[1] 程裕淇, 杨崇辉. 2004. 太行山中北段早前寒武纪地质和深熔作用对地壳岩石的改造 [M]. 北京: 地质出版社. CHENG Yu-qi, YANG Chong-hui. 2004. The Early Precambrian Geology and Anatism on the Crustal Rocks in the North-central Section of the Taihang Mountains [M]. Geological Publishing House, Beijing(in Chinese). [2] 兰彩云, 何昌荣, 姚文明, 等. 2010. 热水条件下角闪石断层泥的摩擦滑动性质: 与斜长石断层泥的对比[J]. 地球物理学报, 53(12): 2929—2937. LAN Cai-yun, HE Chang-rong, YAO Wen-ming, et al. 2010. Frictional sliding of hornblende gouge as compared with plagioclase gouge under hydrothermal conditions[J]. Chinese Journal of Geophysics, 53(12): 2929—2937(in Chinese). [3] Ampuero J, Rubin A M. 2008. Earthquake nucleation on rate and state faults: Aging and slip laws[J]. Journal of Geophysical Research: Solid Earth, 113(B1): B01302. [4] Beeler N M, Tullis T E, Kronenberg A K, et al. 2007. The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments[J]. Journal of Geophysical Research, 112(B7): B07310. [5] Berthoud P, Baumberger T, Gsell C, et al. 1999. Physical analysis of the state- and rate-dependent friction law: Static friction[J]. Physical Review B, 59(22): 14313—14327. [6] Bréchet Y, Estrin Y. 1994. The effect of strain rate sensitivity on dynamic friction of metals[J]. Scripta Metallurgica Et Materialia, 30(11): 1449—1454. [7] Dieterich J H. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations[J]. Journal of Geophysical Research: Solid Earth, 84(B5): 2161—2168. [8] Dieterich J H, Kilgore B. 1994. Direct observation of frictional contacts: New insights for state-dependent properties[J]. Pure and Applied Geophysics, 143(1): 283—302. [9] Dragert G, Wang K, James T S. 2001. A silent slip event on the deeper Cascadia subduction interface[J]. Science, 292(5521): 1525—1528. [10] Fagereng A, Hillary G W B, Diener J F A. 2014. Brittle-viscous deformation, slow slip, and tremor[J]. Geophysical Research Letters, 41(12): 4159—4167. [11] Gao X, Wang K. 2017. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip[J]. Nature, 543(7645): 416—419. [12] Gu J, Rice J R, Ruina A, et al. 1984. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction[J]. Journal of the Mechanics and Physics of Solids, 32(3): 167—196. [13] He C, Luo L, Hao Q, et al. 2013. Velocity-weakening behavior of plagioclase and pyroxene gouges and stabilizing effect of small amounts of quartz under hydrothermal conditions[J]. Journal of Geophysical Research, 118(7): 3408—3430. [14] He C, Wang Z, Yao W. 2007. Frictional sliding of gabbro gouge under hydrothermal conditions[J]. Tectonophysics, 445(3-4): 353—362. [15] He C, Wong T. 2014. Effect of varying normal stress on stability and dynamic motion of a spring-slider system with rate- and state-dependent friction[J]. Earthquake Science, 27(6): 577—587. [16] He C, Yao W, Wang Z, et al. 2006. Strength and stability of frictional sliding of gabbro gouge at elevated temperatures[J]. Tectonophysics, 427(1-4): 217—229. [17] Johnson K M, Shelly D R, Bradley A M. 2013. Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault[J]. Geophysical Research Letters, 40(7): 1300—1305. [18] Leake B E, Woolley A R, Arps C E S, et al. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names[J]. Mineralogical Magazine, 61(2): 295—321. [19] Linker M F, Dieterich J H. 1992. Effects of variable normal stress on rock friction: Observations and constitutive equations[J]. Journal of Geophysical Research: Solid Earth, 97(B4): 4923—4940. [20] Liu Y, Rice J R. 2009. Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia[J]. Journal of Geophysical Research: Solid Earth, 114(B9): B09407. [21] Liu Y, He C. 2020. Friction Properties of Hornblende at Hydrothermal Conditions [DB]. Mendeley Data, V2. http://dx.doi.org/10.17632/vmxkxmsbfh.2. [22] Lockner D A, Summers R, Byerlee J D. 1986. Effects of temperature and sliding rate on frictional strength of granite[J]. Pure and Applied Geophysics, 124(3): 445—469. [23] Lu Z, He C. 2014. Frictional behavior of simulated biotite fault gouge under hydrothermal conditions[J]. Tectonophysics, 622:62—80. [24] Marone C, Raleigh C B, Scholz C H. 1990. Frictional behavior and constitutive modeling of simulated fault gouge[J]. Journal of Geophysical Research: Solid Earth, 95(B5): 7007—7025. [25] Matsuzawa T, Hirose H, Shibazaki B, et al. 2010. Modeling short- and long-term slow slip events in the seismic cycles of large subduction earthquakes[J]. Journal of Geophysical Research: Solid Earth, 115(B12): B12301. [26] Nakatani M. 2001. Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology[J]. Journal of Geophysical Research, 106(B7): 13347—13380. [27] Obara K. 2002. Nonvolcanic deep tremor associated with subduction in southwest Japan[J]. Science, 296(5573): 1679—1681. [28] Ohara Y, Ishii T. 1998. Peridotites from the southern Mariana forearc: Heterogeneous fluid supply in mantle wedge[J]. Island Arc, 7(3): 541—558. [29] Okazaki K, Katayama I. 2015. Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes[J]. Geophysical Research Letters, 42(4): 1099—1104. [30] Oleskevich D A, Hyndman R D, Wang K. 1999. The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile[J]. Journal of Geophysical Research, 104(B7): 14965—14991. [31] Peacock S M. 1996. Thermal and petrologic structure of subduction zones [A]// Bebout G E, Scholl D W, Kirby S H, et al.(eds), Subduction: Top to Bottom. Washington DC: American Geophysical Union: 119—133. [32] Rice J R, Lapusta N, Ranjith K. 2001. Rate and state dependent friction and the stability of sliding between elastically deformable solids[J]. Journal of the Mechanics and Physics of Solids, 49(9): 1865—1898. [33] Rogers G, Dragert H. 2003. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip[J]. Science, 300(5627): 1942—1943. [34] Ruina A. 1983. Slip instability and state variable friction laws[J]. Journal of Geophysical Research: Solid Earth, 88(B12): 10359—10370. [35] Rutter E H. 1983. Pressure solution in nature, theory and experiment[J]. Journal of the Geological Society, 140(5): 725—740. [36] Shelly D R, Hardebeck J L. 2010. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault[J]. Geophysical Research Letters, 37(14): 227—235. [37] Takahashi M, Uehara S, Mizoguchi K, et al. 2011. On the transient response of serpentine(antigorite)gouge to stepwise changes in slip velocity under high-temperature conditions[J]. Journal of Geophysical Research: Solid Earth, 116(B10): B10405. [38] Tian P, He C. 2019. Velocity weakening of simulated augite gouge at hydrothermal conditions: Implications for frictional slip of pyroxene-bearing mafic lower crust[J]. Journal of Geophysical Research, 124(7): 6428—6451. [39] Verberne B A, Niemeijer A R, De Bresser J H P, et al. 2015. Mechanical behavior and microstructure of simulated calcite fault gouge sheared at 20~600℃: Implications for natural faults in limestones[J]. Journal of Geophysical Research, 120(12): 8169—8196. |