SEISMOLOGY AND GEOLOGY ›› 2019, Vol. 41 ›› Issue (2): 377-399.DOI: 10.3969/j.issn.0253-4967.2019.02.008
• Research Paper • Previous Articles Next Articles
ZHANG Di1,2,3, WU Zhong-hai2, LI Jia-cun3, LIU Shao-tang1, MA Dan3, LU Yan1
Received:
2019-01-21
Revised:
2019-02-25
Online:
2019-04-20
Published:
2019-05-21
张迪1,2,3, 吴中海2, 李家存3, 刘绍堂1, 马丹3, 卢燕1
通讯作者:
吴中海,研究员,E-mail:wzhh4488@sina.com
作者简介:
张迪,男,1987年生,2015年于首都师范大学获地图学与地理信息系统专业博士学位,讲师,研究方向为三维激光和地质雷达在活断层探测上的理论与应用,电话:0371-62508596,E-mail:zhangdi1987228@163.com。
基金资助:
CLC Number:
ZHANG Di, WU Zhong-hai, LI Jia-cun, LIU Shao-tang, MA Dan, LU Yan. THE DELINEATION OF THREE-DIMENSIONAL SHALLOW GEOMETRY OF ACTIVE FAULT BASED ON TLS AND GPR: A CASE STUDY OF AN NORMAL FAULT ON THE NORTH MARGIN OF MAOYABA BASIN IN LITANG, WESTERN SICHUAN PROVINCE[J]. SEISMOLOGY AND GEOLOGY, 2019, 41(2): 377-399.
张迪, 吴中海, 李家存, 刘绍堂, 马丹, 卢燕. 利用地面激光与地质雷达综合探测活断层浅层三维结构——以川西理塘毛垭坝盆地北缘正断层为例[J]. 地震地质, 2019, 41(2): 377-399.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2019.02.008
陈涛, 张培震, 刘静, 等. 2014. 机载激光雷达技术与海原断裂带的精细地貌定量化研究[J]. 科学通报, 59(14):1293-1304. doi:10.1007/s11434-014-0199-4. CHEN Tao, ZHANG Pei-zhen, LIU-ZENG Jing, et al. 2014. Quantitative study of tectonic geomorphology along Haiyuan Fault based on airborne LiDAR[J]. Chinese Science Bulletin, 59(14):1293-1304(in Chinese). 邓起东. 2002. 中国活动构造研究的进展与展望[J]. 地质论评, 18(2):168-177. DENG Qi-dong. 2002. Advances and overview on researches of active tectonics in China[J]. Geological Review, 18(2):168-177(in Chinese). 邓起东, 陈立春, 冉勇康, 2004. 活动构造定量研究与应用[J]. 地学前缘, 11(4):383-392. DENG Qi-dong, CHEN Li-chun, RAN Yong-kang. 2004. Quantitative studies and applications of active tectonics[J]. Earth Science Frontiers, 11(4):383-392(in Chinese). 焦其松, 张景发, 蒋洪波, 等. 2016. 基于TLS 技术的典型建筑物震害信息三维建模分析:以彭州市白鹿中学为例[J]. 国土资源遥感, 28(1):166-171. JIAO Qi-song, ZHAGN Jing-fa, JIANG Hong-bo, et al. 2016. Typical earthquake damage extraction and three-dimensional modeling analysis based on terrestrial laser scanning:A case study of Bailu Middle School of Pengzhou City[J]. Remote Sensing for Land and Resources, 28(1):166-171(in Chinese). 康帅, 张景发, 崔效峰, 等. 2017. 基于高精度地基LiDAR技术的活断层错断地貌研究:以冷龙岭活动断裂带为例[J]. 地震, 37(3):61-71. KANG Shuai, ZHANG Jing-fa, CUI Xiao-feng, et al. 2017. Offset landform caused by active fault based on high precision terrestrial LiDAR data:A case study of the Lenglongling active fault zone[J]. Earthquake, 37(3):61-71(in Chinese). 李峰, 徐锡伟, 陈桂华, 等. 2008. 高精度测量方法在汶川MS8.0地震地表破裂带考察中的应用[J]. 地震地质, 30(4):1065-1075. LI Feng, XU Xi-wei, CHEN Gui-hua, et al. 2008. The application of different high-precision survey methods in the investigation of the MS8.0 Wenchuan earthquake surface ruptures[J]. Seismology and Geology, 30(4):1065-1075(in Chinese). 刘静, 陈涛, 张培震, 等. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 58(1):41-45. doi:10.1360/972012-1526. LIU-ZENG Jing, CHEN Tao, ZHANG Pei-zhen, et al. 2013. Illuminating the active Haiyuan Fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1):41-45(in Chinese). 刘经南, 张小红. 2003. 激光扫描测高技术的发展与现状[J]. 武汉大学学报(信息科学版), 28(2):132-137. LIU Jing-nan, ZHANG Xiao-hong. 2003. Progress of airborne laser scanning altimetry[J]. Geomatics and Information Science of Wuhan University, 28(2):132-137(in Chinese). 刘澜波, 钱荣毅. 2015. 探地雷达:浅表地球物理科学技术中的重要工具[J]. 地球物理学报, 58(8):2606-2617. LIU Lan-bo, QIAN Rong-yi. 2015. Ground penetrating radar:A critical tool in near-surface geophysics[J]. Chinese Journal of Geophysics, 58(8):2606-2617(in Chinese). 马丹, 吴中海, 李家存, 等. 2014. 川西理塘断裂带的空间展布与第四纪左旋走滑活动的遥感影像标志[J]. 地质学报, 88(8):1417-1435. MA Dan, WU Zhong-hai, LI Jia-cun, et al. 2014. Geometric distribution and the Quaternary activity of Litang active fault zone based on remote sensing[J]. Acta Geologica Sinica, 88(8):1417-1435(in Chinese). 马洪超. 2011. 激光雷达测量技术在地学中的若干应用[J]. 地球科学:中国地质大学学报, 36(2):347-354. MA Hong-chao. 2011. Review on applications of LiDAR mapping technology to geosciences[J]. Earth Science:Journal of China University of Geosciences, 36(2):347-354(in Chinese). 冉勇康, 邓起东. 1999. 古地震学研究的历史、现状和发展趋势[J]. 科学通报, 44(11):12-20. RAN Yong-kang, DENG Qi-dong. 1999. History, status and trend about research of paleoseismology[J]. Chinese Science Bulletin, 44(11):12-20(in Chinese). 任治坤, 陈涛, 张会平, 等. 2014. LiDAR 技术在活动构造研究中的应用[J]. 地质学报, 88(6):1197-1202. REN Zhi-kun, CHEN Tao, ZHANG Hui-ping, et al. 2014. LiDAR survey in active tectonics studies:An introduction and overview[J]. Acta Geologica Sinica, 88(6):1197-1202(in Chinese). 魏占玉, 石峰, 高翔, 等. 2010. 汶川地震地表破裂面形貌特征[J]. 地学前缘, 17(5):53-66. WEI Zhan-yu, SHI Feng, GAO Xiang, et al. 2010. Topographic characteristics of rupture associated with Wenchuan earthquake[J]. Earth Science Frontiers, 17(5):53-66(in Chinese). 魏占玉, 何宏林, 高伟, 等. 2014. 基于LiDAR数据开展活动断层填图的实验研究:以新疆独山子背斜-逆冲断裂带为例[J]. 地震地质, 36(3):794-813. doi:10.3969/j.issn.0253-4967.2014.03.019. WEI Zhan-yu, HE Hong-lin, GAO Wei, et al. 2014. Experimental study of geologic mapping of active tectonics based on LiDAR data:A case of Dushanzi anticline-reverse fault zone in Xinjiang[J]. Seismology and Geology, 36(3):794-813(in Chinese). 吴中海. 2018. 活断层的术语、研究进展及问题思考[J]. 地球科学与环境学报, 40(6):706-726. WU Zhong-hai. 2018. Active faults:Terminology, research advances and thinking on some problems[J]. Journal of Earth Sciences and Environment, 40(6):706-726(in Chinese). 吴中海, 龙长兴, 范桃园, 等. 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报, 34(1):1-31. WU Zhong-hai, LONG Chang-xing, FAN Tao-yuan, et al. 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 34(1):1-31(in Chinese). 吴中海, 张岳桥, 胡道功. 2014. 新构造、活动构造与地震地质[J]. 地质通报, 33(4):391-402. WU Zhong-hai, ZHANG Yue-qiao, HU Dao-gong. 2014. Neotectonics, active tectonics and earthquake geology[J]. Geological Bulletin of China, 33(4):391-402(in Chinese). 徐锡伟, 闻学泽, 于贵华, 等. 2005. 川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J]. 中国科学(D辑), 35(6):540-551. XU Xi-wei, WEN Xue-ze, YU Gui-hua, et al. 2005. Average slip rate, earthquake rupturing segmentation and recurrence behavior on the Litang fault zone, western Sichuan Province[J]. Science in China(Ser D), 35(6):540-551(in Chinese). 杨必胜, 梁福逊, 黄荣刚. 2017. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 46(10):1509-1516. YANG Bi-sheng, LIANG Fu-xun, HUANG Rong-gang. 2017. Challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartogrphica Sinica, 46(10):1509-1516(in Chinese). 袁小祥, 王晓青, 窦爱霞, 等. 2012. 基于地面LiDAR玉树地震地表破裂的三维建模分析[J]. 地震地质, 34(1):39-46. doi:10.3969/j.issn.0253-4967.2012.01.005. YUAN Xiao-xiang, WANG Xiao-qing, DOU Ai-xia, et al. 2012. Terrestrial LiDAR-based 3D modeling analysis of surface rupture caused by Yushu earthquake[J]. Seismology and Geology, 34(1):39-46(in Chinese). 张迪, 李家存, 吴中海, 等. 2016. 地质雷达在活动断裂探测中的应用与进展[J]. 地质力学学报, 22(3):733-746. ZHANG Di, LI Jia-cun, WU Zhong-hai, et al. 2016. Review and application of ground penetrating radar in active fault[J]. Journal of Geomechanics, 22(3):733-746(in Chinese). 张迪, 李家存, 吴中海, 等. 2015. 探地雷达在探测玉树走滑断裂带活动性中的初步应用[J]. 地质通报, 34(1):204-216. ZHANG Di, LI Jia-cun, WU Zhong-hai, et al. 2015. A preliminary application of ground penetrating radar to the detection of active faults along Yushu strike-slip faulted zone[J]. Geological Bulletin of China, 34(1):204-216(in Chinese). 郑文俊, 雷启云, 杜鹏, 等. 2015. 激光雷达(LiDAR):获取高精度古地震探槽信息的一种新技术[J]. 地震地质, 37(1):232-241. doi:10.3969/j.issn.0253-4967.2015.01.018. ZHENG Wen-jun, LEI Qi-yun, DU Peng, et al. 2015.3D laser scanning(LiDAR):A new technology acquiring high precision palaeoearthquake trench information[J]. Seismology and Geology, 37(1):232-241(in Chinese). 周春景, 吴中海, 张克旗, 等. 2015. 川西理塘活动断裂最新同震地表破裂形成时代与震级的重新厘定[J]. 地震地质, 37(2):455-467. doi:10.3969/j.issn.0253-4967.2015.02.009. ZHOU Chun-jing, WU Zhong-hai, ZHANG Ke-qi, et al. 2015. New chronological constraint on the co-seismic surface rupture segments associated with the Litang Fault[J]. Seismology and Geology, 37(2):455-467(in Chinese). 周荣军, 陈国星, 李勇, 等, 2005. 四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究[J]. 地震地质, 27(1):31-43. ZHOU Rong-jun, CHEN Guo-xing, LI Yong, et al. 2005. Research on active faults in Litang-Batang region, western Sichuan Province, and the seismogenic structures of the 1989 Batang M6.7 earthquake swarm[J]. Seismology and Geology, 27(1):31-43(in Chinese). 朱如凯, 白斌, 袁选俊, 等. 2013. 利用数字露头模型技术对曲流河三角洲沉积储层特征的研究[J]. 沉积学报, 31(5):867-877. ZHU Ru-kai, BAI Bin, YUAN Xuan-jun, et al. 2013. A new approach for outcrop characterization and geostatistical analysis of meandering channels sandbodies within a delta plain setting using digital outcrop models:Upper Triassic Yanchang tight sandstone formation, Yanhe outcrop, Ordos Basin[J]. Acta Sedimentologica Sinica, 31(5):867-877(in Chinese). Anchuela Í P, Lafuente P, Arlegui L, et al. 2016. Geophysical characterization of buried active faults:The Concud Fault(Iberian Chain, NE Spain)[J]. International Journal of Earth Sciences, 105(8):2221-2239. Aqeel A M. 2012. Measuring the orientations of hidden subvertical joints in highways rock cuts using ground penetrating radar incombination with LiDAR[D]. Doctoral dissertation, Missouri University of Science and Technology, Lola City. Arrowsmith J R, Zielke O. 2009. Tectonic geomorphology of the San Andreas fault zone from high resolution topography:An example from the Cholame segment[J]. Geomorphology, 113(1-2):70-81. Axelsson P. 1999. Processing of laser scanner data:Algorithms and applications[J]. ISPRS Journal Photogrammetry and Remote Sensing, 54(2-3):138-147. Aziz A S, Stewart R R, Green S L, et al. 2016. Locating and characterizing burials using 3D ground-penetrating radar(GPR)and terrestrial laser scanning(TLS)at the historic Mueschke Cemetery, Houston, Texas[J]. Journal of Archaeological Science:Reports, 8:392-405. Benson A K. 1995. Applications of ground penetrating radar in assessing some geological hazards:Examples of groundwater contamination, faults, cavities[J]. Journal of Applied Geophysics, 33(1-3):177-193. Bubek A, Wilknson M, Roberts G P, et al. 2015. The tectonic geomorphology of bedrock scarps on active normal faults in the Italian Apennines mapped using combined ground penetrating radar and terrestrial laser scanning[J]. Geomorphology, 237:38-51. Busby J P, Merritt J W. 1999. Quaternary deformation mapping with ground penetrating radar[J]. Journal of Applied Geophysics, 41(1):75-91. Cahit C Y, Erhan A, Maksim B, et al. 2013. Application of GPR to normal faults in the Buyuk Menderes Graben, western Turkey[J]. Journal of Geodynamics, 65:218-227. Carbonel D, Rodríguez-Tribaldos V, Gutiérrez F, et al. 2015. Investigating a damaging buried sinkhole cluster in an urban area(Zaragoza city, NE Spain)integrating multiple techniques:Geomorphological surveys, DInSAR, DEMs, GPR, ERT, and trenching[J]. Geomorphology, 229:3-16. Chevalier M L, Leloup P H, Replumaz A, et al. 2016. Tectonic-geomorphology of the Litang fault system, SE Tibetan Plateau, and implication for regional seismic hazard[J]. Tectonophysics, 682:278-292. Christie M, Tsoflias G P, Stockli D F, et al. 2009. Assessing fault displacement and off-fault deformation in an extensional tectonic setting using 3-D ground-penetrating radar imaging[J]. Journal of Applied Geophysics, 68(1):9-16. Cowie P A, Phillips R J, Roberts G P, et al. 2017. Orogen-scale uplift in the central Italian Apennines drives episodic behavior of earthquake faults[J]. Scientific Reports, 7:44858. doi:10.1038/srep44858. Derron M H, Jaboyedoff M. 2010. Preface "LiDAR and DEM techniques for landslides monitoring and characterization"[J]. Natural Hazards and Earth System Sciences, 10:1877-1879. Dujardin J R, Bano M, Schlupp A, et al. 2014. GPR measurements to assess the Emeelt active fault's characteristics in a highly smooth topographic context, Mongolia[J]. Geophysical Journal International, 198(1):174-186. Gold P O, Oskin M E, Elliott A J, et al. 2013. Coseismic slip variation assessed from terrestrial LiDAR scans of the El Mayor-Cucapah surface rupture[J]. Earth and Planetary Science Letters, 366:151-162. Hooper D M, Bursik M I, Webb F H. 2003. Application of high-resolution, interferometric DEMs to geomorphic studies of fault scarps, Fish Lake Valley, Nevada-California, USA[J]. Remote Sensing of Environment, 84(2):255-267. Jol H M. 2009. Ground Penetrating Radar:Theory and Applications[M]. Amsterdam:Elsevier Science. Kayen R, Barnhardt W, Carkin B, et al. 2004. Imaging the M7.9 Denali Fault earthquake 2002 rupture at the Delta River using LiDAR, RADAR, and SASW surface wave geophysics[C]. American Geophysical Union Fall Meeting Abstracts:S11A-0999. Kayen R, Pack R T, Bay J, et al. 2006. Terrestrial-LiDAR visualization of surface and structural deformations of the 2004 Niigata Ken Chuetsu, Japan, earthquake[J]. Earthquake Spectra, 22(S1):147-162. Lagüela S, Solla M, Puente I, et al. 2018. Joint use of GPR, IRT and TLS techniques for the integral damage detection in paving[J]. Construction and Building Materials, 174:749-760. Lee K, Tomasso M, Ambrose W A, et al. 2007. Integration of GPR with stratigraphic and LiDAR data to investigate behind-the-outcrop 3D geometry of a tidal channel reservoir analog, upper Ferron Sandstone, Utah[J]. The Leading Edge, 26(8):994-998. Lubowiecka I, Armesto J, Arias P, et al. 2009. Historic bridge modeling using laser scanning, ground penetrating radar and finite element methods in the context of structural dynamics[J]. Engineering Structures, 31(11):2667-2676. Lunina O V, Gladkov A S, Afonkin A M, et al. 2016. Deformation style in the damage zone of the Mondy Fault:GPR evidence(Tunka Basin, southern East Siberia)[J]. Russian Geology and Geophysics, 57(9):1269-1282. Lunina O V, Gladkov A S, Gladkov A A. 2019. Surface and shallow subsurface structure of the middle Kedrovaya paleoseismic rupture zone in the Baikal Mountains from geomorphological and ground-penetrating radar investigations[J]. Geomorphology, 326:54-67. Maerz N H, Aqeel A M, Anderson N. 2015. Measuring orientations of individual concealed sub-vertical discontinuities in sandstone rock cuts integrating ground penetrating radar and terrestrial LiDAR measuring orientations of sub-vertical sandstone discontinuities[J]. Environmental and Engineering Geoscience, 21(4):293-309. Maruyama T, Lin A. 2002. Active strike-slip faulting history inferred from offsets of topographic features and basement rocks:A case study of the Arima-Takatsuki tectonic line, southwest Japan[J]. Tectonophysics, 344(1-2):81-101. Masini N, Capozzoli L, Chen P, et al. 2017. Towards an operational use of geophysics for archaeology in Henan(China):Methodological approach and results in Kaifeng[J]. Remote Sensing, 9(8):809. Maurya D M, Chouksey V, Joshi P N, et al. 2013. Application of GPR for delineating the neotectonic setting and shallow subsurface nature of the seismically active Gedi Fault, Kachchh, western India[J]. Journal of Geophysics and Engineering, 10(3):34006. Maurya D M, Chowksey V, Tiwari P, et al. 2017. Tectonic geomorphology and neotectonic setting of the seismically active South Wagad Fault(SWF), western India, using field and GPR data[J]. Acta Geophysica, 65(6):1167-1184. Neal A. 2004. Ground-penetrating radar and its use in sedimentology:Principles, problems and progress[J]. Earth Science Reviews, 66(3-4):261-330. Pérez J, de Sanjosé Blasco J, Atkinson A, et al. 2018. Assessment of the structural integrity of the Roman Bridge of Alcántara(Spain)using TLS and GPR[J]. Remote Sensing, 10(3):387. Peters L P, Daniels J J, Young J D. 1994. Ground penetrating radar as a subsurface environmental sensing tool[J]. Proceedings of the IEEE, 82(12):1802-1822. Puente I, Solla M, González-Jorge H, et al. 2013. Validation of mobile LiDAR surveying for measuring pavement layer thicknesses and volumes[J]. NDT&E International, 60:70-76. Puente I, Solla M, Lagüela S, et al. 2018. Reconstructing the Roman Site "Aquis Querquennis"(Bande, Spain)from GPR, T-LiDAR and IRT data fusion[J]. Remote Sensing, 10(3):379. Schneiderwind S, Mason J, Wiatr T, et al. 2016.3-D visualisation of palaeoseismic trench stratigraphy and trench logging using terrestrial remote sensing and GPR:A multiparametric interpretation[J]. Solid Earth, 7(2):323-340. Smith D G, Jol H M, Owen T E. 1995. Ground penetrating radar:Antenna frequencies and maximum probable depths of penetration in Quaternary sediments[J]. Journal of Applied Geophysics, 33(1-3):93-100. Solla M, González-Jorge H, Álvarez M X, et al. 2012a. Application of non-destructive geomatic techniques and FDTD modeling to metrical analysis of stone blocks in a masonry wall[J]. Construction and Building Materials, 36:14-19. Solla M, Lorenzo H, Novo A, et al. 2011. Evaluation of ancient structures by GPR(Ground Penetrating Radar):The arch bridges of Galicia(Spain)[J]. Scientific Research and Essays, 6(8):1877-1884. Solla M, Lorenzo H, Novo A, et al. 2012b. Structural analysis of the Roman Bibei bridge(Spain)based on GPR data and numerical modeling[J]. Automation in Construction, 22:334-339. Solla M, Lorenzo H, Rial F I, et al. 2012c. Ground-penetrating radar for the structural evaluation of masonry bridges:Results and interpretational tools[J]. Construction and Building Materials, 29:458-465. Spahic D, Exner U, Behm M, et al. 2010. Structural 3D modeling using GPR in unconsolidated sediments(Vienna Basin, Austria)[J]. Trabajos de Geología, 30(30):250-252. Teixidó T, Peña J A, Fernández G, et al. 2014. Ultradense topographic correction by 3D-laser scanning in pseudo -3D ground-penetrating radar data:Application to the constructive pattern of the monumental platform at the Segeda I Site(Spain)[J]. Archaeological Prospection, 21(2):113-123. Thomson L, Osinski G, Barfoot T D. 2010. Application of LiDAR and GPR to terrestrial and Martian periglacial and glacial geomorphology[C]. Proceedings of the Third European Conference on Permafrost(EUCOP). Svalbard, Norway:EUCOP. Weihermüller L, Huisman J A, Lambot S, et al. 2007. Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques[J]. Journal of Hydrology, 340(3-4):205-216. Zhao W K, Emanuele F, Sara T L, et al. 2015. Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis[J]. Journal of Archaeological Science, 54:77-85. Zhou L, Heitaro K, Sakae M, et al. 2013. Detection of subtle tectonic geomorphic features in densely forested mountains by very high resolution airborne LiDAR survey[J]. Geomorphology, 182:104-115. |
[1] | SHEN Hua-liang, YANG Yao, ZHOU Zhi-hua, RUI Xue-lian, LIAO Xiao-feng, ZHAO De-yang, LIANG Ming-jian, CHEN Meng-die, GUAN Zhi-jun, REN Hong-wei. GENESIS AND DEEP GEOTHERMAL PROCESS OF MAOYA HOT SPRINGS IN LITANG, WESTERN SICHUAN [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(3): 689-709. |
[2] | LI Yi-shi. RESEARCH ON COMPREHENSIVE STANDARDIZATION FOR SURVEYING AND PROSPECTING OF ACTIVE FAULT [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 455-463. |
[3] | YANG Chen-yi, LI Xiao-ni, FENG Xi-jie, HUANG Yin-di, PEI Gen-di. SHALLOW STRUCTURE AND QUATERNARY ACTIVITY OF THE TAOCHUAN-HUXIAN FAULT, THE SUB-STRAND OF THE NORTHERN QINLING FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 464-483. |
[4] | ZHANG Hao, WANG Jin-yan, XU Han-gang, LI Li-mei, JIANG Xin, ZHAO Qi-guang, GU Qin-ping. GEOMETRIC STRUCTURE CHARACTERISTICS OF XINYI SEGMENT OF ANQIU-JUXIAN FAULT [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1448-1468. |
[5] | XU Zhi-ping, ZHANG Yang, YANG Li-pu, XU Shun-qiang, JIANG Lei, TANG Lin, LIN Ji-yan. STUDY ON THE DEEP STRUCTURAL CHARACTERISTIC OF MAIN ACTIVE FAULTS IN HENAN PROVINCE AND ITS ADJACENT AREAS [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1521-1538. |
[6] | CAO Jun, LI Yan-bao, RAN Yong-kang, XU Xi-wei, MA Dong-wei, ZHANG Zhi-qiang. TYPICAL CASE ANALYSIS ON SETBACK DISTANCE FOR URBAN BURIED ACTIVE FAULT: AN EXAMPLE SITE ALONG THE TANLU FAULT ZONE IN XINYI CITY [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 1071-1085. |
[7] | YI Hu, ZHAN Wen-huan, MIN Wei, WU Xiao-chuan, LI Jian, FENG Ying-ci, REN Zhi-kun. A COMPARATIVE STUDY OF SOURCE EFFECT BASED ON MINI-MULTICHANNEL SEISMIC PROFILE IN MARINE ACTIVE FAULT DETECTION [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 333-348. |
[8] | LI Zheng-fang, LI Yan-bao, ZHOU Ben-gang, ZHU Guo-jun, LIU Bao-jin, WU Jian. NEW INSIGHT ON THE HOLOCENE ACTIVITY OF THE EASTERN MARGINAL FAULT OF DAXING UPLIFT, BEIJING PLAIN [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1671-1681. |
[9] | ZHAN Hui-li, ZHANG Dong-li, HE Xiao-hui, SHEN Xu-zhang, ZHENG Wen-jun, LI Zhi-gang. LIMITATION OF CURRENT TECTONIC DEFORMATION MODES IN THE WESTERN MARGIN OF ORDOS BASED ON SEISMIC ACTIVITY CHARACTERISTICS [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(2): 346-365. |
[10] | TIAN Xiao-feng, XIONG Wei, WANG Fu-yun, XU Zhao-fan, DUAN Yong-hong, JIA Shi-xu. UPPER CRUSTAL VELOCITY STRUCTURE AND CONSTRAINING FAULT INTERPRETATION FROM SHUNYI-TANGGU REFRACTION EXPERIMENT DATA [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(2): 414-434. |
[11] | LI Zhi-min, REN Zhi-kun, LIU Jin-rui, HA Guang-hao, LI Zheng-fang, WANG Bo, WANG Lin-jian. NEW DISCOVERY OF RESHUI-TAOSTUO RIVER FAULT IN DULAN, QINGHAI PROVINCE AND ITS IMPLICATIONS [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(1): 18-32. |
[12] | YANG Xiao-ping, WANG Ping, LI Xiao-feng, XIE Chao, ZHOU Ben-gang, HUANG Xiong-nan. APPLICATION OF TOPOGRAPHIC SLOPE AND ELEVATION VARIATION COEFFICIENT IN IDENTIFYING THE MOTUO ACTIVE FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(2): 419-435. |
[13] | HA Guang-hao, WU Zhong-hai, MA Feng-shan, ZENG Qing-li, ZHANG Lu-qing, GAI Hai-long. FIRST REPORT OF BERO ZECO ACTIVE FAULT IN GÊRZÊ, NORTHERN TIBET [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(2): 436-446. |
[14] | WU Xi-yan, XU Xi-wei, YU Gui-hua, CHENG Jia, CHEN Gui-hua, AN Yan-fen, WANG Qi-xin. MAP PREPARATION OF EARTHQUAKE SURFACE RUPTURES IN THE NATIONAL EXPERIMENTAL FIELD OF EARTHQUAKE MONITORING AND PREDICTION IN SICHUAN AND YUNNAN PROVINCE [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(1): 27-41. |
[15] | HUANG Wei-liang, YANG Xiao-ping, LI Sheng-qiang, YANG Hai-bo. HOLOCENE SLIP RATE AND EARTHQUAKE HAZARD OF THE NORTH-EDGE FAULT OF THE YANQI BASIN, SOUTHEASTERN TIAN SHAN, CHINA [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(1): 186-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||