SEISMOLOGY AND EGOLOGY ›› 2021, Vol. 43 ›› Issue (5): 1085-1100.DOI: 10.3969/j.issn.0253-4967.2021.05.004
• Special topic on the Yunnan Yangbi MS6.4 and Qinghai Maduo MS7.4 earthquakes • Previous Articles Next Articles
LI Chun-guo(), WANG Hong-wei(), WEN Rui-zhi, QIANG Sheng-yin, REN Ye-fei
Received:
2021-06-15
Revised:
2021-07-30
Online:
2021-10-20
Published:
2021-12-06
Contact:
WANG Hong-wei
通讯作者:
王宏伟
作者简介:
李春果, 女, 1995年生, 2019年于中国地震局工程力学研究所获防灾减灾工程与防护工程专业硕士学位, 现为中国地震局工程力学研究所防灾减灾工程与防护工程专业在读博士研究生, 主要研究方向为地震动数值模拟及场地效应, E-mail: lcggzl007@163.com。
基金资助:
CLC Number:
LI Chun-guo, WANG Hong-wei, WEN Rui-zhi, QIANG Sheng-yin, REN Ye-fei. THREE-COMPONENT GROUND MOTION SIMULATIONS BASED ON THE STOCHASTIC FINITE-FAULT METHOD FOR THE 2021 MADUO MS7.4 EARTHQUAKE, QINGHAI PROVINCE[J]. SEISMOLOGY AND EGOLOGY, 2021, 43(5): 1085-1100.
李春果, 王宏伟, 温瑞智, 强生银, 任叶飞. 2021年青海玛多MS7.4地震随机有限断层三维地震动模拟[J]. 地震地质, 2021, 43(5): 1085-1100.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2021.05.004
参数 | 模型1 | 模型2 | 模型3 | 模型4 |
---|---|---|---|---|
震源破裂模型 | USGS | 张勇 | 地震局地质所 | 10个破裂随机模型 |
破裂面长度L×宽度W/km | 182×31.5 | 195×20 | 160×20 | 104×16.8 |
子断层尺寸/km | 3.5×3.5 | 5.0×5.0 | 约5.0×5.0 | 2.0×2.1 |
应力降Δσ/MPa | 3.413 | 5.189 | 4.406 | 3.597 |
动破裂面积比例 | 50% | |||
P波、 S波波速 /km·s-1 | 6.10、 3.52 | |||
密度/g·cm-3 | 2.72 | |||
几何扩散模型 | R-1(1~97.5km); R0(97.5~162.5km); R-0.5(>162.5km) | |||
P波、 S波品质因子 | QP(f)=128f0.56、 QS(f)=191.8f0.56 | |||
路径持时 | ACR模型 | |||
场地放大 | NEHRP B、C类场地分界对应的场地条件(VS30=760m/s); 场地放大效应经验模型 | |||
高频衰减参数κ/s | 0.02 |
Table1 Input parameters for the stochastic finite-fault simulation of the Maduo earthquake
参数 | 模型1 | 模型2 | 模型3 | 模型4 |
---|---|---|---|---|
震源破裂模型 | USGS | 张勇 | 地震局地质所 | 10个破裂随机模型 |
破裂面长度L×宽度W/km | 182×31.5 | 195×20 | 160×20 | 104×16.8 |
子断层尺寸/km | 3.5×3.5 | 5.0×5.0 | 约5.0×5.0 | 2.0×2.1 |
应力降Δσ/MPa | 3.413 | 5.189 | 4.406 | 3.597 |
动破裂面积比例 | 50% | |||
P波、 S波波速 /km·s-1 | 6.10、 3.52 | |||
密度/g·cm-3 | 2.72 | |||
几何扩散模型 | R-1(1~97.5km); R0(97.5~162.5km); R-0.5(>162.5km) | |||
P波、 S波品质因子 | QP(f)=128f0.56、 QS(f)=191.8f0.56 | |||
路径持时 | ACR模型 | |||
场地放大 | NEHRP B、C类场地分界对应的场地条件(VS30=760m/s); 场地放大效应经验模型 | |||
高频衰减参数κ/s | 0.02 |
Fig. 6 Seismic intensity estimated by the simulated ground motions based on the USGS model with the stress drop increased to mean plus one standard deviation.
[1] | 陈长云, 任金卫, 孟国杰, 等. 2013. 巴颜喀拉块体东部活动块体的划分、 形变特征及构造意义[J]. 地球物理学报, 56(12): 4125-4141. |
CHEN Chang-yun, REN Jin-wei, MENG Guo-jie, et al. 2013. Division, deformation and tectonic implication of active blocks in the eastern segment of Bayan Har block[J]. Chinese Journal of Geophysics, 56(12): 4125-4141. (in Chinese) | |
[2] | 陈立春, 王虎, 冉勇康, 等. 2010. 玉树MS7.1地震地表破裂与历史大地震[J]. 科学通报, 55(13): 1200-1205. |
CHEN Li-chun, WANG Hu, RAN Yong-kang, et al. 2010. The MS7.1 Yushu earthquake surface rupture and large historical earthquakes on the Garzê-Yushu Fault[J]. Chinese Science Bulletin, 55(13): 1200-1205. (in Chinese) | |
[3] |
梁明剑, 杨耀, 杜方, 等. 2020. 青海达日断裂中段晚第四纪活动性与1947年M7¾地震地表破裂带再研究[J]. 地震地质, 42(3): 703-714. doi: 10.3969/j.issn.0253-4967.2020.03.011.
DOI |
LIANG Ming-jian, YANG Yao, DU Fang, et al. 2020. Late Quaternary activity of the central segment of the Dari Fault and restudy of the surface rupture zone of the 1947 M7¾ Dari earthquake, Qinghai Province[J]. Seismology and Geology, 42(3): 703-714. (in Chinese) | |
[4] | 吕红山, 赵凤新. 2007. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报, 29(1): 67-76. |
LÜ Hong-shan, ZHAO Feng-xin. 2007. Site coefficients suitable to China site category[J]. Acta Seismologica Sinica, 29(1): 67-76. (in Chinese) | |
[5] |
孙鑫喆, 徐锡伟, 陈立春, 等. 2010. 青海玉树MS7.1地震2个典型地点的地表破裂特征[J]. 地震地质, 32(2): 338-344. doi: 10.3969/j.issn.0253-4967.2010.02.017.
DOI |
SUN Xin-zhe, XU Xi-wei, CHEN Li-chun, et al. 2010. Characteristics of surface rupture of the MS7.1 Yushu, Qinghai Province earthquake at two representative places[J]. Seismology and Geology, 32(2): 338-344. (in Chinese) | |
[6] | 王宏伟, 任叶飞, 温瑞智. 2021. 一种随机有限断层的三维地震动模拟方法: 鲁甸地震为例[J]. 地震工程与工程振动, 41(2): 181-191. |
WANG Hong-wei, REN Yei-fei, WEN Rui-zhi. 2021. A modified stochastic finite-fault method for simulating ground motions in three dimensions: A case study of Ludian earthquake[J]. Earthquake Engineering and Engineering Vibration, 41(2): 181-191. (in Chinese) | |
[7] | 王勤彩, 刘杰, 郑斯华, 等. 2005. 云南地区与频率有关的P波、 S波衰减研究[J]. 地震学报, 27(6): 588-597. |
WANG Qin-cai, LIU Jie, ZHENG Si-hua, et al. 2005. Frequency-dependent attenuation of P and S waves in Yunnan region[J]. Acta Seismologica Sinica, 27(6): 588-597. (in Chinese) | |
[8] | 王未来, 房立华, 吴建平, 等. 2021. 2021年青海玛多MS7.4地震序列精定位研究[J]. 中国科学(D辑), 51(7): 1193-1202. |
WANG Wei-lai, FANG Li-hua, WU Jian-ping, et al. 2021. Study in precise location of the 2021 Maduo, Qinghai MS7.4 earthquake sequence[J]. Science in China(Ser D), 51(7): 1193-1202. (in Chinese) | |
[9] | 尹欣欣, 王维欢, 蔡润, 等. 2021. 2021年青海玛多MS7.4地震精定位和发震构造初探[J]. 地震工程学报, 43(4): 834-839. |
YIN Xin-xin, WANG Wei-huan, CAI Run, et al. 2021. Precise location of the 2021 Maduo, Qinghai MS7.4 earthquake and its seismogenic structure[J]. China Earthquake Engineering Journal, 43(4): 834-839. (in Chinese) | |
[10] | 俞言祥, 李山有, 肖亮. 2013. 为新区划图编制所建立的地震动衰减关系[J]. 震灾防御技术, 8(1): 24-33. |
YU Yan-xiang, LI Shan-you, XIAO Liang. 2013. Development of ground motion attenuation relations for the new seismic hazard map of China[J]. Technology for Earthquake Disaster Prevention, 8(1): 24-33. (in Chinese) | |
[11] | 詹艳, 梁明剑, 孙翔宇, 等. 2021. 2021年5月22日青海玛多MS7.4地震深部环境及发震构造模式[J]. 地球物理学报, 64(7): 2232-2252. |
ZHAN Yan, LIANG Ming-jian, SUN Xiang-yu, et al. 2021. Deep structure and seismogenic pattern of the 2021.5.22 Madoi (Qinghai) MS7.4 earthquake[J]. Chinese Journal of Geophysics, 64(7): 2232-2252. (in Chinese) | |
[12] | 赵翠萍, 陈章立, 华卫, 等. 2011. 中国大陆主要地震活动区中小地震震源参数研究[J]. 地球物理学报, 54(6): 1478-1489. |
ZHAO Cui-ping, CHEN Zhang-li, HUA Wei, et al. 2011. Study on source parameters of small to moderate earthquakes in the main seismic active regions, China mainland[J]. Chinese Journal of Geophysics, 54(6): 1478-1489. (in Chinese) | |
[13] | Allmann B P, Shearer P M. 2009. Global variations of stress drop for moderate to large earthquakes[J]. Journal of Geophysical Research: Solid Earth, 114(B1): B01310. |
[14] |
Atkinson G M, Boore D M. 2006. Earthquake ground-motion prediction equations for eastern North America[J]. Bulletin of the Seismological Society of America, 96(6): 2181-2205.
DOI URL |
[15] |
Atkinson G M, Mereu R F. 1992. The shape of ground motion attenuation curves in southeastern Canada[J]. Bulletin of the Seismological Society of America, 82(5): 2014-2031.
DOI URL |
[16] |
Baltay A S, Hanks T C, Abrahamson N A. 2019. Earthquake stress drop and Arias intensity[J]. Journal of Geophysical Research: Solid Earth, 124(4): 3838-3852.
DOI URL |
[17] | Bodin P, Brune J N. 1996. On the scaling of slip with rupture length for shallow strike-slip earthquakes: Quasi-static models and dynamic rupture propagation[J]. Bulletin of the Seismological Society of America, 86(5): 1292-1299. |
[18] |
Boore D M. 2009. Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM[J]. Bulletin of the Seismological Society of America, 99(6): 3202-3216.
DOI URL |
[19] |
Boore D M. 2003. Simulation of ground motion using the stochastic method[J]. Pure and Applied Geophysics, 160(3-4): 635-676.
DOI URL |
[20] |
Boore D M, Thompson E M. 2015. Revisions to some parameters used in stochastic-method simulations of ground motion[J]. Bulletin of the Seismological Society of America, 105(2A): 1029-1041.
DOI URL |
[21] |
Dalguer L A, Miyake H, Day S M, et al. 2008. Surface rupturing and buried dynamic rupture models calibrated with statistical observations of past earthquakes[J]. Bulletin of the Seismological Society of America, 98(3): 1147-1161.
DOI URL |
[22] |
Graves R W, Pitarka A. 2010. Broadband ground-motion simulation using a hybrid approach[J]. Bulletin of the Seismological Society of America, 100(5A): 2095-2123.
DOI URL |
[23] |
Graves R, Pitarka A. 2015. Refinements to the Graves and Pitarka(2010)broadband ground-motion simulation method[J]. Seismological Research Letters, 86(1): 75-80.
DOI URL |
[24] |
Graves R, Pitarka A. 2016. Kinematic ground-motion simulations on rough faults including effects of 3D stochastic velocity perturbations[J]. Bulletin of the Seismological Society of America, 106(5): 2136-2153.
DOI URL |
[25] |
Heath D C, Wald D J, Worden C B, et al. 2020. A global hybrid VS30 map with a topographic-slope-based default and regional map insets[J]. Earthquake Spectra, 36(3): 1570-1584.
DOI URL |
[26] |
Manighetti I, Campillo M, Bouley S, et al. 2007. Earthquake scaling, fault segmentation, and structural maturity[J]. Earth and Planet Science Letters, 253(3-4): 429-438.
DOI URL |
[27] |
Motazedian D, Atkinson G M. 2005. Stochastic finite-fault modeling based on a dynamic corner frequency[J]. Bulletin of the Seismological Society of America, 95(3): 995-1010.
DOI URL |
[28] |
Pacheco J F, Scholz C H, Sykes L R. 1992. Changes in frequency-size relationship from small to large earthquakes[J]. Nature, 355(2): 71-73.
DOI URL |
[29] |
Saragoni G R, Hart G C. 1973. Simulation of artificial earthquakes[J]. Earthquake Engineering and Structural Dynamics, 2(3): 249-267.
DOI URL |
[30] |
Seyhan E, Stewart J P. 2014. Semi-empirical nonlinear site amplification from NGA-West2 data and simulations[J]. Earthquake Spectra, 30(3): 1241-1256.
DOI URL |
[31] |
Shaw B E, Scholz C H. 2001. Slip-length scaling in large earthquakes: Observations and theory and implications for earthquake physics[J]. Geophysical Research letters, 28(15): 2995-2998.
DOI URL |
[32] |
Shaw B E, Wesnousky S G. 2008. Slip-length scaling in large earthquakes: The role of deep-penetrating slip below the seismogenic layer[J]. Bulletin of the Seismological Society of America, 98(4): 1633-1641.
DOI URL |
[33] |
Somerville P, Irikura K, Graves R, et al. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismological Research Letters, 70(1): 59-80.
DOI URL |
[34] |
Wang H, Ren Y, Wen R. 2019. Investigating the contribution of stress drop to ground-motion variability by simulations using the stochastic empirical Green’s function method[J]. Pure and Applied Geophysics, 176(10): 4415-4430.
DOI URL |
[35] | Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||