SEISMOLOGY AND EGOLOGY ›› 2021, Vol. 43 ›› Issue (6): 1586-1599.DOI: 10.3969/j.issn.0253-4967.2021.06.013
• Research paper • Previous Articles Next Articles
QIU Jiang-tao1,2)(), JI Ling-yun1), LIU lei1), LIU Chuan-jin1)
Received:
2020-09-21
Revised:
2021-01-05
Online:
2021-12-20
Published:
2022-01-29
作者简介:
邱江涛, 1988年生, 工程师, 2018年于中国地震局地震研究所获大地测量与测量工程专业硕士学位, 现为中国地震局地质研究所固体地球物理学专业在读博士研究生, 主要研究方向为InSAR地壳形变监测与分析, E-mail: jiangtao_q@sina.com。
基金资助:
CLC Number:
QIU Jiang-tao, JI Ling-yun, LIU lei, LIU Chuan-jin. INSAR COSEISMIC DEFORMATION AND TECTONIC IMPLICATIONS FOR THE 2020 MW6.3 NIMA EARTHQUAKE IN XIZANG[J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1586-1599.
邱江涛, 季灵运, 刘雷, 刘传金. 2020年西藏尼玛MW6.3地震的InSAR同震形变与构造意义[J]. 地震地质, 2021, 43(6): 1586-1599.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2021.06.013
机构 | 震中位置 | 震级 /MW | 深度 /km | 节面1/(°) | 节面2/(°) | |||||
---|---|---|---|---|---|---|---|---|---|---|
东经/(°) | 北纬/(°) | 走向 | 倾角 | 滑动角 | 走向 | 倾角 | 滑动角 | |||
GCMT | 33.09 | 86.86 | 6.4 | 17.3 | 187 | 44 | -94 | 12 | 46 | -86 |
NEIC | 33.131 | 86.840 | 6.3 | 10 | 203 | 29 | -88 | 20 | 61 | -91 |
IPGP | 33.13 | 86.84 | 6.3 | 10 | 174 | 45 | -106 | 17 | 47 | -74 |
GFZ | 33.13 | 86.78 | 6.4 | 10 | 204 | 41 | -65 | 353 | 52 | -109 |
Table1 Focal mechanism solutions of the 2020 Nima earthquake from different institutions
机构 | 震中位置 | 震级 /MW | 深度 /km | 节面1/(°) | 节面2/(°) | |||||
---|---|---|---|---|---|---|---|---|---|---|
东经/(°) | 北纬/(°) | 走向 | 倾角 | 滑动角 | 走向 | 倾角 | 滑动角 | |||
GCMT | 33.09 | 86.86 | 6.4 | 17.3 | 187 | 44 | -94 | 12 | 46 | -86 |
NEIC | 33.131 | 86.840 | 6.3 | 10 | 203 | 29 | -88 | 20 | 61 | -91 |
IPGP | 33.13 | 86.84 | 6.3 | 10 | 174 | 45 | -106 | 17 | 47 | -74 |
GFZ | 33.13 | 86.78 | 6.4 | 10 | 204 | 41 | -65 | 353 | 52 | -109 |
模式 | 轨道号 | 入射角 | 影像日期 | 基线距离/m | 时间间隔/d | |
---|---|---|---|---|---|---|
震前 | 震后 | |||||
升轨 | 12 | 41.7° | 2020-07-18 | 2020-07-30 | -86.679 | 12 |
降轨 | 121 | 44.0° | 2020-07-14 | 2020-07-26 | 112.262 | 12 |
Table2 Parameters of SAR interferograms
模式 | 轨道号 | 入射角 | 影像日期 | 基线距离/m | 时间间隔/d | |
---|---|---|---|---|---|---|
震前 | 震后 | |||||
升轨 | 12 | 41.7° | 2020-07-18 | 2020-07-30 | -86.679 | 12 |
降轨 | 121 | 44.0° | 2020-07-14 | 2020-07-26 | 112.262 | 12 |
[1] | 冯万鹏, 许力生, 许忠淮, 等. 2009. 利用InSAR资料反演2008年西藏改则 MW6.4 和 MW5.9 地震的断层参数[J]. 地球物理学报, 52(4): 983-993. |
FENG Wan-peng, XU Li-sheng, XU Zhong-huai, et al. 2009. Source parameters of the 2008 Gaize MW6.4 and MW5.9 earthquakes from InSAR measurements[J]. Chinese Journal of Geophysics, 52(4): 983-993(in Chinese). | |
[2] | 季灵运, 刘传金, 徐晶, 等. 2017. 九寨沟 MS7.0 地震的InSAR观测及发震构造分析[J]. 地球物理学报, 60(10): 4069-4082. |
JI Ling-yun, LIU Chuan-jin, XU Jing, et al. 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China[J]. Chinese Journal of Geophysics, 60(10): 4069-4082(in Chinese). | |
[3] | 李才, 翟刚毅, 王立全, 等. 2009. 认识青藏高原的重要窗口: 羌塘地区近年来研究进展评述(代序)[J]. 地质通报, 28(9): 1169-1177. |
LI Cai, ZHAI Gang-yi, WANG Li-quan, et al. 2009. An important window for understanding the Qinghai-Tibet Plateau-A review on research progress in recent years of Qiangtang area, Tibet, China[J]. Geological Bulletin of China, 28(9): 1169-1177(in Chinese). | |
[4] | 李金胜. 2019. 西藏荣玛乡南新生代活动断层的变形特征与演化期次[D]. 北京: 中国地质大学:3-4. |
LI Jin-sheng. 2019. Deformation characteristics and evolution periods of Cenozoic active faults in the south of Rongma, Tibet[D]. China University of Geosciences, Beijing:3-4(in Chinese). | |
[5] | 李永华, 田小波, 吴庆举, 等. 2006. 青藏高原INDEPTH-Ⅲ剖面地壳厚度与泊松比: 地质与地球物理含义[J]. 地球物理学报, 49(4): 1037-1044. |
LI Yong-hua, TIAN Xiao-bo, WU Qing-ju, et al. 2006. The Poisson ratio and crustal structure of the central Qinghai-Xizang inferred from INDEPTH-Ⅲ teleseismic waveforms: Geological and geophysical implications[J]. Chinese Journal of Geophysics, 49(4): 1037-1044(in Chinese). | |
[6] | 刘国成, 尚学峰, 贺日政, 等. 2014. 藏北羌塘盆地中部莫霍面形态及其动力学成因[J]. 地球物理学报, 57(7): 2043-2053. |
LIU Guo-cheng, SHANG Xue-feng, HE Ri-zheng, et al. 2014. Topography of Moho beneath the central Qiangtang in north Tibet and its geodynamic implication[J]. Chinese Journal of Geophysics, 57(7): 2043-2053(in Chinese). | |
[7] | 乔学军, 游新兆, 杨少敏, 等. 2009. 当雄 MS6.6 地震的InSAR观测及断层位错反演[J]. 大地测量与地球动力学, 29(6): 1-7. |
QIAO Xue-jun, YOU Xin-zhao, YANG Shao-min, et al. 2009. Study on dislocation inversion of MS6.6 Damxung earthquake as constrained by InSAR measurement[J]. Journal of Geodesy and Geodynamics, 29(6): 1-7(in Chinese). | |
[8] | 邱江涛, 刘雷, 刘传金, 等. 2019. 2008年仲巴地震形变及其揭示的构造运动[J]. 地震地质, 41(2): 481-498. |
QIU Jiang-tao, LIU Lei, LIU Chuan-jin, et al. 2019. The deformation of the 2008 Zhongba earthquakes and the tectonic movement revealed[J]. Seismology and Geology, 41(2): 481-498(in Chinese). | |
[9] | 单新建, 马瑾, 王长林, 等. 2002. 利用星载D-InSAR技术获取的地表形变场提取玛尼地震震源断层参数[J]. 中国科学(D辑), 32(10): 837-844. |
SHAN Xin-jian, MA Jin, WANG Chang-lin, et al. 2002. The surface deformation field and seismic fault parameters of Mani earthquake by DInSAR[J]. Science in China(Ser D), 32(10): 837-844(in Chinese). | |
[10] | 孙建宝, 徐锡伟, 沈正康, 等. 2007. 基于线弹性位错模型及干涉雷达同震形变场反演1997年玛尼 MW7.5 地震参数: Ⅰ均匀滑动反演[J]. 地球物理学报, 50(4): 1097-1110. |
SUN Jian-bao, XU Xi-wei, SHEN Zheng-kang, et al. 2007. Parameter inversion of the 1997 Mani earthquake from INSAR co-seismic deformation field based on linear elastic dislocation model-Ⅰ. Uniform slip inversion[J]. Chinese Journal of Geophysics, 50(4): 1097-1110(in Chinese). | |
[11] | 吴蔚, 刘启元, 贺日政, 等. 2017. 羌塘盆地中部地区地壳S波速度结构及构造意义[J]. 地球物理学报, 60(3): 941-952. |
WU Wei, LIU Qi-yuan, HE Ri-zheng, et al. 2017. Waveform inversion of S-wave velocity model in the central Qiangtang in north Tibet and its geological implications[J]. Chinese Journal of Geophysics, 60(3): 941-952(in Chinese). | |
[12] | 熊盛青, 周道卿, 曹宝宝, 等. 2020. 羌塘盆地中央隆起带的重磁场证据及其构造意义[J]. 地球物理学报, 63(9): 3491-3504. |
XIONG Sheng-qing, ZHOU Dao-qing, CAO Bao-bao, et al. 2020. Characteristics of the central uplift zone in Qiangtang Basin and its tectonic implications: Evidences from airborne gravity and magnetic data[J]. Chinese Journal of Geophysics, 63(9): 3491-3504(in Chinese). | |
[13] | 许才军, 温扬茂. 2008. 基于InSAR数据的西藏玛尼 MS7.9 地震的地壳不均匀性研究[J]. 武汉大学学报(信息科学版), 33(8): 846-849. |
XU Cai-jun, WEN Yang-mao. 2008. Nonhomogeneity of the crust from MS7.9 Manyi(Tibet)earthquake with InSAR observation[J]. Geomatics and Information Science of Wuhan University, 33(8): 846-849(in Chinese). | |
[14] | 严江勇, 郑洪伟, 贺日政, 等. 2019. 藏北羌塘盆地中部地壳低速层分布与动力学意义[J]. 地球科学, 44(6): 1784-1796. |
YAN Jiang-yong, ZHENG Hong-wei, HE Ri-zheng, et al. 2019. Low velocity layer investigation in central Qiangtang in north Tibet and its dynamic implications[J]. Earth Science, 44(6): 1784-1796(in Chinese). | |
[15] | 曾思红, 胡祥云, 李建慧. 2017. 羌塘地块中部SN向断裂的构造特征及其动力学意义[J]. 地球物理学报, 60(6): 2172-2180. |
ZENG Si-hong, HU Xiang-yun, LI Jian-hui. 2017. Structural characteristics and their dynamic implications for the north-south trending rifts in central Qiangtang terrane, Tibetan plateau[J]. Chinese Journal of Geophysics, 60(6): 2172-2180(in Chinese). | |
[16] | 张东宁, 许忠淮. 1995. 青藏高原南部上地壳正断层地震活动的一种可能解释[J]. 地震学报, 17(2): 188-195. |
ZHANG Dong-ning, XU Zhong-huai. 1995. A possible explanation for the seismic activity of normal faults in the upper crust of the southern Qinghai-Tibet plateau[J]. Acta Seismologica Sinica, 17(2): 188-195(in Chinese). | |
[17] | 张进江, 丁林, 钟大赉, 等. 1999. 喜马拉雅平行于造山带伸展--是垮塌的标志还是挤压隆升过程的产物?[J]. 科学通报, 44(19): 2031-2036. |
ZHANG Jin-jiang, DING Lin, ZHONG Da-lai, et al. 1999. Himalayan extension parallel to orogenic belt: A sign of collapse or product of compressional uplift?[J]. Chinese Science Bulletin, 44(19): 2031-2036(in Chinese).
DOI URL |
|
[18] | 张胜业, 魏胜, 王家映, 等. 1996. 西藏羌塘盆地大地电磁测深研究[J]. 地球科学, 21(2): 98-102. |
ZHANG Sheng-ye, WEI Sheng, WANG Jia-ying, et al. 1996. Magnetotelluric sounding in the Qiangtang Basin of Xizang(Tibet)[J]. Earth Science, 21(2): 98-102(in Chinese).
DOI URL |
|
[19] |
Elliott J R, Walters R J, England P C, et al. 2010. Extension on the Tibetan plateau: Recent normal faulting measured by InSAR and body wave seismology[J]. Geophysical Journal International, 183(2): 503-535.
DOI URL |
[20] | Gao R, Chen C, Lu Z, et al. 2013. New constraints on crustal structure and Moho topography in central Tibet revealed by SinoProbe deep seismic reflection profiling[J]. Tectonophysics, 66:160-170. |
[21] |
Ji L Y, Wang Q L, Xu J, et al. 2017. The 1996 MW66 Lijiang earthquake: Application of JERS -1 SAR interferometry on a typical normal-faulting event in the northwestern Yunnan rift zone, SW China[J]. Journal of Asian Earth Sciences, 146:221-232.
DOI URL |
[22] |
Kapp P, Guynn J H. 2004. Indian punch rifts Tibet[J]. Geology, 32(11): 993-996.
DOI URL |
[23] |
Kind R, Ni J, Zhao W, et al. 1996. Evidence from earthquake data for a partially molten crustal layer in southern Tibet[J]. Science, 274(5293): 1692-1694.
PMID |
[24] | King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 84(3): 935-953. |
[25] | Laske G, Masters G, Ma Z, et al. 2013. Update on CRUST1.0: A 1-degree global model of earth's crust[C]. EGU General Assembly Conference Abstracts, 15(EGU2013): 2658. |
[26] |
Nelson K D, Zhao W, Brown L D, et al. 1996. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results[J]. Science, 274(5293): 1684-1688.
PMID |
[27] |
Pedersen R, Jónsson S, Árnadóttir T, et al. 2003. Fault slip distribution of two June 2000 MW65 earthquakes in south Iceland estimated from joint inversion of InSAR and GPS measurements[J]. Earth and Planetary Science Letters, 213(3-4): 487-502.
DOI URL |
[28] |
Qiu J T, Qiao X J. 2017. A study on the seismogenic structure of the 2016 Zaduo, Qinghai MS6.2 earthquake using InSAR technology[J]. Geodesy and Geodynamics, 8(5): 342-346.
DOI URL |
[29] | Ryder I, Bürgmann R, Fielding E. 2012. Static stress interactions in extensional earthquake sequences: An example from the South Lunggar rift, Tibet[J]. Journal of Geophysical Research: Solid Earth, 117(B9): 1-18. |
[30] |
Sun J B, Yue H, Shen Z K, et al. 2018. The 2017 Jiuzhaigou earthquake: A complicated event occurred in a young fault system[J]. Geophysical Research Letters, 45(5): 2230-2240.
DOI URL |
[31] | Taylor M, Peltzer G. 2006. Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 111(B12402): 1-16. |
[32] |
Taylor M, Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism active structures on the Tibetan plateau and surrounding regions[J]. Geosphere, 5(3): 199-214.
DOI URL |
[33] | Taylor M, Yin A, Ryerson F J, et al. 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan plateau[J]. Tectonics, 22(4): 18-1-18-16. |
[34] | Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): 1-22. |
[35] | Wang R J, Diao F Q, Hoechner A. 2013. SDM: A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]. EGU General Assembly Conference Abstracts, 15(EGU2013): 2411. |
[36] |
Wang R J, Lorenzo-Martín F, Roth F. 2006. PSGRN/PSCMP: A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences, 32(4): 527-541.
DOI URL |
[37] |
Xu C J, Liu Y, Wen Y M, et al. 2010. Coseismic slip distribution of the 2008 MW7.9 Wenchuan earthquake from joint inversion of GPS and InSAR data[J]. Bulletin of the Seismological Society of America, 100(5B): 2736-2749.
DOI URL |
[1] | JIANG Feng-yun, JI Ling-yun, ZHU Liang-yu, LIU Chuan-jin. THE PRESENT CRUSTAL DEFORMATION CHARACTERISTICS OF THE HAIYUAN-LIUPANSHAN FAULT ZONE FROM INSAR AND GPS OBSERVATIONS [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 377-400. |
[2] | ZHAO De-zheng, QU Chun-yan, ZHANG Gui-fang, GONG Wen-yu, SHAN Xin-jian, ZHU Chuan-hua, ZHANG Guo-hong, SONG Xiao-gang. APPLICATIONS AND ADVANCES FOR THE COSEISMIC DEFORMA-TION OBSERVATIONS, EARTHQUAKE EMERGENCY RESPONSE AND SEISMOGENIC STRUCTURE INVESTIGATION USING INSAR [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 570-592. |
[3] | JIN Li-zhou, WANG Ying, CHANG Wen-bin, TIAN Ying-ying, YUAN Ren-mao. STABILITY ANALYSIS OF THE BAIGE LANDSLIDE USING D-INSAR AND PFC2D MODELING [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 153-171. |
[4] | YU Shu-yuan, HUANG Xian-liang, ZHENG Hai-gang, LI Ling-li, LUO Jia-ji, DING Juan, FAN Xiao-ran. THE COSEISMIC RUPTURE MODEL AND STRESS CHANGE OF THE 2022 MENYUAN MW6.7 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 286-303. |
[5] | HUA Jun, GONG Wen-yu, SHAN Xin-jian, WANG Zhen-jie, JI Ling-yun, LIU Chuan-jin, LI Yong-sheng. RESEARCH ON INTEGRATING INTERSEISMIC DEFORMATION RATE FIELDS OF MULTI-TRACK INSAR [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(5): 1172-1189. |
[6] | YU Shu-yuan, ZHANG Guo-hong, ZHANG Ying-feng, DING Juan, ZHANG Jian-long, FAN Xiao-ran, WANG Shao-jun. COSEISMIC SLIP DISTRIBUTION OF THE 2021 MW5.8 BIRU(TIBET, CHINA)EARTHQUAKE AND THE COULOMB STRESS VARIATION [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(5): 1190-1202. |
[7] | WANG Yu-qing, FENG Wan-peng, ZHANG Pei-zhen. PRESENT DEFORMATION OF~90° INTERSECTING CONJUGATE FAULTS AND MECHANICAL IMPLICATION TO REGIONAL TECTONICS: A CASE STUDY OF 2019 MW≥6.4 PHILIPPINES EARTHQUAKE SEQUENCE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 313-332. |
[8] | XU Fang, LU Ren-qi, WANG Shuai, JIANG Guo-yan, LONG Feng, WANG Xiao-shan, SU Peng, LIU Guan-shen. STUDY ON THE SEISMOTECTONICS OF THE QINGBAIJIANG MS5.1 EARTHQUAKE IN SICHUAN PROVINCE IN 2020 BY MULTIPLE CONSTRAINT METHOD [J]. SEISMOLOGY AND EGOLOGY, 2022, 44(1): 220-237. |
[9] | XU Xiao-xue, JI Ling-yun, ZHU Liang-yu, WANG Guang-ming, ZHANG Wen-ting, LI Ning. THE CO-SEISMIC DEFORMATION CHARACTERISTICS AND SEISMOGENIC STRUCTURE OF THE YANGBI MS6.4 EARTHQUAKE [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(4): 771-789. |
[10] | LIU Rui-chun, ZHANG Jin, GUO Wen-feng, CHEN Hui, ZHENG Ya-di, CHENG Cheng. STUDY ON THE RECENT DEFORMATION CHARACTERISTIC AND STRUCTURAL DEFORMATION MODEL OF THE SOUTH-EASTERN MARGIN OF ORDOS BLOCK [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 540-558. |
[11] | HUA Jun, ZHAO De-zheng, SHAN Xin-jian, QU Chun-yan, ZHANG Ying-feng, GONG Wen-yu, WANG Zhen-jie, LI Cheng-long, LI Yan-chuan, ZHAO Lei, CHEN Han, FAN Xiao-ran, WANG Shao-jun. COSEISMIC DEFORMATION FIELD, SLIP DISTRIBUTION AND COULOMB STRESS DISTURBANCE OF THE 2021 MW7.3 MADUO EARTHQUAKE USING SENTINEL-1 INSAR OBSERVATIONS [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 677-691. |
[12] | ZHANG Ying-feng, SHAN Xin-jian, ZHANG Guo-hong, LI Cheng-long, WEN Shao-yan, XIE Quan-cai. THE DEFORMATION OF 2020 MW6.0 KALPINTAGE EARTHQUAKE AND ITS IMPLICATION FOR THE REGIONAL RISK ESTIMATES [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(2): 377-393. |
[13] | ZHANG Wen-ting, JI Ling-yun, ZHU Liang-yu, JIANG Feng-yun, XU Xiao-xue. A TYPICAL THRUST RUPTURE EVENT OCCURRING IN THE FORELAND BASIN OF THE SOUTHERN TIANSHAN: THE 2020 XINJIANG JIASHI MS6.4 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(2): 394-409. |
[14] | WEN Shao-yan, SHAN Xin-jian, ZHANG Ying-feng, LIU Yun-hua, WANG Chi-sheng, SONG Chun-yan. STUDY ON CO-SEISMIC DEFORMATION AND SLIP DISTRIBUTION OF THE AKETAO MS6.7 EARTHQUAKE DERIVED FROM INSAR DATA [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(6): 1401-1416. |
[15] | QIAO Xin, QU Chun-yan, SHAN Xin-jian, LI Yan-chuan, ZHU Chuan-hua. DEFORMATION CHARACTERISTICS AND KINEMATIC PARAMETERS INVERSION OF HAIYUAN FAULT ZONE BASED ON TIME SERIES INSAR [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(6): 1481-1496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||