[1] 冯红武, 颜文华, 严珊, 等. 2019. 背景噪声和地震面波联合反演渭河盆地及邻区壳幔S波速度结构[J]. 地震地质, 41(5): 1185—1205. doi: 10.3969/j.issn.0253-4967.2019.05.008. FENG Hong-wu, YAN Wen-hua, YAN Shan, et al.2019. Joint inversion of ambient noise and surface wave for S-wave velocity of the crust and uppermost mantle beneath Weihe Basin and its adjacent area[J]. Seismology and Geology, 41(5): 1185—1205(in Chinese). [2] 国家地震局“鄂尔多斯周缘活动断裂系”课题组. 1988. 鄂尔多斯周缘活动断裂系 [M]. 北京: 地震出版社: 124—129. The Research Group on “Active Fault System around Ordos Massif”, State Seismological Bureau. 1988. Active Fault System around Ordos Massif [M]. Seismological Press, Beijing: 124—129(in Chinese). [3] 韩恒悦, 张逸, 袁志祥. 2002. 渭河断陷盆地带的形成演化及断块运动[J]. 地震研究, 25(4): 362—368. HAN Heng-yue, ZHANG Yi, YUAN Zhi-xiang.2002. The evolution of Weihe down-faulted basin and the movement of the fault blocks[J]. Journal of Seismological Research, 25(4): 362—368(in Chinese). [4] 胡亚轩, 郝明, 宋尚武, 等. 2018. 渭河盆地现今三维地壳运动及断裂活动性研究[J]. 大地测量与地球动力学, 38(12): 1220—1226. HU Ya-xuan, HAO Ming, SONG Shang-wu, et al.2018. Present crustal motion in three-dimensional orientations and fault activities in Weihe Basin[J]. Journal of Geodesy and Geodynamics, 38(12): 1220—1226(in Chinese). [5] 李祥根, 冉勇康. 1983. 华山北坡及渭南塬前活断层[J]. 华北地震科学, 1(2): 10—19. LI Xiang-gen, RAN Yong-kang.1983. Active faults along the north margins of Huashan and Weinan loess tableland[J]. North China Earthquake Science, 1(2): 10—19(in Chinese). [6] 李煜航, 王庆良, 崔笃信, 等. 2016. 渭河盆地口镇-关山断裂活动性成因[J]. 大地测量与地球动力学, 36(8): 669—673. LI Yu-hang, WANG Qing-liang, CUI Du-xin, et al.2016. Analysis on the faulting origin of Kouzhen-Guanshan Fault in Weihe Basin[J]. Journal of Geodesy and Geodynamics, 36(8): 669—673(in Chinese). [7] 孟庆任. 2017. 秦岭的由来[J]. 中国科学(D辑), 47(4): 412—420. MENG Qing-ren.2017. Origin of the Qinling Mountains[J]. Science in China(Ser D), 47(4): 412—420(in Chinese). [8] 米丰收, 韩恒悦, 靳金泉, 等. 1993. 口镇-关山断裂的现今活动特征[J]. 西安地质学院学报, 15(2): 40—47. MI Feng-shou, HAN Heng-yue, JIN Jin-quan, et al.1993. Current activity characteristics of the Kouzhen-Guanshan Fault[J]. Journal of Xi'an College of Geology, 15(2): 40—47(in Chinese). [9] 彭玉柱, 冯希杰. 2014. 渭河盆地现代地震活动特点分析[J]. 高原地震, 26(3): 14—19. PENG Yu-zhu, FENG Xi-jie.2014. Analysis on characteristics of modern seismic activity in Weihe Basin[J]. Plateau Earthquake Research, 26(3): 14—19(in Chinese). [10] 乔鑫, 屈春燕, 单新建, 等. 2019. 基于时序InSAR的海原断裂带形变特征及运动学参数反演[J]. 地震地质, 41(6): 1481—1496. doi: 10.3969/j.issn.0253-4967.2019.06.011. QIAO Xin, QU Chun-yan, SHAN Xin-jian, et al.2019. Deformation characteristics and kinematic parameters inversion of Haiyuan fault zone based on time series InSAR[J]. Seismology and Geology, 41(6): 1481—1496(in Chinese). [11] 屈春燕, 单新建, 张国宏, 等. 2014. 时序InSAR断层活动性观测研究进展及若干问题探讨[J]. 地震地质, 36(3): 731—748. doi: 10.3969/j.issn.0253-4967.2014.03.015. QU Chun-yan, SHAN Xin-jian, ZHANG Guo-hong, et al.2014. The research progress in measurement of fault activity by time series InSAR and discussion of related issues[J]. Seismology and Geology, 36(3): 731—748(in Chinese). [12] 宋治平. 2011. 全球地震目录 [Z]. 北京: 地震出版社. SONG Zhi-ping.2011. Catalogue of Global Earthquakes [Z]. Seismological Press, Beijing(in Chinese). [13] 王景明. 1983. 渭河盆地活动构造与地震[J]. 地壳形变与地震, (4): 59—66. WANG Jing-ming.1983. Active structures and earthquakes in the Weihe Basin[J]. Crustal Deformation and Earthquake, (4): 59—66(in Chinese). [14] 吴中海. 2019. 活断层的定义与分类: 历史、 现状和进展[J]. 地球学报, 40(5): 661—697. WU Zhong-hai.2019. The definition and classification of active faults: History, current status and progress[J]. Acta Geoscientica Sinica, 40(5): 661—697(in Chinese). [15] 谢振乾. 2011. 拉伸型渭河盆地地震孕育发生的构造模型[J]. 灾害学, 26(3): 18—21. XIE Zhen-qian.2011. Structural model of earthquake preparation in Weihe extensional basin[J]. Journal of Catastrophology, 26(3): 18—21(in Chinese). [16] 徐煜坚, 申屠炳明, 汪一鹏. 1988. 渭河盆地北缘断裂带活动特征的初步研究[J]. 地震地质, 10(4): 77—88. XU Yu-jian, SHENTU Bing-ming, WANG Yi-peng.1988. Preliminary study on the activity characteristics of the fault zone in the northern margin of the Weihe Basin[J]. Seismology and Geology, 10(4): 77—88(in Chinese). [17] 原廷宏, 冯希杰. 2010. 一五五六年华县特大地震 [M]. 北京: 地震出版社. YUAN Ting-hong, FENG Xi-jie.2010. The 1556 Huaxian Earthquake [M]. Seismological Press, Beijing(in Chinese). [18] 张安良, 种瑾, 米丰收. 1992. 渭河断陷南缘断裂带新活动特征与古地震[J]. 华北地震科学, 10(4): 55—62. ZHANG An-liang, CHONG Jin, MI Feng-shou.1992. Characteristics of neotectonics and paleoearthquakes in the southern marginal fault zone of the Weihe fault depression[J]. North China Earthquake Sciences, 10(4): 55—62(in Chinese). [19] Biggs J, Wright T J, Lu Z, et al.2007. Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska[J]. Geophysical Journal International, 170(3): 1165—1179. [20] Brune J N.1968. Seismic moment, seismicity, and rate of slip along major fault zones[J]. Journal of Geophysical Research, 73(2): 777—784. [21] Butler R, Stewart G S, Kanamori H.1979. The July 27, 1976 Tangshan, China earthquake: A complex sequence of intraplate events[J]. Bulletin of the Seismological Society of America, 69(1): 207—220. [22] Cavalié O, Lasserre C, Doin M P, et al.2008. Measurement of interseismic strain across the Haiyuan Fault(Gansu, China), by InSAR[J]. Earth and Planetary Science Letters, 275(3-4): 246—257. [23] Deng Q D, Zhang P Z, Ran Y K, et al.2003. Basic characteristics of active tectonics of China[J]. Science in China(Ser D), 46(4): 356—372. [24] Dolan J F, Meade B J.2017. A comparison of geodetic and geologic rates prior to large strike-slip earthquakes: A diversity of earthquake cycle behaviors?[J]. Geochemistry, Geophysics, Geosystems, 18(12): 4426—4436. [25] Elliott J R, Biggs J, Parsons B, et al.2008. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays[J]. Geophysical Research Letters, 35(12): L12309. [26] England P, Jackson J.2011. Uncharted seismic risk[J]. Nature Geoscience, 4:348—349. [27] Fialko Y.2006. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system[J]. Nature, 441(7096): 968—971. [28] Guo Z, Chen Y J.2017. Mountain building at northeastern boundary of Tibetan plateau and craton reworking at Ordos block from joint inversion of ambient noise tomography and receiver functions[J]. Earth and Planetary Science Letters, 463:232—242. [29] Hashimoto C, Noda A, Sagiya T, et al.2009. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion[J]. Nature Geoscience, 2(2): 141—144. [30] Heki K, Miyazaki S, Tsuji H.1997. Silent fault slip following an interplate thrust earthquake at the Japan trench[J]. Nature, 386(6625): 595—598. [31] Hussain E, Hooper A, Wright T J, et al.2016. Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements[J]. Journal of Geophysical Research: Solid Earth, 121(12): 9000—9019. [32] Jolivet R, Grandin R, Lasserre C, et al.2011. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data[J]. Geophysical Research Letters, 38(17): L17311. [33] Lin A, Rao G, Yan B.2015. Flexural fold structures and active faults in the northern-western Weihe Graben, central China[J]. Journal of Asian Earth Sciences, 114:226—241. [34] McCalpin J P. 2009. Paleoseismology(Second edition)[M]. Academic Press, New York. [35] Northrup C J, Royden L H, Burchfiel B C.1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology, 23(8): 719—722. [36] Ozawa S, Nishimura T, Suito H, et al.2011. Coseismic and postseismic slip of the 2011 magnitude 9 Tohoku-Oki earthquake[J]. Nature, 475(7356): 373—376. [37] Qu F F, Zhang Q, Lu Z, et al.2014. Land subsidence and ground fissures in Xi'an, China 2005—2012 revealed by multi-band InSAR time-series analysis[J]. Remote Sensing of Environment, 155:366—376. [38] Rao G, Lin A, Yan B, et al.2014. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China[J]. Tectonophysics, 636:270—285. [39] Shen Z K, Lü J N, Wang M, et al.2005. Contemporary crustal deformation around the southeast borderland of the Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 110(B11): B11409. [40] Shen Z K, Sun J B, Zhang P Z, et al.2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2(10): 718—724. [41] Sieh K E, Stuiver M, Brillinger D.1989. A more precise chronology of earthquakes produced by the San Andreas Fault in southern California[J]. Journal of Geophysical Research, 94(B1): 603—623. [42] Simons M, Minson S E, Sladen A, et al.2011. The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries[J]. Science, 332(6036): 1421—1425. [43] Stein R S, King C P, Lin J.1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude=7.4 Landers earthquake[J]. Science, 258(5086): 1328—1332. [44] Stein R S, Liu M.2009. Long aftershock sequences within continents and implications for earthquake hazard assessment[J]. Nature, 462(7269): 87—89. [45] Stein R S, Okal E A.2005. Speed and size of the Sumatra earthquake[J]. Nature, 434(7033): 581—582. [46] Subarya C, Chlieh M, Prawirodirdjo L, et al.2006. Plate-boundary deformation associated with the great Sumatra-Andaman earthquake[J]. Nature, 440(7080): 46—51. [47] Tapponnier P, Molnar P.1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905—2930. [48] Tong X P, Sandwell D T, Fialko Y.2010. Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data[J]. Journal of Geophysical Research, 115(B4): B04314. [49] Wang H, Wright T J, Biggs J.2009. Interseismic slip rate of the northwestern Xianshuihe Fault from InSAR data[J]. Geophysical Research Letters, 36(3): L03302. [50] Wang H, Wright T J, Liu-Zeng J, et al.2019. Strain rate distribution in south-central Tibet from two decades of InSAR and GPS[J]. Geophysical Research Letters, 46(10): 5170—5179. [51] Wang J M.1987. The Fenwei rift and its recent periodic activity[J]. Tectonophysics, 133(3-4): 257—275. [52] Weldon R J, Sieh K E.1985. Holocene rate of slip and tentative recurrence interval for large earthquakes of the San Andreas Fault, Cajon Pass, southern California[J]. Geological Society of America Bulletin, 96(6): 793—812. [53] Wesnousky S G, Scholz C H, Shimazaki K, et al.1984. Integration of geological and seismological data for the analysis of seismic hazard: A case study of Japan[J]. Bulletin of the Seismological Society of America, 74(2): 687—708. [54] Wright T J, Parsons B, Fielding E.2001. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry[J]. Geophysical Research Letters, 28(10): 2117—2120. [55] Xu X W, Wen X Z, Yu G H, et al.2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 MW7.9 Wenchuan earthquake, China[J]. Geology, 37(6): 515—518. [56] Yeats R S, Sieh K E, Allen C R.1997. The Geology of Earthquakes [M]. Oxford University Press, New York, USA. [57] Zhang P Z, Deng Q D, Zhang G M, et al.2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China(Ser D), 46(S1): 13—24. [58] Zhang P Z, Engdahl E R.2013. Great earthquakes in the 21st century and geodynamics of the Tibetan plateau[J]. Tectonophysics, 584:1—6. [59] Zhang P Z, Shen Z K, Wang M, et al.2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9): 809—812. [60] Zhang W Q, Jiao D C, Zhang P Z, et al.1987. Displacement along the Haiyuan Fault associated with the great 1920 Haiyuan, China, earthquake[J]. Bulletin of the Seismological Society of America, 77(1): 117—131. [61] Zhang Y Q, Mercier J L, Vergély P.1998. Extension in the graben systems around the Ordos(China), and its contribution to the extrusion tectonics of South China with respect to Gobi-Mongolia[J]. Tectonophysics, 285(1-2): 41—75. [62] Zhou Y, Zhou C X, Deng F H, et al.2015. Improving InSAR elevation models in Antarctica using laser altimetry, accounting for ice motion, orbital errors and atmospheric delays[J]. Remote Sensing of Environment, 162:112—118. |