[1] 何文贵, 袁道阳, 王爱国, 等. 2012. 酒泉盆地北侧金塔南山北缘断裂西段全新世活动特征[J]. 地震, 32(3): 59-66. HE Wen-gui, YUAN Dao-yang, WANG Ai-guo, et al.2012. Active faulting features in Holocene of the west segment of the Jintanan Shan north-margin fault at the north of Jiuquan Basin[J]. Earthquake, 32(3): 59-66(in Chinese). [2] 卢耀洋. 2014. 金塔南山地貌演化与黑河演化研究 [D]. 兰州: 兰州大学. LU Yao-yang.2014. Research on the geomorphic evolution of the Jinta Nan Shan and the evolution of the Heihe River [D]. Lanzhou University, Lanzhou(in Chinese). [3] 温振玲, 胡小飞, 潘保田, 等. 2015. 甘肃金塔南山河流阶地褶皱变形分析[J]. 地质论评, 61(5): 1032-1046. WEN Zhen-ling, HU Xiao-fei, PAN Bao-tian, et al.2015. Deformation analysis of fluvial terrace in JintaNanshan Mountains, Gansu Province[J]. Geological Review, 61(5): 1032-1046(in Chinese). [4] 温振玲, 胡小飞, 潘保田, 等. 2016. 金塔南山河流砾石特征指示的青藏高原东北缘地貌演化[J]. 第四纪研究, 36(4): 907-916. WEN Zhen-ling, HU Xiao-fei, PAN Bao-tian, et al.2016. The fluvial gravels features of JintaNanshan Mountain and its implication on the landform evolution in the NE Tibetan plateau[J]. Quaternary Sciences, 36(4): 907-916(in Chinese). [5] Allen P A.2008. Time scales of tectonic landscapes and their sediment routing systems[J]. Geological Society of London Special Publications, 296(1): 7-28. [6] Amos C B, Burbank D W.2007. Channel width response to differential uplift[J]. Journal of Geophysical Research: Earth Surface, 112(F2): F02010. [7] Amos C B, Burbank D W, Read S A L.2010. Along-strike growth of the Ostler Fault, New Zealand: Consequences for drainage deflection above active thrusts[J]. Tectonics, 29(4): 4881-4892. [8] Babault J, Van Den Driessche J, Teixell A.2012. Longitudinal to transverse drainage network evolution in the High Atlas(Morocco): The role of tectonics[J]. Tectonics, 31(4): TC4020. [9] Bishop P.1995. Drainage rearrangement by river capture, beheading and diversion[J]. Progress in Physical Geography, 19(4): 449-473. [10] Braun J, Sambridge M.1997. Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization[J]. Basin Research, 9(1): 27-52. [11] Bretis B, Bartl N, Grasemann B.2011. Lateral fold growth and linkage in the Zagros fold and thrust belt(Kurdistan, NE Iraq)[J]. Basin Research, 23(6): 615-630. [12] Bufe A, Paola C, Burbank D W.2016. Fluvial bevelling of topography controlled by lateral channel mobility and uplift rate[J]. Nature Geoscience, 9(9): 706-712. [13] Burbank D, Meigs A, Brozovi N.1996. Interactions of growing folds and coeval depositional systems[J]. Basin Research, 8(3): 199-223. [14] Burbank D W, Mclean J K, Bullen M, et al.1999. Partitioning of intermontane basins by thrust-related folding, Tien Shan, Kyrgyzstan[J]. Basin Research, 11(1): 75-92. [15] Cai M, Fang X, Wu F, et al.2012. Pliocene-Pleistocene stepwise drying of Central Asia: Evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Tibetan plateau[J]. Global and Planetary Change, 94-95:72-81. [16] Cartwright J A, Trudgill B D, Mansfield C S.1995. Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah[J]. Journal of Structural Geology, 17(9): 1319-1326. [17] Champel B, Van der Beek P, Mugnier J L, et al.2002. Growth and lateral propagation of fault-related folds in the Siwaliks of western Nepal: Rates, mechanisms, and geomorphic signature[J]. Journal of Geophysical Research: Solid Earth, 107(B6): ETG 2-1-ETG2-18. [18] Collignon M, Yamato P, Castelltort S, et al.2016. Modeling of wind gap formation and development of sedimentary basins during fold growth: Application to the Zagros fold belt, Iran[J]. Earth Surface Processes and Landforms, 41(11): 1521-1535. [19] Constantine J A.2014. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin[J]. Nature Geoscience, 7(12): 899-903. [20] Cook K L, Turowski J M, Hovius N.2014. River gorge eradication by downstream sweep erosion[J]. Nature Geoscience, 7(9): 682-686. [21] Dawers N H, Anders M H.1995. Displacement-length scaling and fault linkage[J]. Journal of Structural Geology, 17(5): 607-614. [22] Dawers N H, Anders M H, Scholz C H.1993. Growth of normal faults: Displacement-length scaling[J]. Geology, 21(12): 1107-1110. [23] Delcaillau B, Carozza J M, Laville E.2006. Recent fold growth and drainage development: The Janauri and Chandigarh anticlines in the Siwalik foothills, northwest India[J]. Geomorphology, 76(3-4): 241-256. [24] Delcaillau B, Deffontaines B, Floissac L, et al.1998. Morphotectonic evidence from lateral propagation of an active frontal fold, Pakuashan anticline, foothills of Taiwan[J]. Geomorphology, 24(4): 263-290. [25] Douglass J, Schmeeckle M.2007. Analogue modeling of transverse drainage mechanisms[J]. Geomorphology, 84(1): 22-43. [26] Duvall A R, Kirby E, Burbank D W.2004. Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California[J]. Journal of Geophysical Research: Earth Surface, 109(F3): F03002. [27] Finnegan N J, Hallet B, Montgomery D R, et al.2008. Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet[J]. Geological Society of America Bulletin, 120(1-2): 142-155. [28] Ghisetti F C, Gorman A R, Sibson R H.2007. Surface breakthrough of a basement fault by repeated seismic slip episodes: The Ostler Fault, South Island, New Zealand[J]. Tectonics, 26(6): TC6004. [29] Gupta S.1997. Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin[J]. Geology, 25(1): 11-14. [30] Hampel A, Hetzel R.2016. Role of climate changes for wind gap formation in a young, actively growing mountain range[J]. Terra Nova, 28(6): 441-448. [31] Hampel A, Hetzel R, Maniatis G, et al.2009. Three-dimensional numerical modeling of slip rate variations on normal and thrust fault arrays during ice cap growth and melting[J]. Journal of Geophysical Research: Solid Earth, 114(6): B08406. [32] Harbor D J.1998. Dynamic equilibrium between an active uplift and the Sevier River, Utah[J]. The Journal of Geology, 106(2): 181-194. [33] Hetzel R.2013. Active faulting, mountain growth, and erosion at the margins of the Tibetan plateau constrained by in situ-produced cosmogenic nuclides[J]. Tectonophysics, 582(1): 1-24. [34] Hetzel R, Hampel A, Gebbeken P, et al.2019. A constant slip rate for the western Qilian Shan frontal thrust during the last 200ka consistent with GPS-derived and geological shortening rates[J]. Earth and Planetary Science Letters, 59:100-113. [35] Hetzel R, Tao M, Niedermann S, et al.2004. Implications of the fault scaling law for the growth of topography: Mountain ranges in the broken foreland of north-east Tibet[J]. Terra Nova, 16(3): 157-162. [36] Hovius N, Stark C P, Hao-Tsu C, et al.2000. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan[J]. The Journal of Geology, 108(1): 73-89. [37] Humphrey N F, Konrad S K.2000. River incision or diversion in response to bedrock uplift[J]. Geology, 28(1): 43-46. [38] Jackson J, Norris R, Youngson J.1996. The structural evolution of active fault and fold systems in central Otago, New Zealand: Evidence revealed by drainage patterns[J]. Journal of Structural Geology, 18(2): 217-234. [39] Jackson J, Ritz J F, Siame L, et al.2002. Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10Be[J]. Earth and Planetary Science Letters, 195(3): 185-193. [40] Johnson K N, Finnegan N J.2015. A lithologic control on active meandering in bedrock channels[J]. Geological Society of America Bulletin, 127(11-12): 1766-1776. [41] Keller E A, Devecchio D E.2013. Tectonic geomorphology of active folding and development of transverse drainages [A]∥Owen L A(ed). Treatise on Geomorphology. San Diego, CA: Academic Press, Volume 5, Tectonic Geomorphology: 129-147. [42] Keller E A, Gurrola L, Tierney T E.1999. Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding[J]. Geology, 27(6): 515-518. [43] Keller E A, Zepeda R L, Rockwell T K, et al.1998. Active tectonics at Wheeler Ridge, southern San Joaquin Valley, California[J]. Geological Society of America Bulletin, 110(3): 298-310. [44] Kim W, Sheets B A, Paola C.2010. Steering of experimental channels by lateral basin tilting[J]. Basin Research, 22(3): 286-301. [45] Kirby E, Whipple K.2001. Quantifying differential rock-uplift rates via stream profile analysis[J]. Geology, 29(5): 415-418. [46] Lavé J, Avouac J P.2000. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal[J]. Journal of Geophysical Research: Solid Earth, 105(B3): 5735-5770. [47] Lavé J, Avouac J P.2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal[J]. Journal of Geophysical Research: Solid Earth, 106(B11): 26561-26591. [48] Lee J.2015. Reconstruction of ancestral drainage pattern in an internally draining region, Fars Province, Iran[J]. Geological Magazine, 152(5): 830-843. [49] Malik J N, Mohanty C.2007. Active tectonic influence on the evolution of drainage and landscape: Geomorphic signatures from frontal and hinterland areas along the northwestern Himalaya, India[J]. Journal of Asian Earth Sciences, 29(5-6): 604-618. [50] Malik J N, Shah A A, Sahoo A K, et al.2010. Active fault, fault growth and segment linkage along the Janauri anticline(frontal foreland fold), NW Himalaya, India[J]. Tectonophysics, 483(3): 327-343. [51] Medwedeff D A.1992. Geometry and kinematics of an active, laterally propagating wedge thrust, Wheeler Ridge, California [A]∥ Mitra S, Fisher G W(eds.). Structural Geology of Fold and Thrust Belts. Baltimore: Johns Hopkins University Press. [52] Meghraoui M, Jaegy R, Lammali K, et al.1988. Late Holocene earthquake sequences on the El Asnam(Algeria)thrust fault[J]. Earth and Planetary Science Letters, 90(2): 187-203. [53] Mueller K, Talling P.1997. Geomorphic evidence for tear faults accommodating lateral propagation of an active fault-bend fold, Wheeler Ridge, California[J]. Journal of Structural Geology, 19(2): 397-411. [54] Pan B T, Chen D B, Hu X F, et al.2016. Drainage evolution of the Heihe River in western Hexi Corridor, China, derived from sedimentary and magnetostratigraphic results[J]. Quaternary Science Reviews, 150:250-263. [55] Peter V D B, Champel B, Mugnier J L.2002. Control of detachment dip on drainage development in regions of active fault-propagation folding[J]. Geology, 30(5): 471-474. [56] Price N J, Cosgrove J W.1990. Analysis of Geological Structures [M]. Cambridge University Press, New York. [57] Ramsey L A, Walker R T, Jackson J.2008. Fold evolution and drainage development in the Zagros Mountains of Fars Province, SE Iran[J]. Basin Research, 20(1): 23-48. [58] Scharer K M, Burbank D W, Chen J, et al.2006. Kinematic models of fluvial terraces over active detachment folds: Constraints on the growth mechanism of the Kashi-Atushi fold system, Chinese Tian Shan[J]. Geological Society of America Bulletin, 118(7-8): 1006-1021. [59] Seong Y B, Kang H C, Ree J H, et al.2011. Geomorphic constraints on active mountain growth by the lateral propagation of fault-related folding: A case study on Yumu Shan, NE Tibet[J]. Journal of Asian Earth Sciences, 41(2): 184-194. [60] Sklar L S, Dietrich W E.2001. Sediment and rock strength controls on river incision into bedrock[J]. Geology, 29(12): 1087-1090. [61] Sobel E R, Hilley G E, Strecker M R.2003. Formation of internally drained contractional basins by aridity-limited bedrock incision[J]. Journal of Geophysical Research: Solid Earth, 108(B7): 2344. [62] Suppe J, Medwedeff D A.1990. Geometry and kinematics of fault-propagation folding[J]. Eclogae Geologicae Helvetiae, 83(3): 409-454. [63] Tomkin J H, Braun J.1999. Simple models of drainage reorganisation on a tectonically active ridge system[J]. New Zealand Journal of Geology and Geophysics, 42(1): 1-10. [64] Tucker G E, Slingerland R.1996. Predicting sediment flux from fold and thrust belts[J]. Basin Research, 8(3): 329-349. [65] Viaplana-Muzas M, Babault J, Dominguez S, et al.2018. Modelling of drainage dynamics influence on sediment routing system in a fold-and-thrust belt[J]. Basin Research, 31(2): 1-21. [66] Walker R T, Ramsey L A, Jackson J.2011. Geomorphic evidence for ancestral drainage patterns in the Zagros simple folded zone and growth of the Iranian plateau[J]. Geological Magazine, 148(5-6): 901-910. [67] Walsh J, Nicol A, Childs C.2002. An alternative model for the growth of faults[J]. Journal of Structural Geology, 24(11): 1669-1675. [68] Wang J, Fang X, Appel E, et al.2012. Pliocene-Pleistocene climate change at the NE Tibetan plateau deduced from lithofacies variation in the drill core SG-1, western Qaidam Basin, China[J]. Journal of Sedimentary Research, 82(11-12): 933-952. [69] Whipple K X, Tucker G E.2002. Implications of sediment-flux-dependent river incision models for landscape evolution[J]. Journal of Geophysical Research: Solid Earth, 107(B2): ETG3-1-ETG3-20. [70] Whittaker A C.2007. Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates[J]. Geology, 35(2): 103-106. [71] Wickert A D, Martin J M, Tal M, et al.2013. River channel lateral mobility: Metrics, time scales, and controls[J]. Journal of Geophysical Research: Earth Surface, 118(2): 396-412. [72] Wu F, Fang X, Ma Y, et al.2007. Plio-Quaternary stepwise drying of Asia: Evidence from a 3-Ma pollen record from the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 257(1-2): 160-169. [73] Yeats R S.1986. Active faults related to folding [A]∥ Wallace R E(ed). Active Tectonics. National Academy Press, Washington, DC, USA: 63-79. [74] Zeitler P K, Koons P O, Bishop M P, et al.2001. Crustal reworking at Nanga Parbat, Pakistan: Metamorphic consequences of thermal-mechanical coupling facilitated by erosion[J]. Tectonics, 20(5): 712-728. [75] Zheng W J, Zhang H P, Zhang P Z, et al.2013a. Late Quaternary slip rates of the thrust faults in western Hexi Corridor(northern Qilian Shan, China)and their implications for northeastward growth of the Tibetan plateau[J]. Geosphere, 9(2): 342-354. [76] Zheng W J, Zhang P Z, Ge W P, et al.2013b. Late Quaternary slip rate of the South Heli Shan Fault(northern Hexi Corridor, NW China)and its implications for northeastward growth of the Tibetan plateau[J]. Tectonics, 32(2): 271-293. |