J]. 地学前缘, 17(5): 271-277. |
SHAO Ji-an, ZHAO Yi, LU Yong-fa,et al. 2010. The relation between H2 release and earthquake and block structure in Heilongjiang Province[J]. Earth Science Frontiers, 17(5): 271-277. (in Chinese) | |
[17] | 邵永新, 杨绪连, 李一兵. 2007. 海河隐伏断层探测中土壤气氡和气汞测量及其结果[J]. 地震地质, 29(3): 627-636. |
SHAO Yong-xin, YANG Xu-lian, LI Yi-bing. 2007. The result and measurement of soil gas radon and soil gas mercury in the exploration of Haihe hidden fault[J]. Seismology and Geology, 29(3): 627-636. (in Chinese) | |
[18] | 孙小龙, 邵志刚, 司学芸, 等. 2017. 断层带土壤氢气浓度测量及其影响因素[J]. 大地测量与地球动力学, 37(4): 436-440. |
SUN Xiao-long, SHAO Zhi-gang, SI Xue-yun,et al. 2017. Soil hydrogen concentration in fault zone: Analysis of corresponding influence factors[J]. Journal of Geodesy and Geodynamics, 37(4): 436-440. (in Chinese) | |
[19] | 孙小龙, 王广才, 邵志刚, 等. 2016. 海原断裂带土壤气与地下水地球化学特征研究[J]. 地学前缘, 23(3): 140-150. |
SUN Xiao-long, WANG Guang-cai, SHAO Zhi-gang,et al. 2016. Geochemical characteristics of emergent gas and groundwater in Haiyuan fault zone[J]. Earth Science Frontiers, 23(3): 140-150. (in Chinese) | |
[20] | 汪成民, 李宣瑚. 1991. 我国断层气测量在地震科学研究中的应用现状[J]. 中国地震, 7(2): 21-32. |
WANG Cheng-min, LI Xuan-hu. 1991. Applications of fracture-gas measurement to the earthquake studies in China[J]. Earthquake Research in China, 7(2): 21-32. (in Chinese) | |
[21] | 王先彬, 陈践发, 徐胜, 等. 1992. 地震区温泉气体的地球化学特征[J]. 中国科学(B 辑), 22(8): 849-854. |
WANG Xian-bin, CHEN Jian-fa, XU Sheng,et al. 1992. Geochemical characteristics of gases from hot spring in seismic region[J]. Science in China(Ser B), 22(8): 849-854. (in Chinese) | |
[22] | 王云, 冉华, 李其林, 等. 2019. 滇西北裂陷区地热及构造活动特征研究[J]. 矿物岩石地球化学通报, 38(5): 923-930. |
WANG Yun, RAN Hua, LI Qi-lin,et al. 2019. A study on characteristics of geothermal and tectonic activities in the northwest Yunnan rifting zone, western China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(5): 923-930. (in Chinese) | |
[23] | 徐锡伟, 韩竹军, 杨晓平, 等. 2016. 中国及邻近地区地震构造图[CM]. 北京: 地震出版社. |
XU Xi-wei, HAN Zhu-jun, YANG Xiao-ping, et al.al. 2016. Seismotectonic Map in China and Its Adjacent Regions[CM]. Seismological Press, Beijing. (in Chinese) | |
[24] | 徐彦, 杨晶琼, 苏有锦, 等. 2005. 云南地区地震精确定位及其构造意义分析[J]. 地震研究, 28(4): 340-344. |
XU Yan, YANG Jing-qiong, SU You-jin,et al. 2005. Analysis on accurate location of earthquakes in Yunnan area and its tectonic meaning[J]. Journal of Seismological Research, 28(4): 340-344. | |
[25] |
杨婷, 吴建平, 房立华, 等. 2014. 滇西地区地壳速度结构及其构造意义[J]. 地震地质, 36(2): 392-404. doi: 10.3969/j.issn.0253-4967.2014.02.010.
DOI |
YANG Ting, WU Jian-ping, FANG Li-hua,et al. 2014. 3-D crustal P-wave velocity structure in western Yunnan area and its tectonic implications[J]. Seismology and Geology, 36(2): 392-404. (in Chinese) | |
[26] | 云南省地震局. 2018. 云南第四纪活动断裂[M]. 北京: 地震出版社. |
Yunnan Earthquake Agency. 2018. Quaternary Active Faults in Yunnan Province[M]. Seismological Press, Beijing. (in Chinese) | |
[27] | 张培仁, 王基华, 孙凤民. 1993. 氢: 预报地震的灵敏元素[J]. 地震地质, 15(1): 69-77. |
ZHANG Pei-ren, WANG Ji-hua, SUN Feng-min. 1993. Hydrogen: A sensitive element to predictable earthquake[J]. Seismology and Geology, 15(1): 69-77. (in Chinese) | |
[28] | 赵振燊. 2012. 甘东南地震重点危险区主要活动断裂带断层气地球化学特征[D]. 兰州: 中国地震局兰州地震研究所: 1-66. |
ZHAO Zhen-shen. 2012. The geochemical characteristics on fault gas of main active faults in the earthquake risk area of Gannan and Longnan[D]. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou: 1-66. (in Chinese) | |
[29] | 周晓成, 郭文生, 杜建国, 等. 2007. 呼和浩特地区隐伏断层土壤气氡、 汞地球化学特征[J]. 地震, 27(1): 70-76. |
ZHOU Xiao-cheng, GUO Wen-sheng, DU Jian-guo,et al. 2007. The geochemical characteristics of radon and mercury in the soil gas of buried faults in the Hohhot district[J]. Earthquake, 27(1): 70-76. (in Chinese) | |
[30] | 周晓成, 王传远, 柴炽章, 等. 2011. 海原断裂带东南段土壤气体地球化学特征[J]. 地震地质, 33(1): 123-132. |
ZHOU Xiao-cheng, WANG Chuan-yuan, CHAI Chi-zhang,et al. 2011. The geochemical charateristics of soil gas in the southeastern part of Haiyuan Fault[J]. Seismology and Geology, 33(1): 123-132. (in Chinese) | |
[31] |
Annunziatellis A, Beaubien S E, Bigi S,et al. 2008. Gas migration along fault systems and through the vadose zone in the Latera caldera(central Italy): Implications for CO2 geological storage[J]. International Journal of Greenhouse Gas Control, 2(3): 353-372.
DOI URL |
[32] |
Baubron J C, Allard P, Sabroux J C,et al. 1991. Soil gas emanations as precursory indicators of volcanic eruptions[J]. Journal of the Geological Society, 148(3): 571-576.
DOI URL |
[33] |
Baubron J C, Rigo A, Toutain J P. 2002. Soil gas profiles as a tool to characterize active tectonic areas: The Jaut Pass example(Pyrenees, France)[J]. Earth and Planetary Science Letters, 196(1-2): 69-81.
DOI URL |
[34] |
Ciotoli G, Etiope G, Guerra M,et al. 1999. The detection of concealed faults in the Ofanto Basin using the correlation between soil gas fracture surveys[J]. Tectonophysics, 301(3-4): 321-332.
DOI URL |
[35] | Ciotoli G, Guerra M, Lombardi S,et al. 1998. Soil gas survey for tracing seismogenic faults: A case study in the Fucino Basin, central Italy[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 23781-23794. |
[36] | Ciotoli G, Lombardi S, Annunziatellis A. 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy[J]. Journal of Geophysical Research: Solid Earth, 112(B5): 2637-2655. |
[37] |
Dogan T, Mori T, Tsunomori F,et al. 2007. Soil H2 and CO2 surveys at several active faults in Japan[J]. Pure and Applied Geophysics, 164(12): 2449-2463.
DOI URL |
[38] |
Dogan T, Sumuno H, Nagao K,et al. 2006. Release of mantle helium from forearc region of the southwest Japan arc[J]. Chemical Geology, 233(3-4): 235-248.
DOI URL |
[39] |
Etiope G, Martinelli G. 2002. Migration of carrier and trace gases in the geosphere: An overview[J]. Physics of the Earth and Planetary Interiors, 129(3-4): 185-204.
DOI URL |
[40] |
Fang Z, Liu Y W, Yang D X,et al. 2018. Real-time hydrogen mud logging during the Wenchuan earthquake fault scientific drilling project(WFSD), holes 2 and 3 in SW China[J]. Geoscience Journal, 22(3): 453-464.
DOI URL |
[41] |
Fu C C, Yang T F, Walia V. 2005. Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan[J]. Geochemical Journal, 39(5): 427-439.
DOI URL |
[42] |
Giardini A, Subbarayudu G V, Melton C E. 1976. The emission of occluded gas from rocks as a function of stress: Its possible use as a tool for predicting earthquakes[J]. Geophysical Research Letters, 3(6): 355-358.
DOI URL |
[43] | Gold T, Soter S. 1980. The deep-earth-gas hypothesis[J]. Scientific American, 242(6): 154-161. |
[44] | Hauksson E, Goddard J G. 1981. Radon earthquake precursor studies in Iceland[J]. Journal of Geophysical Research: Solid Earth, 86(B8): 7037-7054. |
[45] | Hirose T, Kawagucci S, Suzuki K. 2011. Mechanoradical H2 generation during simulated faulting: Implications for an earthquake-driven subsurface biosphere[J]. Geophysical Research Letters, 39(17): 245-255. |
[46] |
Hong W L, Yang T F, Walia V,et al. 2010. Nitrogen as the carrier gas for helium emission along an active fault in NW Taiwan[J]. Applied Geochemistry, 25(4): 593-601.
DOI URL |
[47] | Huang J L, Zhao D P, Zheng S H. 2002. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China[J]. Journal of Geophysical Research: Solid Earth, 107(B10): ESE13-1-ESE13-14. |
[48] |
Kameda J, Saruwatari K, Tanaka H,et al. 2004. Mechanisms of hydrogen generation during the mechanochemical treatment of biotite within D2O media[J]. Earth, Planets and Space, 56(12): 1241-1245.
DOI URL |
[49] | Kameda J, Saruwatari K, Tanaka H. 2003. H2 generation in wet grinding of granite and single-crystal powders and implications for H2 concentration on active faults[J]. Geophysical Research Letters, 30(20): SDE10.1-SDE10.5. |
[50] |
Kennedy B M, Kharaka Y K, Evans W C,et al. 1997. Mantle fluids in the San Andreas fault system, California[J]. Science, 278(5341): 1278-1281.
DOI URL |
[51] |
King C Y. 1978. Radon emanation on San Andreas Fault[J]. Nature, 271(5645): 516-519.
DOI URL |
[52] | King C Y. 1980. Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes[J]. Journal of Geophysical Research: Solid Earth, 85(B6): 3065-3078. |
[53] |
King C Y, King B, Evans W C,et al. 1996. Spatial radon anomalies on active faults in California[J]. Applied Geochemistry, 11(4): 497-510.
DOI URL |
[54] |
King C Y, Zhang W, Zhang Z. 2006. Earthquake-induced groundwater and gas changes[J]. Pure and Applied Geophysics, 163(4): 633-645.
DOI URL |
[55] |
King C Y. 1984. Impulsive radon emanation on a creeping segment of the San Andreas Fault, California[J]. Pure and Applied Geophysics, 122(2-4): 340-352.
DOI URL |
[56] | Sato M, McGee K A. 1981. Continuous monitoring of hydrogen on the south flank of Mount St. Helens[J]. United States Geological Survey Professional Paper, 1250: 209-219. |
[57] |
Sato M, Sutton A, McGee K A. 1984. Anomalous hydrogen emissions from the San Andreas Fault observed at the Cienega Winery, central California[J]. Pure and Applied Geophysics, 122(2-4): 376-391.
DOI URL |
[58] |
Sugisaki R, Anno H, Adachi M,et al. 1980. Geochemical features of gases and rocks along active faults[J]. Geochemical Journal, 14(3): 101-112.
DOI URL |
[59] |
Sugisaki R, IDo M, Takeda H,et al. 1983. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity[J]. The Journal of Geology, 91(3): 239-258.
DOI URL |
[60] |
Sun X L, Si X Y, Xiang Y,et al. 2017. Soil mercury spatial variations in the fault zone and corresponding influence factors[J]. Terrestrial Atmospheric and Oceanic Sciences, 28(3): 283-294.
DOI URL |
[61] |
Sun X L, Yang P T, Xiang Y,et al. 2018. Across-fault distributions of radon concentrations in soil gas for different tectonic environments[J]. Geosciences Journal, 22(2): 227-239.
DOI URL |
[62] | Tanner A B. 1964. Radon migration in the ground: A review [G]// Adams J A S, Lowder W M(eds). Natural Radiation Environment. University of Chicago Press, Chicago, Illinois, USA: 161-190. |
[63] |
Toutain J P, Baubron J C. 1999. Gas geochemistry and seismotectonics: A review[J]. Tectonophysics, 304(1): 1-27.
DOI URL |
[64] |
Wakita H, Nakamura Y, Kita I,et al. 1980. Hydrogen release: New indicator of fault activity[J]. Science, 210(4466): 188-190.
PMID |
[65] |
Walia V, Lin S J, Fu C C,et al. 2010. Soil-gas monitoring: A tool for fault delineation studies along Hsinhua Fault(Tainan), southern Taiwan[J]. Applied Geochemistry, 25(4): 602-607.
DOI URL |
[66] |
Walia V, Yang T F, Lin S J,et al. 2013. Temporal variation of soil gas compositions for earthquake surveillance in Taiwan[J]. Radiation Measurements, 50: 154-159.
DOI URL |
[67] |
Wang D, He L, Shi X,et al. 2006. Release flux of mercury from different environmental surfaces in Chongqing, China[J]. Chemosphere, 64(11): 1845-1854.
DOI URL |
[68] |
Wiersberg T, Erzinger J. 2008. Origin and spatial distribution of gas at seismogenic depths of the San Andreas Fault from drill-mud gas analysis[J]. Applied Geochemistry, 23(6): 1675-1690.
DOI URL |
[69] |
Xiang Y, Sun X L, Liu D Y,et al. 2020. Spatial distribution of Rn, CO2, Hg, and H2 concentrations in soil gas across a thrust fault in Xinjiang, China[J]. Frontiers in Earth Science, 8:554924. doi: 10.3389/feart.2020.554924.
DOI |
[70] |
Yang T, Chou C, Chen C,et al. 2003. Exhalation of radon and its carrier gases in SW Taiwan[J]. Radiation Measurements, 36(1): 425-429.
DOI URL |
[71] |
Yang T, Fu C C, Walia V,et al. 2006. Seismo-geochemical variations in SW Taiwan: Multi-parameter automatic gas monitoring results[J]. Pure and Applied Geophysics, 163(4): 693-709.
DOI URL |
[72] |
Zhou X C, Chen Z, Cui Y J. 2016. Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan MS8.0 earthquake in western Sichuan, China[J]. Environmental Geochemistry and Health, 38(5): 1067-1082.
DOI URL |
[73] |
Zhou X, Du J G, Chen Z,et al. 2010. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake, southwestern China[J]. Geochemical Transactions, 11(5): 1-10.
DOI URL |
[74] | Zhu M, Zhou R, Yin D,et al. 2003. Stress emission of helium and argon in coal seams[J]. Science in China(Ser D), 46(6): 547-560. |
[1] | JIANG Yu-han, WANG Zi-si, LIU Jia-qi, LIANG Hui, ZHOU Qi-chao, GAO Xiao-qi. STATUS OF RESEARCH AND OBSERVATION ON UNDERGROUND FLUID HYDROGEN IN SEISMIC FAULT ZONES IN CHINA [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(3): 622-637. |
[2] | WANG Xi-long, LUO Yin-hua, JIN Xiu-ying, YANG Meng-yao, KONG Xiang-rui. GEOCHEMICAL CHARACTERISTICS OF SOIL GAS IN ACTIVE FAULT ZONE AND ITS IMPLICATION TO THE ADJUSTMENT OF REGIONAL STRESS FIELD IN THE SOUTHERN AREA OF LIAONING PROVINCE [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(3): 710-734. |
[3] | WANG Jiang, CHEN Zhi, ZHANG Fan, ZHANG Zhi-xiang, ZHANG Su-xin. PRELIMINARY STUDY ON CHARACTERISTICS OF SOIL GAS Rn AND CO2 DEGASSING IN THE MAIN FAULT ZONES OF XIONG'AN NEW AREA [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(3): 735-752. |
[4] | ZHANG Wen-liang, LI Ying, LIU Zhao-fei, HU Le, LU Chang, CHEN Zhi, HAN Xiao-kun. SPATIAL DISTRIBUTION CHARACTERISTICS OF SOIL GAS HE CONCENTRATION IN THE EASTERN LIUPANSHAN FAULT ZONE AND ITS RELATIONSHIP WITH TECTONIC ACTIVITY [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(3): 753-771. |
[5] | WANG Bo, CUI Feng-zhen, LIU-ZENG Jing, ZHOU Yong-sheng, XU Sheng, SHAO Yan-xiu. FAULT GAS OBSERVATION AND SURFACE RUPTURE FEATURE INTERPRETATION OF THE MS7.4 MADOI EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(3): 772-794. |
[6] | LI Xiao-ni, YANG Chen-yi, LI Gao-yang, FENG Xi-jie, HUANG Yin-di, LI Chen-xia, LI Miao, PEI Gen-di, WANG Wan-he. SHALLOW STRUCTURE AND LATE QUATERNARY ACTIVITIES OF BRANCH FAULTS ON THE NORTHERN SIDE OF THE WEINAN TABLELAND IN THE SOUTHEASTERN MARGIN OF THE WEIHE BASIN [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 484-499. |
[7] | JIANG Yu-han, GAO Xiao-qi, YANG Peng-tao, LIU Dong-ying, SUN Xiao-long, XIANG Yang, ZHU Cheng-ying, WANG Cheng-guo. GEOCHEMICAL CHARACTERISTICS OF SOIL GAS IN THE FAULT ZONES OF NORTH TIANSHAN, XINJIANG [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1597-1614. |
[8] | ZHU Cheng-ying, YAN Wei, MA Rong, LI Zhi-hai, WANG Cheng-guo, HUANG Jian-ming, ZHOU Xiao-cheng. GEOCHEMICAL CHARACTERIZATION OF FAULT GAS IN MACRO-SEISMIC INTENSITY AND AFTERSHOCK DISTRIBUTION OF JINGHE MS6.6 EARTHQUAKE ON AUGUST 9, 2017 [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(5): 1225-1239. |
[9] | QIN Jing-jing, LIU Bao-jin, WANG Zhi-cai, FENG Shao-ying, DENG Xiao-juan, HUA Xin-sheng, LI Qian. RESEARCH ON SHALLOW STRUCTURAL CHARACTERISTICS IN THE BANQUAN SEGMENT OF ANQIU-JUXIAN FAULT ZONE BASED ON SHALLOW SEISMIC REFLECTION PROFILING [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 349-362. |
[10] | YANG Chen-yi, LI Xiao-ni, FENG Xi-jie, ZHU Lin, LI Miao, ZHANG En-hui. THE LATE QUATERNARY AND PRESENT-DAY ACTIVITIES OF THE KOUZHEN-GUANSHAN FAULT ON THE NORTHERN BOUNDARY OF WEIHE GRABEN BASIN, CHINA [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 504-520. |
[11] | LU Bang-hua, WANG Ping, WANG Hui-ying, LAI Zhong-ping, DENG Zhi-hui, BI Li-si, WAN Wan-he. LATEST PROGRESS ON ACTIVITY OF HESHAN-MODAOMEN SEGMENT, XIJIANG FAULT [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(6): 1370-1384. |
[12] | MA Jun, ZHOU Ben-gang, WANG Ming-ming, AN Li-ke. GEOLOGICAL AND GEOMORPHIC EVIDENCES FOR THE HOLOCENE ACTIVITY OF THE NW ZHEDUOTANG BRANCH WITHIN THE XIANSHUIHE FAULT SYSTEM [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(5): 1021-1038. |
[13] | HE Fu-bing, XU Xi-wei, HE Zhen-jun, ZHANG Xiao-liang, LIU Li-yan, ZHANG Wei, WEI Bo, NI Jing-bo. RESEARCH ON NEOGENE-QUATERNARY STRATIGRAPHIC STRUCTURE AND SHALLOW TECTONIC FEATURES IN THE NORTH SECTION OF DAXING FAULT ZONE BASED ON SHALLOW SEISMIC REFLECTION PROFILING [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(4): 893-908. |
[14] | LIANG Ming-jian, CHEN Li-chun, RAN Yong-kang, LI Yan-bao, WANG Dong, GAO Shuai-po, HAN Ming-ming, ZENG Di. LATE-QUATERNARY ACTIVITY OF THE YALAHE FAULT OF THE XIANSHUIHE FAULT ZONE, EASTERN MARGIN OF THE TIBET PLATEAU [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(2): 513-525. |
[15] | XU Liang-xin, BIAN Ju-mei, HU Nan, TIAN Qin-hu, TIAN Wei-xin, DUAN Rui. THE ACTIVITY OF WESTERN LISHAN FAULT SINCE THE LATE PLEISTOCENE [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(3): 561-575. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||