SEISMOLOGY AND GEOLOGY ›› 2022, Vol. 44 ›› Issue (2): 297-312.DOI: 10.3969/j.issn.0253-4967.2022.02.002
• Research paper • Previous Articles Next Articles
YE Yu-hui1)(), WU Lei1),*(), WANG Yi-ping1), LOU Qian-qian2), CHEN Li-qi3), GAO Shi-bao1), LIN Xiu-bin1), CHENG Xiao-gan1), CHEN Han-lin1)
Received:
2021-02-25
Revised:
2021-06-15
Online:
2022-04-20
Published:
2022-06-14
Contact:
WU Lei
叶雨晖1)(), 吴磊1),*(), 王依平1), 楼谦谦2), 陈力琦3), 高石宝1), 林秀斌1), 程晓敢1), 陈汉林1)
通讯作者:
吴磊
作者简介:
叶雨晖, 女, 1995年生, 2021年于浙江大学获构造地质学专业硕士学位, 主要研究方向为青藏高原新生代构造演化, E-mail: yeyuhui007@163.com。
基金资助:
CLC Number:
YE Yu-hui, WU Lei, WANG Yi-ping, LOU Qian-qian, CHEN Li-qi, GAO Shi-bao, LIN Xiu-bin, CHENG Xiao-gan, CHEN Han-lin. LATE QUATERNARY ACTIVE TECTONICS OF THE NORTH ALTYN FAULT[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 297-312.
叶雨晖, 吴磊, 王依平, 楼谦谦, 陈力琦, 高石宝, 林秀斌, 程晓敢, 陈汉林. 北阿尔金断裂晚第四纪活动构造特征[J]. 地震地质, 2022, 44(2): 297-312.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.02.002
[1] | 崔军文. 1999. 阿尔金断裂系[M]. 北京: 地质出版社. |
CUI Jun-wen. 1999. The Altyn tagh Fault System[M]. Geological Publishing House, Beijing. (in Chinese) | |
[2] | 崔军文. 2011. 南阿尔金断裂的韧性剪切作用时代及其构造意义[J]. 岩石学报, 27(11): 3422-3434. |
CUI Jun-wen. 2011. Ductile shearing age of the south Altun Fault and its tectonic implications[J]. Acta Petrologica Sinica, 27(11): 3422-3434. (in Chinese) | |
[3] | 李海兵, 许志琴, 杨经绥, 等. 2007. 阿尔金断裂带最大累积走滑位移量: 900km?[J]. 地质通报, 26(10): 1288-1298. |
LI Hai-bing, XU Zhi-qin, YANG Jing-sui,et al. 2007. The maximum cumulative strike-slip displacement of the Altyn Tagh Fault: 900km?[J]. Geological Bulletin of China, 26(10): 1288-1298. (in Chinese) | |
[4] | 李海兵, 杨经绥, 许志琴, 等. 2006. 阿尔金断裂带对青藏高原北部生长、 隆升的制约[J]. 地学前缘, 13(4): 59-79. |
LI Hai-bing, YANG Jing-sui, XU Zhi-qin,et al. 2006. The constraint of the Altyn Tagh fault system to the growth and rise of the northern Tibetan plateau[J]. Earth Science Frontiers, 13(4): 59-79. (in Chinese) | |
[5] | 李雪梅, 张会平. 2017. 河流瞬时地貌: 特征、 过程及其构造-气候相互作用内涵[J]. 第四纪研究, 37(2): 416-430. |
LI Xue-mei, ZHANG Hui-ping. 2017. Transient fluvial landscape: Features, processes and its implication for tectonic-climate interaction[J]. Quaternary Sciences, 37(2): 416-430. (in Chinese) | |
[6] | 刘永江, Neubauer F, 葛肖虹, 等. 2007. 阿尔金断裂带年代学和阿尔金山隆升[J]. 地质科学, 42(1): 134-146. |
LIU Yong-jiang, Neubauer F, GE Xiao-hong,et al. 2007. Geochronology of the Altun fault zone and rising of the Altun Mountains[J]. Journal of Geology, 42(1): 134-146. (in Chinese) | |
[7] | 刘永江, 葛肖虹, Genser J, 等. 2003. 阿尔金断裂带构造活动的 40Ar/39Ar年龄证据[J]. 科学通报, 48(12): 1335-1341. |
LIU Yong-jiang, GE Xiao-hong, Genser J,et al. 2003. 40Ar/39Ar age evidence of tectonic activity in Altun fault zone[J]. Chinese Science Bulletin, 48(12): 1335-1341. (in Chinese) | |
[8] | 潘家伟, 李海兵, 孙知明, 等. 2015. 阿尔金断裂带新生代活动在柴达木盆地中的响应[J]. 岩石学报, 31(12): 3701-3712. |
PAN Jia-wei, LI Hai-bing, SUN Zhi-ming,et al. 2015. Tectonic responses in the Qaidam Basin induced by Cenozoic activities of the Altyn Tagh Fault[J]. Acta Petrologica Sinica, 31(12): 3701-3712. (in Chinese) | |
[9] | 邱江涛, 朱良玉, 王随随. 2018. 阿尔金断裂带中段现今构造形变模式的InSAR研究[J]. 大地测量与地球动力学, 38(8): 783-786. |
QIU Jiang-tao, ZHU Liang-yu, WANG Sui-sui. 2018. Study on the contemporary tectonic deformation pattern of the middle Altyn Tagh fault zone as reveal by InSAR measurements[J]. Journal of Geodesy and Geodynamics, 38(8): 783-786. (in Chinese) | |
[10] | 孙岳, 陈正乐, 陈柏林, 等. 2014. 阿尔金北缘EW向山脉新生代隆升剥露的裂变径迹证据[J]. 地球学报, 35(1): 67-75. |
SUN Yue, CHEN Zheng-le, CHEN Bo-lin,et al. 2014. Cenozoic uplift and denudation of the EW-trending range of northern Altun Mountains: Evidence from apatite fission track data[J]. Acta Geoscientica Sinica, 35(1): 67-75. (in Chinese) | |
[11] | 孙知明, 李海兵, 裴军令, 等. 2012. 阿尔金断裂走滑作用对青藏高原东北缘山脉形成的古地磁证据[J]. 岩石学报, 28(6): 1928-1936. |
SUN Zhi-ming, LI Hai-bing, PEI Jun-ling,et al. 2012. Strike-slip movement of the Altyn Tagh Fault and implications for mountain formation inferred from paleomagnetic data in northeastern Tibetan plateau[J]. Acta Petrologica Sinica, 28(6): 1928-1936. (in Chinese) | |
[12] | 王亚东, 郑建京, 孙国强, 等. 2015. 柴西北地区碎屑锆石裂变径迹年龄记录的阿尔金山早新生代隆升事件[J]. 吉林大学学报(地球科学版), 45(5): 1447-1459. |
WANG Ya-dong, ZHENG Jian-jing, SUN Guo-qiang,et al. 2015. Early Cenozoic uplift of Altun Mountains recorded by detrital zircon fission track age in northwestern Qaidam Basin[J]. Journal of Jilin University(Earth Science Edition), 45(5): 1447-1459. (in Chinese) | |
[13] | 肖安成, 吴磊, 李洪革, 等. 2013. 阿尔金断裂新生代活动方式及其与柴达木盆地的耦合分析[J]. 岩石学报, 29(8): 2826-2836. |
XIAO An-cheng, WU Lei, LI Hong-ge,et al. 2013. Tectonic processes of the Cenozoic Altyn Tagh Fault and its coupling with the Qaidam Basin, NW China[J]. Acta Petrologica Sinica, 29(8): 2826-2836. (in Chinese) | |
[14] | 徐锡伟, Tapponnier P, van der Woerd J, 等. 2003. 阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J]. 中国科学(D辑), 33(10): 967-974. |
XU Xi-wei, Tapponnier P, van der Woerd J,et al. 2003. Late Quaternary sinistral strike slip rate of Altyn Tagh fault zone and its tectonic transformation model[J]. Science in China(Ser D), 33(10): 967-974. (in Chinese) | |
[15] | 张会平. 2006. 青藏高原东缘、 东北缘典型地区晚新生代地貌过程研究[D]. 北京: 中国地质大学. |
ZHANG Hui-ping. 2006. Late Cenozoic geomorphological processes in the eastern and northeastern margins of the Tibetan plateau[D]. China University of Geosciences, Beijing. (in Chinese) | |
[16] |
Bendick R, Bilham R, Freymueller J,et al. 2000. Geodetic evidence for a low slip rate in the Altyn Tagh fault system[J]. Nature, 404(6773): 69-72.
DOI URL |
[17] |
Chen Y, Li S, Li B. 2012. Slip rate of the Aksay segment of Altyn Tagh Fault revealed by OSL dating of river terraces[J]. Quaternary Geochronology, 10: 291-299.
DOI URL |
[18] |
Chen Y, Sung Q, Cheng K. 2003. Along-strike variations of morphotectonic features in the western foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis[J]. Geomorphology, 56(1-2): 109-137.
DOI URL |
[19] |
Cheng F, Guo Z, Jenkins H S,et al. 2015. Initial rupture and displacement on the Altyn Tagh Fault, northern Tibetan plateau: Constraints based on residual Mesozoic to Cenozoic strata in the western Qaidam Basin[J]. Geosphere, 11(3): 921-942.
DOI URL |
[20] | Cheng F, Jolivet M, Fu S,et al. 2016. Large-scale displacement along the Altyn Tagh Fault(North Tibet)since its Eocene initiation: Insight from detrital zircon U-Pb geochronology and subsurface data[J]. Tectonophysics, 677-678: 261-279. |
[21] |
Cowgill E. 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China[J]. Earth and Planetary Science Letters, 254(3-4): 239-255.
DOI URL |
[22] |
Cowgill E, Arrowsmith J R, Yin A,et al. 2004. The Akato Tagh Bend along the Altyn Tagh Fault, northwest Tibet 1: Smoothing by vertical-axis rotation and the effect of topographic stresses on bend-flanking faults[J]. Geological Society of America Bulletin, 116(11-12): 1423-1442.
DOI URL |
[23] |
Cowgill E, Gold R D, Chen X,et al. 2009. Low Quaternary slip rate reconciles geodetic and geologic rates along the AltynTagh Fault, northwestern Tibet[J]. Geology, 37(7): 647-650.
DOI URL |
[24] | Cowgill E, Yin A, Harrison T M,et al. 2003. Reconstruction of the Altyn Tagh Fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 108(B7): ETG 7-1-7-28. |
[25] |
Cowgill E, Yin A, Wang X,et al. 2000. Is the North Altyn Fault part of a strike-slip duplex along the Altyn Tagh fault system?[J]. Geology, 28(3): 255-258.
DOI URL |
[26] | Dai S, Dai W, Zhao Z,et al. 2017. Timing, displacement and growth pattern of the Altyn Tagh Fault: A review[J]. Acta Geoloica Sinica (English Edition), 91(2): 669-687. |
[27] |
Davis W M. 1899. The geographical cycle[J]. The Geographical Journal, 14(5): 481-504.
DOI URL |
[28] | Dayem K E, Houseman G A, Molnar P. 2009. Localization of shear along a lithospheric strength discontinuity: Application of a continuous deformation model to the boundary between Tibet and the Tarim Basin[J]. Tectonics, 28(3): C3002. |
[29] |
Elliott A J, Oskin M E, Liu-Zeng J,et al. 2018. Persistent rupture terminations at a restraining bend from slip rates on the eastern Altyn Tagh Fault[J]. Tectonophysics, 733: 57-72.
DOI URL |
[30] | Elliott J R, Biggs J, Parsons B,et al. 2008. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays[J]. Geophysical Research Letters, 35(12): L12309. |
[31] |
Gao M, Zeilinger G, Xu X,et al. 2013. DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan plateau, China[J]. Geomorphology, 190: 61-72.
DOI URL |
[32] | Gold R D, Cowgill E, Arrowsmith J R,et al. 2009. Riser diachroneity, lateral erosion, and uncertainty in rates of strike-slip faulting: A case study from Tuzidun along the Altyn Tagh Fault, NW China[J]. Journal of Geophysical Research: Solid Earth, 114(B4): B04401. |
[33] | Hack J T. 1973. Stream-profile analysis and stream-gradient index[J]. Journal of Research of US Geological Survey, 1(4): 421-429. |
[34] |
Han N, Shan X, Song X,et al. 2018. Paleoseismic study on the Pingdingshan-Annanba segments of the Altyn Tagh Fault based on offset clusters[J]. Journal of Structural Geology, 115: 19-27.
DOI URL |
[35] |
Kang W, Xu X, Oskin M E,et al. 2019. Characteristic slip distribution and earthquake recurrence along the eastern Altyn Tagh Fault revealed by high-resolution topographic data[J]. Geosphere, 16(1): 392-406.
DOI URL |
[36] | Kirby E, Whipple K X, Tang W,et al. 2003. Distribution of active rock uplift along the eastern margin of the Tibetan plateau: Inferences from bedrock channel longitudinal profiles[J]. Journal of Geophysical Research: Solid Earth, 108(B4): ETG16-1-16-24. |
[37] |
Li Y, Shan X, Qu C,et al. 2018. Crustal deformation of the Altyn Tagh Fault based on GPS[J]. Journal of Geophysical Research: Solid Earth, 123(11): 10309-10322.
DOI URL |
[38] | Liu C, Zhao C, Ji L,et al. 2018. Interseismic deformation across the eastern Altyn Tagh Fault from InSAR measurements[C]// Proceedings of the ISPRS Technical Commission III Midterm Symposium on “Developments, Technologies and Applications in Remote Sensing”: 1230-1234. |
[39] |
Liu J, Ren Z, Zheng W,et al. 2020. Late Quaternary slip rate of the Aksay segment and its rapidly decreasing gradient along the Altyn Tagh Fault[J]. Geosphere, 16(6): 1538-1557.
DOI URL |
[40] | Mériaux A S, Ryerson F J, Tapponnier P,et al. 2004. Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh[J]. Journal of Geophysical Research: Solid Earth, 109(B6): B06401. |
[41] |
Meyer B, Tapponnier P, Bourjot L,et al. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau[J]. Geophysical Journal International, 135(1): 1-47.
DOI URL |
[42] | Monteiro K D A, Missura R, Correa A C D B. 2010. Application of the Hack index-or stream length-gradient index(SL index)-to the Tracunhaém River watershed, Pernambuco, Brazil[J]. Geociências, 29(4): 533-539. |
[43] |
Pérez-Peña J V, Azañón J M, Azor A,et al. 2009. Spatial analysis of stream power using GIS: SLK anomaly maps[J]. Earth Surface Processes and Landforms, 34(1): 16-25.
DOI URL |
[44] |
Shao Y, Liu-Zeng J, Oskin M E,et al. 2018. Paleoseismic investigation of the Aksay restraining double bend, Altyn Tagh Fault, and its implication for barrier-breaching ruptures[J]. Journal of Geophysical Research: Solid Earth, 123(5): 4307-4330.
DOI URL |
[45] |
Sinha S K, Parker G. 1996. Causes of concavity in longitudinal profiles of rivers[J]. Water Resources Research, 32(5): 1417-1428.
DOI URL |
[46] |
Sklar L S, Dietrich W E. 2001. Sediment and rock strength controls on river incision into bedrock[J]. Geology, 29(12): 1087-1090.
DOI URL |
[47] |
Strahler A N. 1952. Hypsometric(area-altitude)analysis of erosional topography[J]. Geological Society of America Bulletin, 63(11): 1117-1142.
DOI URL |
[48] |
Taylor M, Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 5(3): 199-214.
DOI URL |
[49] |
Walcott R C, Summerfield M A. 2008. Scale dependence of hypsometric integrals: An analysis of southeast African Basins[J]. Geomorphology, 96(1-2): 174-186.
DOI URL |
[50] | Whipple K X, Tucker G E. 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. |
[51] | Wobus C W, Whipple K X, Kirby E,et al. 2006. Tectonics from topography: Procedure, promise, and pitfalls[J]. Geological Society of America Bulletin, 398(4): 55-74. |
[52] |
Wu L, Lin X, Cowgill E,et al. 2019. Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan plateau[J]. Geological Society of America Bulletin, 131(7-8): 1157-1178.
DOI URL |
[53] |
Wu L, Xiao A, Wang L,et al. 2012. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh Fault, NW China: Insight into the rising mechanism of the Altyn Mountains during the Cenozoic[J]. Science China Earth Sciences, 55(6): 926-939.
DOI URL |
[54] |
Wu L, Xiao A, Yang S. 2014. Impact of wind erosion on detecting active tectonics from geomorphic indexes in extremely arid areas: A case study from the Hero Range, Qaidam Basin, NW China[J]. Geomorphology, 224:39-54.
DOI URL |
[55] |
Xu C, Zhu S. 2019. Temporal and spatial movement characteristics of the Altyn Tagh Fault inferred from 21 years of InSAR observations[J]. Journal of Geodesy, 93(8): 1147-1160.
DOI URL |
[56] |
Yin A, Rumelhart P E, Butler R,et al. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 114(10): 1257-1295.
DOI URL |
[57] |
Yuan Z, Liu-Zeng J, Wang W,et al. 2018. A 6000-year-long paleoseismologic record of earthquakes along the Xorkoli section of the Altyn Tagh Fault, China[J]. Earth and Planetary Science Letters, 497: 193-203.
DOI URL |
[58] |
Yuan Z, Liu-Zeng J, Zhou Y,et al. 2019. Paleoseismologic record of earthquakes along the Wuzunxiaoer section of the Altyn Tagh Fault and its implication for cascade rupture behavior[J]. Science China Earth Sciences, 63(1): 93-107.
DOI URL |
[59] |
Yue Y, Liou J G. 1999. Two-stage evolution model for the Altyn Tagh Fault, China[J]. Geology, 27(3): 227-230.
DOI URL |
[60] |
Yue Y, Ritts B D, Graham S A. 2001. Initiation and long-term slip history of the Altyn Tagh Fault[J]. International Geology Review, 43(12): 1087-1093.
DOI URL |
[61] |
Yue Y, Ritts B D, Graham S A,et al. 2004. Slowing extrusion tectonics: Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 217(1-2): 111-122.
DOI URL |
[62] |
Zhang L, Unsworth M, Jin S,et al. 2015. Structure of the central Altyn Tagh Fault revealed by magnetotelluric data: New insights into the structure of the northern margin of the India-Asia collision[J]. Earth and Planetary Science Letters, 415: 67-79.
DOI URL |
[63] | Zhang P, Molnar P, Xu X. 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan plateau[J]. Tectonics, 26(5): TC5010. |
[64] |
Zhang Y, Zhang F, Cheng X,et al. 2020. Delimiting the eastern extent of the Altyn Tagh Fault: Insights from structural analyses of seismic reflection profiles[J]. Terra Nova, 33(1): 1-11.
DOI URL |
[65] |
Zheng W, Zhang P, He W,et al. 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan plateau: Evidence from decadal GPS measurements and Late Quaternary slip rates on faults[J]. Tectonophysics, 584: 267-280.
DOI URL |
[66] |
Zhu X, He J, Xiao J,et al. 2020. Uniform slip rates of the Altyn Tagh and the Kunlun Faults likely reflect lateral variation of frictional strength of the faults[J]. Terra Nova, 32(5): 381-389.
DOI URL |
[67] |
Zhuang G, Hourigan J K, Ritts B D,et al. 2011. Cenozoic multiple-phase tectonic evolution of the northern Tibetan plateau: Constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, Northwest China[J]. American Journal of Science, 311(2): 116-152.
DOI URL |
[1] | YANG Chen-yi, LI Xiao-ni, FENG Xi-jie, HUANG Yin-di, PEI Gen-di. SHALLOW STRUCTURE AND QUATERNARY ACTIVITY OF THE TAOCHUAN-HUXIAN FAULT, THE SUB-STRAND OF THE NORTHERN QINLING FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 464-483. |
[2] | LI Yi-shi. RESEARCH ON COMPREHENSIVE STANDARDIZATION FOR SURVEYING AND PROSPECTING OF ACTIVE FAULT [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 455-463. |
[3] | ZHANG Ling, MIAO Shu-qing, YANG Xiao-ping. THE ANALYSIS AND IMPLEMENTATION OF THE AUTOMATIC EXTRACTING METHOD FOR ACTIVE THRUST FAULTS IN THE NORTH TIANSHAN MOUNTAINS BASED ON ARCGIS SOFTWARE PLATFORM [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 422-434. |
[4] | JIANG Feng-yun, JI Ling-yun, ZHU Liang-yu, LIU Chuan-jin. THE PRESENT CRUSTAL DEFORMATION CHARACTERISTICS OF THE HAIYUAN-LIUPANSHAN FAULT ZONE FROM INSAR AND GPS OBSERVATIONS [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 377-400. |
[5] | WANG Liao, XIE Hong, YUAN Dao-yang, LI Zhi-min, XUE Shan-yu, SU Rui-huan, WEN Ya-meng, SU Qi. THE SURFACE RUPTURE CHARACTERISTICS BASED ON THE GF-7 IMAGES INTERPRETATION AND THE FIELD INVESTIGA-TION OF THE 2022 MENYUAN MS6.9 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 401-421. |
[6] | LIU Qing, LIU Shao, ZHANG Shi-min. PALEOSEISMOLOGIC STUDY ON THE YUEXI FAULT IN THE MIDSECTION OF THE DALIANGSHAN FAULT ZONE SINCE THE LATE QUATERNARY [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 321-337. |
[7] | ZHAO Peng, LI Jun-hui, TAO Yue-chao, SHU Peng, FANG Zhen. NEW ACTIVITY PHENOMENA REVEALED BY TRENCH ON THE NORTH SIDE OF NÜSHAN LAKE IN THE TANLU FAULT ZONE AND DISCUSSION [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 338-354. |
[8] | ZUO Yu-qi, YANG Hai-bo, YANG Xiao-ping, ZHAN Yan, LI An, SUN Xiang-yu, HU Zong-kai. EVIDENCE OF LATE QUATERNARY TECTONIC ACTIVITY OF THE BEIDA SHAN FAULT, SOUTHERN MARGIN OF THE ALASHAN BLOCK [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 355-376. |
[9] | LI Xiao-ni, YANG Chen-yi, LI Gao-yang, FENG Xi-jie, HUANG Yin-di, LI Chen-xia, LI Miao, PEI Gen-di, WANG Wan-he. SHALLOW STRUCTURE AND LATE QUATERNARY ACTIVITIES OF BRANCH FAULTS ON THE NORTHERN SIDE OF THE WEINAN TABLELAND IN THE SOUTHEASTERN MARGIN OF THE WEIHE BASIN [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 484-499. |
[10] | LIU Bai-yun, ZHAO Li, LIU Yun-yun, WANG Wen-cai, ZHANG Wei-dong. THE RESEARCH ON RELOCATION AND FAULT PLANE SOLUTION AND GEOMETRIC MEANING OF THE MADUO M7.4 EARTHQUAKE ON 22 MAY 2021 [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 500-516. |
[11] | ZHAO De-zheng, QU Chun-yan, ZHANG Gui-fang, GONG Wen-yu, SHAN Xin-jian, ZHU Chuan-hua, ZHANG Guo-hong, SONG Xiao-gang. APPLICATIONS AND ADVANCES FOR THE COSEISMIC DEFORMA-TION OBSERVATIONS, EARTHQUAKE EMERGENCY RESPONSE AND SEISMOGENIC STRUCTURE INVESTIGATION USING INSAR [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 570-592. |
[12] | LI An, WAN Bo, WANG Xiao-xian, JI Hao-min, SUO Rui. NEW EVIDENCE OF THE PALEOEARTHQUAKE RUPTURE IN THE NORTH GAIZHOU-ANSHAN SEGMENT OF THE JINZHOU FAULT [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 111-126. |
[13] | ZHENG Hai-gang, YAO Da-quan, ZHAO Peng, YANG Yuan-yuan, HUANG Jin-shui. NEW ACTIVITY CHARACTERISTICS IN THE CHISHAN SECTION OF TAN-LU FAULT ZONE IN HOLOCENE [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 127-138. |
[14] | TIAN Yi-ming, YANG Zhuo-xin, WANG Zhi-shuo, SHI Jin-hu, ZHANG Yang, TAN Ya-li, ZHANG Jian-zhi, SONG Wei, JI Tong-yu. A PRELIMINARY STUDY OF THE SHALLOW EXPLORATION AND QUATERNARY ACTIVITIES OF THE FENGQIU SEGMENT OF THE XINXIANG-SHANGQIU FAULT [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 139-152. |
[15] | YANG Jian-wen, JIN Ming-pei, CHA Wen-jian, ZHANG Tian-ji, YE Beng. CRUSTAL S-WAVE VELOCITY STRUCTURE BENEATH THE XIAO-JIANG FAULT ZONE AND ADJACENT REGIONS REVEALED BY TWO-STEP INVERSION METHOD OF RECEIVER FUNCTIONS [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 190-207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||