SEISMOLOGY AND EGOLOGY ›› 2022, Vol. 44 ›› Issue (1): 115-129.DOI: 10.3969/j.issn.0253-4967.2022.01.008
• Research paper • Previous Articles Next Articles
YE Yi-jia(), TAN Xi-bin*(), QIAN Li
Received:
2021-02-01
Revised:
2021-06-22
Online:
2022-02-20
Published:
2022-04-20
Contact:
TAN Xi-bin
通讯作者:
谭锡斌
作者简介:
叶轶佳, 女, 1996年生, 2021年于中国地震局地质研究所获构造地质专业硕士学位, 现为中国地震局地质研究所构造地质学专业在读博士研究生, 研究方向为构造地貌, E-mail: yeahrr96@qq.com。
基金资助:
CLC Number:
YE Yi-jia, TAN Xi-bin, QIAN Li. QUANTIFYING EROSION RATE AND ROCK ERODIBILITY FROM FLUVIAL SHEAR STRESS:AN EXAMPLE FROM LONGMEN SHAN[J]. SEISMOLOGY AND EGOLOGY, 2022, 44(1): 115-129.
叶轶佳, 谭锡斌, 钱黎. 通过河流剪切力获取河道侵蚀速率和基岩可蚀系数——以龙门山为例[J]. 地震地质, 2022, 44(1): 115-129.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.01.008
[1] | 邓起东, 陈社发, 赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学[J]. 地震地质, 16(4): 389-403. |
DENG Qi-dong, CHEN She-fa, ZHAO Xiao-lin. 1994. Tectonics, seismicity and dynamics of Longmenshan Mountains and its adjacent regions[J]. Seismology and Geology, 16(4): 389-403. (in Chinese) | |
[2] | 梁明剑, 陈立春, 冉勇康, 等. 2016. 龙门山断裂南段天全段的新活动特征与1327年天全地震的关系[J]. 地震地质, 38(3): 546-559. |
LIANG Ming-jian, CHEN Li-chun, RAN Yong-kang, et al. 2016. The discussion for the new activity of the Tianquan segment of Longmenshan fault zone and its relationship to the 1327 Tianquan earthquake, Sichuan[J]. Seismology and Geology, 38(3): 546-559. (in Chinese) | |
[3] | 王一舟, 张会平, 郑德文, 等. 2016. 基岩河道河流水力侵蚀模型及其应用: 兼论青藏高原基岩河道研究的迫切性[J]. 第四纪研究, 36(4): 884-897. |
WANG Yi-zhou, ZHANG Hui-ping, ZHENG De-wen, et al. 2016. Stream power incision model and its implications: Discussion on the urgency of studying bedrock channel across the Tibetan plateau[J]. Quaternary Sciences, 36(4): 884-897. (in Chinese) | |
[4] | 徐锡伟, 闻学泽, 叶建青, 等. 2008. 汶川 MS8.0 地震地表破裂带及其发震构造[J]. 地震地质, 30(3): 594-629. |
XU Xi-wei, WEN Xue-ze, YE Jian-qing, et al. 2008. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 30(3): 594-629. (in Chinese) | |
[5] | 徐锡伟, 陈桂华, 于贵华, 等. 2013. 芦山地震发震构造及其与汶川地震关系讨论[J]. 地学前缘, 20(3): 11-20. |
XU Xi-wei, CHEN Gui-hua, YU Gui-hua, et al. 2013. Seismogenic structure of Lushan earthquake and its relationship with Wenchuan earthquake[J]. Earth Science Frontiers, 20(3): 11-20. (in Chinese) | |
[6] | 许志琴, 李化启, 侯立炜, 等. 2007. 青藏高原东缘龙门-锦屏造山带的崛起: 大型拆离断层和挤出机制[J]. 地质通报, 26(10): 1262-1276. |
XU Zhi-qing, LI Hua-qi, HOU Li-wei, et al. 2007. Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai-Tibet plateau: Large-scale detachment faulting and extrusion mechanism[J]. Geological Bulletin of China, 26(10): 1262-1276. (in Chinese) | |
[7] | 郑景云, 尹云鹤, 李炳元. 2010. 中国气候区划新方案[J]. 地理学报, 65(1): 3-12. |
ZHENG Jing-yun, YIN Yun-he, LI Bing-yuan. 2010. A new scheme for climate regionalization in China[J]. Acta Geographica Sinica, 65(1): 3-12. (in Chinese) | |
[8] |
Arne D, Worley B, Wilson C, et al. 1997. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan plateau[J]. Tectonophysics, 280(3-4): 239-256.
DOI URL |
[9] |
Burchfiel B C, Chen Z, Liu Y, et al. 1995. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 37: 661-735.
DOI URL |
[10] | Chang H H. 1992. Fluvial Processes in River Engineering[M]. Krieger Publishing Company, Melbourne, FL. |
[11] |
Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706.
DOI URL |
[12] |
Gallen S F, Clark M K, Godt J W. 2015. Coseismic landslides reveal near-surface rock strength in a high-relief, tectonically active setting[J]. Geology, 43(1): 11-14.
DOI URL |
[13] | Godard V, Pik R, Lavé J, et al. 2009. Late Cenozoic evolution of the central Longmen Shan, eastern Tibet: Insight from(U-Th)/He thermochronometry[J]. Tectonics, 28(5). https://doi.org/10.1029/2008TC002407. |
[14] |
Godard V, Lavé J, Carcaillet J, et al. 2010. Spatial distribution of denudation in eastern Tibet and regressive erosion of plateau margins[J]. Tectonophysics, 491(1-4): 253-274.
DOI URL |
[15] | Hoek E, Brown E T. 1997. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 34(8): 1165-1186. |
[16] |
Howard A D. 1994. A detachment-limited model of drainage basin evolution[J]. Water Resources Research, 30(7): 2261-2285.
DOI URL |
[17] |
Howard A D, Kerby G. 1983. Channel changes in bad lands[J]. Geological Society of America Bulletin, 94(6): 739-752.
DOI URL |
[18] | Kirby E, Reiners P W, Krol M A, et al. 2002. Late Cenozoic evolution of the eastern margin of the Tibetan plateau: Inferences from40Ar/39Ar and(U-Th)/He thermochronology[J]. Tectonics, 21(1): 1-1-1-20. |
[19] | Kirby E, Whipple K X, Tang W, et al. 2003. Distribution of active rock uplift along the eastern margin of the Tibetan plateau: Inferences from bedrock channel longitudinal profiles[J]. Journal of Geophysical Research: Solid Earth, 108(B4). https://doi.org/10.1029/2001JB000861. |
[20] |
Kirkpatrick H M, Moon S, Yin A, et al. 2021. Impact of fault damage on eastern Tibet topography[J]. Geology, 49(1): 30-34.
DOI URL |
[21] | Lavé J, Avouac J P. 2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal[J]. Journal of Geophysical Research: Solid Earth, 106(B11): 26561-26591. |
[22] |
Liu Y D, Tan X B, Ye Y J, et al. 2020. Role of erosion in creating thrust recesses in a critical-taper wedge: An example from eastern Tibet[J]. Earth and Planetary Science Letters, 540:116270.
DOI URL |
[23] | Ma Z F, Zhang H P, Wang Y Z, et al. 2020. Inversion of Dadu River bedrock channels for the late Cenozoic uplift history of the eastern Tibetan plateau[J]. Geophysical Research Letters, 47(4): e2019GL086882. |
[24] | Mezaki S, Yabiku M. 1984. Channel morphology of the Kali Gandaki and the Narayani rivers in central Nepal[J]. Journal of Nepal Geological Society, 4:161-176. |
[25] | Molnar P, Anderson R S, Anderson S P. 2007. Tectonics, fracturing of rock, and erosion[J]. Journal of Geophysical Research: Earth Surface, 112(F3). https://doi.org/10.1029/2005JF000433. |
[26] |
Ouimet W B, Whipple K X, Granger D E. 2009. Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges[J]. Geology, 37(7): 579-582.
DOI URL |
[27] |
Qin J, Huh Y, Edmond J M, et al. 2006. Chemical and physical weathering in the Min Jiang, a headwater tributary of the Yangtze River[J]. Chemical Geology, 227(1-2): 53-69.
DOI URL |
[28] |
Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276(5313): 788-790.
PMID |
[29] |
Shen X M, Tian Y T, Zhang G H, et al. 2019. Late Miocene hinterland crustal shortening in the Longmen Shan thrust belt, the eastern margin of the Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 124(11): 11972-11991.
DOI URL |
[30] | Sklar L S, Dietrich W E. 2004. A mechanistic model for river incision into bedrock by saltating bed load[J]. Water Resources Research, 40(6). https://doi.org/10.1029/2003WR002496. |
[31] |
Snyder N P, Whipple K X, Tucker G E, et al. 2000. Landscape response to tectonic forcing: DEM analysis of stream profiles in the Mendocino triple junction region, northern California[J]. Geological Society of America Bulletin, 112(8): 1250-1263.
DOI URL |
[32] |
Stock J D, Montgomery D R, Collins B D, et al. 2005. Field measurements of incision rates following bedrock exposure: Implications for process controls on long profiles of valleys cut by rivers and debris flows[J]. Geological Society of America Bulletin, 117(1-2): 174-194.
DOI URL |
[33] | Stock J D, Montgomery D R. 1999. Geologic constraints on bedrock river incision using the stream power law[J]. Journal of Geophysical Research: Solid Earth, 104(B3): 4983-4993. |
[34] |
Sun M, Yin A, Yan D, et al. 2018. Role of pre-existing structures in controlling the Cenozoic tectonic evolution of the eastern Tibetan plateau: New insights from analogue experiments[J]. Earth and Planetary Scienc Letters, 491:207-215.
DOI URL |
[35] | Tan X B, Liu Y D, Lee Y H, et al. 2019. Parallelism between the maximum exhumation belt and the Moho ramp along the eastern Tibetan plateau margin: Coincidence or consequence?[J]. Earth and Planetary Science Letters, 57:73-84. |
[36] | Tan X B, Xu X W, Lee Y H, et al. 2017. Late Cenozoic thrusting of major faults along the central segment of Longmen Shan, eastern Tibet: Evidence from low-temperature thermochronology[J]. Tectonophysics, 712:145-155. |
[37] |
Tan X B, Lee Y H, Chen W Y, et al. 2014. Exhumation history and faulting activity of the southern segment of the Longmen Shan, eastern Tibet[J]. Journal of Asian Earth Sciences, 81:91-104.
DOI URL |
[38] |
Tan X B, Yuan R M, Xu X W, et al. 2012. Complex surface rupturing and related formation mechanisms in the Xiaoyudong area for the 2008 MW7.9 Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 58:132-142.
DOI URL |
[39] |
Tan X B, Yue H, Liu Y D, et al. 2018. Topographic loads modified by fluvial incision impact fault activity in the Longmenshan thrust belt, eastern margin of the Tibetan plateau[J]. Tectonics, 37(9): 3001-3017.
DOI URL |
[40] |
Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677.
PMID |
[41] |
Wang E, Kirby E, Furlong K P, et al. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 5(9): 640-645.
DOI URL |
[42] |
Wang M M, Zhan Y, Lu R Q, et al. 2019. The seismogenic structure of the southern segment of the Longmen Shan thrust belt, eastern Tibetan plateau, SW China: A comprehensive analysis of surface geology and deep structure[J]. Journal of Asian Earth Sciences, 179:11-20.
DOI URL |
[43] | Wang W, Godard V, Liu Z J, et al. 2021. Tectonic controls on surface erosion rates in the Longmen Shan, eastern Tibet[J]. Tectonics, 40(3): e2020TC006445. |
[44] |
Whipple K X. 2004. Bedrock rivers and the geomorphology of active orogens[J]. Annual Review of Earth and Planetary Science, 32:151-185.
DOI URL |
[45] | Whipple K X, Tucker G E. 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. |
[46] |
Xu X W, Wen X, Yu G H, et al. 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 MW7.9 Wenchuan earthquake, China[J]. Geology, 37(6): 515-518.
DOI URL |
[47] |
Ye Y J, Tan X B, Liu Y D, et al. 2022. The impact of erosion on fault segmentation in thrust belts: Insights from thermochronology and fluvial shear stress analysis(southern Longmen Shan, eastern Tibet)[J]. Geomorphology, 397:108020.
DOI URL |
[48] |
Yin A. 2010. A special issue on the great 12 May 2008 Wenchuan earthquake(MW7.9): Observations and unanswered questions[J]. Tectonophysics, 491(1): 1-9.
DOI URL |
[49] |
Zhang H P, Kirby E, Pitlick J R, et al. 2017. Characterizing the transient geomorphic response to base-level fall in the northeastern Tibetan plateau[J]. Journal of Geophysical Research: Earth Surface, 122(2): 546-572.
DOI URL |
[50] |
Zhang H P, Zhang P Z, Chanmpagnac J D, et al. 2014. Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan plateau[J]. Geology, 42(4): 303-306.
DOI URL |
[51] |
Zhou Y, Wu Z H, Sun Y J, et al. 2020. Constraints on late Cenozoic tectonics in the southern Longmen Shan: Evidence from low-temperature thermochronology[J]. International Geology Review, 63(13): 1619-1633.
DOI URL |
[1] | ZHANG Wei-heng, CHEN Jie, LI Tao, DI Ning, YAO Yuan. LATE QUATERNARY SHORTENING RATE OF THE SANSUCHANG ANTICLINE, SOUTHERN LONGMEN SHAN FORELAND THRUST BELT [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1351-1364. |
[2] | WANG Zhen-nan, LU Ren-qi, XU Xi-wei, HE Deng-fa, CAI Ming-gang, LI Ying-qiang, LUO Jia-hong. THREE-DIMENSIONAL STRUCTURAL FEATURES OF THE PENGXIAN ACTIVE BLIND FAULT IN THE CENTRAL LONGMEN SHAN FRONT BELT [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(4): 944-959. |
[3] | YAN Xiao-bing, LI Zi-hong, ZHAO Jin-quan, HU Gui-rang, GUO Jin. THE RETROGRESSIVE EROSION RATE AT HUKOU WATERFALL, YELLOW RIVER AND THE RELATION TO THE HANCHENG FAULT [J]. SEISMOLOGY AND GEOLOGY, 2016, 38(4): 911-921. |
[4] | LIANG Ming-jian, CHEN Li-chun, RAN Yong-kang, WANG Hu, LI Dong-yu. THE DISCUSSION FOR THE NEW ACTIVITY OF THE TIANQUAN SEGMENT OF LONGMENSHAN FAULT ZONE AND ITS RELATIONSHIP TO THE 1327 TIANQUAN EARTHQUAKE, SICHUAN [J]. SEISMOLOGY AND GEOLOGY, 2016, 38(3): 546-559. |
[5] | YAN Ji-ming, WEI Zhan-yu, HE Hong-lin. EXPERIMENTAL STUDY ON EROSION RATE OF MAN-MADE SLOPES IN LOESS AREA [J]. SEISMOLOGY AND GEOLOGY, 2013, 35(4): 793-804. |
[6] | LI Chuan-you, XU Xi-wei, GAN Wei-jun, WEN Xue-ze, ZHENG Wen-jun, WEI Zhan-yu, XU Chong, TAN Xi-bin, CHEN Gui-hua, LIANG Ming-jian, LI Xin-nan. SEISMOGENIC STRUCTURES ASSOCIATED WITH THE 20 APRIL 2013 MS 7.0 LUSHAN EARTHQUAKE, SICHUAN PROVINCE [J]. SEISMOLOGY AND GEOLOGY, 2013, 35(3): 671-683. |
[7] | TAN Xi-bin, LEE Yuan-hsi, XU Xi-wei, CHEN Wen-yu, XU Chong, YU Gui-hua. CENOZOIC FAULT ACTIVITY OF THE SOUTHERN SEGMENT OF THE LONGMENSHAN THRUST BELT:EVIDENCE FROM LOW-TEMPERATURE THERMOCHRONOLOGY DATA [J]. SEISMOLOGY AND GEOLOGY, 2013, 35(3): 506-517. |
[8] | QI Shao-hua, LIU Qi-yuan, CHEN Jiu-hui, LI Yu, LI Shun-cheng, Guo Biao, WANG Jun. WENCHUAN EARTHQUAKE MS 8.0:PRELIMINARY STUDY OF CRUSTAL ANISOTROPY ON BOTH SIDES OF THE LONGMENSHAN FAULTS [J]. SEISMOLOGY AND GEOLOGY, 2009, 31(3): 377-388. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||