SEISMOLOGY AND GEOLOGY ›› 2018, Vol. 40 ›› Issue (6): 1254-1275.DOI: 10.3969/j.issn.0253-4967.2018.06.005
Previous Articles Next Articles
LIU Yun-hua, SHAN Xin-jian, ZHANG Ying-feng, ZHAO De-zheng, QU Chun-yan
Received:
2018-02-24
Revised:
2018-06-13
Online:
2018-12-20
Published:
2019-01-18
刘云华, 单新建, 张迎峰, 赵德政, 屈春燕
作者简介:
刘云华,男,1977年生,2010年于中国地震局地质研究所获固体地球物理专业博士学位,助理研究员,主要从事RS、GIS在地震地质中的应用研究工作,E-mail:liuyunhua@ies.ac.cn。
基金资助:
CLC Number:
LIU Yun-hua, SHAN Xin-jian, ZHANG Ying-feng, ZHAO De-zheng, QU Chun-yan. USE OF SEISMIC WAVEFORMS AND INSAR DATA FOR DETERMINATION OF THE SEISMOTECTONICS OF THE MAINLING MS6.9 EARTHQUAKE ON NOV.18, 2017[J]. SEISMOLOGY AND GEOLOGY, 2018, 40(6): 1254-1275.
刘云华, 单新建, 张迎峰, 赵德政, 屈春燕. 基于地震波及InSAR数据的2017年11月18日西藏米林MS6.9地震发震构造[J]. 地震地质, 2018, 40(6): 1254-1275.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2018.06.005
白玲, 李国辉, 宋博文. 2017. 2017年西藏米林6.9级地震震源参数及其构造意义[J]. 地球物理学报, 60(12):4956-4963. BAI Ling, LI Guo-hui, SONG Bo-wen. 2017. The source parameters of the M6.9 Mainling, Tibet earthquake and its tectonic implications[J]. Chinese Journal of Geophysics, 60(12):4956-4963(in Chinese). 陈伟文, 倪四道, 汪贞杰, 等. 2012. 2010年高雄地震震源参数的近远震波形联合反演[J]. 地球物理学报, 55(7):2319-2328. CHEN Wei-wen, NI Si-dao, WANG Zhen-jie, et al. 2012. Joint inversion with both local and teleseismic waveforms for source parameters of the 2010 Kaohsiung earthquake[J]. Chinese Journal of Geophysics, 55(7):2319-2328(in Chinese). 丁林, 潘裕生, 王庆隆. 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报, 40(16):1497-1500. DING Lin, PAN Yu-sheng, WANG Qing-long. 1995. Fission track evidence of rapid uplift in the eastern Himalayan structure[J]. Chinese Science Bulletin, 40(16):1497-1500(in Chinese). 丁林, 钟大赉. 1999. 西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义[J]. 中国科学(D辑), 29(5):385-397. DING Lin, ZHONG Da-lai. 1999. The characteristics of high pressure granulite facies metamorphism and its tectonic geological significance in the south of Tibet[J]. Science in China(Ser D), 29(5):385-397(in Chinese). 丁林, 钟大赉. 2013. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化[J]. 地质科学, 48(2):317-333. DING Lin, ZHONG Da-lai. 2013. The tectonic evolution of the eastern Himalaya syntaxis since the collision of the Indian and Eurasian plates[J]. Chinese Journal of Geology, 48(2):317-333(in Chinese). 董汉文, 许志琴, 李源, 等. 2014. 东喜马拉雅构造结墨脱剪切带特征及其区域构造意义[J]. 岩石学报, 30(8):2229-2240. DONG Han-wen, XU Zhi-qin, LI Yuan, et al. 2014. Characteristics of the Medog shear zone in the Eastern Himalayan Syntaxis and its tectonic significance[J]. Acta Petrologica Sinica, 30(8):2229-2240(in Chinese). 顾功叙. 1983. 中国地震目录(公元前1831年-公元1969年)[Z]. 北京:科学出版社. GU Gong-xu. 1983. Chinese Earthquake Catalog(BC 1831-AD 1969)[Z]. Science Press, Beijing(in Chinese). 李保昆, 刁桂苓, 徐锡伟, 等. 2015. 1950年西藏察隅M8.6强震序列震源参数复核[J]. 地球物理学报, 58(11):4254-4265. LI Bao-kun, DIAO Gui-ling, XU Xi-wei, et al. 2015. Redetermination of the source parameters of the Zayü, Tibet M8.6 earthquake sequence in 1950[J]. Chinese Journal of Geophysics, 58(11):4254-4265(in Chinese). 李晓峰, 王萍, 王慧颖, 等. 2018. 雅鲁藏布江大拐弯地区河流地貌参数揭示的地质构造意义[J]. 第四纪研究, 38(1):183-192. LI Xiao-feng, WANG Ping, WANG Hui-ying, et al. 2018. Differential tectonic uplift indicated by river geomorphic parameters at the Tsangpo River Gorge[J]. Quaternary Sciences, 38(1):183-192(in Chinese). 梁诗明. 2014. 基于GPS观测的青藏高原现今三维地壳运动研究[D]. 北京:中国地震局地质研究所. LIANG Shi-ming. 2014. Three-dimensional velocity field of present-day crustal motion of the Tibetan plateau inferred from GPS measurements[D]. Institute of Geology, Chinese Earthquake Administration, Beijing(in Chinese). 刘焰, Wolfgang S, 王猛. 2006. 东喜马拉雅构造结陆内变形过程的研究[J]. 地质学报, 80(9):1274-1284, 1487. LIU Yan, Wolfgang S, WANG Meng. 2006. Intracontinental deformed processes of the eastern Himalayan syntaxis[J]. Acta Geologica Sinica, 80(9):1274-1284, 1487(in Chinese). 彭淼, 姜枚, Chen Y, 等. 2017. 利用远震接收函数揭示的喜马拉雅东构造结台阵下方地壳结构及其动力学意义[J]. 地球物理学报, 60(1):70-85. PENG Miao, JIANG Mei, CHEN You-lin, et al. 2017. Crustal structure under the eastern Himalayan syntaxis seismic array and its geodynamic implications derived from receiver functions[J]. Chinese Journal of Geophysics, 60(1):70-85(in Chinese). 宋键, 唐方头, 邓志辉, 等. 2011. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究[J]. 地球物理学报, 54(6):1536-1548. SONG Jian, TANG Fang-tou, DENG Zhi-hui, et al. 2011. Study on current movement characteristics and numerical simulation of the main faults around Eastern Himalayan Syntaxis[J]. Chinese Journal of Geophysics, 54(6):1536-1548(in Chinese). 唐方头, 宋键, 曹忠权, 等. 2010. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征[J]. 地球物理学报, 53(9):2119-2128. TANG Fang-tou, SONG Jian, CAO Zhong-quan, et al. 2010. The movement characters of main faults around Eastern Himalayan Syntaxis revealed by the latest GPS data[J]. Chinese Journal of Geophysics, 53(9):2119-2128(in Chinese). 肖鹏飞, 白登海, Ivan M V, 等. 2010. 长周期大地电磁测深研究:青藏高原东部LMT响应函数及应用[J]. 地震地质, 32(1):38-50. doi:10.3969/j.issn.0253-4967.2010.01.004. XIAO Peng-fei, BAI Deng-hai, Ivan M V, et al. 2010. Study on long-period magnetotelluric sounding:The LMT transfer function in eastern Tibetan plateau[J]. Seismology and Geology, 32(1):38-50(in Chinese). 许志琴, 蔡志慧, 张泽明, 等. 2008. 喜马拉雅东构造结:南迦巴瓦构造及组构运动学[J]. 岩石学报, 24(7):1463-1476. XU Zhi-qin, CAI ZHi-hui, ZHANG Ze-ming, et al. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis[J]. Acta Petrologica Sinica, 24(7):1463一1476(in Chinese). 曾祥方, 罗艳, 韩立波, 等. 2013. 2013年4月20日四川芦山MS7.0地震:一个高角度逆冲地震[J]. 地球物理学报, 56(4):1418-1424. ZENG Xiang-fang, LUO Yan, HAN Li-bo, et al. 2013. The Lushan MS7.0 earthquake on 20 April 2013:A high-angle thrust event[J]. Chinese Journal of Geophysics, 56(4):1418-1424(in Chinese). 张进江, 钟大赉, 何顺东. 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学(D辑), 33(4):373-383. ZHANG Jin-jiang, ZHONG Da-lai, HE Shun-dong. 2003. The tectonic pattern and formation process of Namche Barwa syntaxis in east Himalaya[J]. Science in China(Ser D), 33(4):373-383(in Chinese). 张浪平, 邵志刚, 晏锐. 2011. 藏东南及周边地区地震活动特征研究[J]. 地震, 31(3):9-18. ZHANG Lang-ping, SHAO Zhi-gang, YAN Rui. 2011. Study on the characteristics of seismic activity in southeastern Tibet and surrounding areas[J]. Earthquake, 31(3):9-18(in Chinese). 张培震, 闻学泽, 徐锡伟, 等. 2009. 2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J]. 科学通报, 54(7):944-953. ZHANG Pei-zhen, WEN Xue-ze, XU Xi-wei, et al. 2009. Tectonic model of the great Wenchuan earthquake of May 12, 2008, Sichuan, China[J]. Chinese Science Bulletin, 54(7):944-953(in Chinese). 张新钰, 季建清, 韩宝福, 等. 2006. 地表剥蚀、下地壳流变与造山作用研究进展[J]. 地球科学进展, 21(5):521-531. ZHANG Xin-yu, JI Jian-qing, HAN Bao-fu, et al. 2006. Research advances in erosion, rheology of the lower crust and orogeny[J]. Advances in Earth Science, 21(5):521-531(in Chinese). 钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑), 26(4):289-295. ZHONG Da-lai, DING Lin. 1996. The uplift process of Qinghai-Tibet plateau and its mechanism[J]. Science in China(Ser D), 26(4):289-295(in Chinese). 周永胜, 何昌荣. 2009. 汶川地震区的流变结构与发震高角度逆断层滑动的力学条件[J]. 地球物理学报, 52(2):474-484. ZHOU Yong-shen, HE Chang-rong. 2009. The rheological structures of crust and mechanics of high-angle reverse fault slip for Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics, 52(2):474-484(in Chinese). Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3(5):358-362. Burg J P, Nievergelt P, Oberli F, et al. 1998. The Namche Barwa syntaxis:Evidence for exhumation related to compressional crustal folding[J]. Asian Journal of Earth Sciences, 16(2-3):239-252. doi:10.1016/S0743-9547(98)00002-6. Chen W W, Ni S D, Kanamori H, et al. 2015. CAPjoint, a computer software package for joint inversion of moderate earthquake source parameters with local and teleseismic waveforms[J]. Seismological Research Letters, 86:432-441. Clarke P J, Paradissis D, Briole P, et al. 1997. Geodetic investigation of the 13 May 1995 Kozani-Grevena(Greece)earthquake[J]. Geophysical Research Letters, 24:707-710. Ding L, Zhong D L, Yin A, et al. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis(Namche Barwa)[J]. Earth and Planetary Science Letters, 192:423-438. Efron B. 1979. Bootstrap methods:Another look at the jackknife[J]. Annals of Statistics, 7(1):1-26. Gabriel A K, Goldstein R M, Zebker H A. 1989. Mapping small elevation changes over large areas:Differential radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 94(B7):9183-9191. Gan W, Zhang P, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan plateau inferred from GPS measurements[J]. Journal of Geophysical Research:Solid Earth, 112(B8), B08416. Geng Q R, Pan G T, Zheng L L, et al. 2006. The Eastern Himalayan Syntaxis:Major tectonic domains, ophiolitic mélanges and geologic evolution[J]. Journal of Asian Earth Sciences. 27(3):265-285. Gupta T D, Riguzzi F, Dasgupta S, et al. 2015. Kinematics and strain rates of the Eastern Himalayan Syntaxis from new GPS campaigns in Northeast India[J]. Tectonophysics, 655:15-26. Jónsson S, Zebker H, Segall P, et al. 2002. Fault slip distribution of the 1999 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 92(4):1377-1389. Kikuchi M, Kanamori H. 1986. Inversion of complex body waves-Ⅱ[J]. Physics of the Earth & Planetary Interiors, 43(3):205-222. Liang S, Gan W, Shen C, et al. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan plateau derived from GPS measurements[J]. Journal of Geophysical Research:Solid Earth, 118(10):5722-5732. Lin C H, Peng M, Tan H D, et al. 2017. Crustal structure beneath Namche Barwa, eastern Himalayan syntaxis:New insights from three-dimensional magnetotelluric imaging[J]. Journal of Geophysical Research:Solid Earth, 122(7):5082-5100. Lin J, Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. Journal of Geophysical Research:Solid Earth, 109(B2):1-19. Massonnet D, Rossi M, Carmona C, et al. 1993. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 364(6433):138-142. Molnar P, England P. 1990. Late Cenozoic uplift of mountain ranges and global climate change:Chicken or egg?[J]. Nature, 346(6279):29-34. Nitti D O, Hanssen R F, Refice A, et al. 2008. Evaluation of DEM-assisted SAR coregistration[J]. Proceedings of SPIE, 7109, 710919. Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(2):1018-1040. Parsons B, Wright T, Rowe P, et al. 2006. The 1994 Sefidabeh(eastern Iran)earthquakes revisited:New evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault[J]. Geophysical Journal International, 164(1):202-217. Sibson R H, Robert F, Poulsen K H. 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposit[J]. Geology, 16(6):551-555. Toda S, Stein R S, Richards-Dinger K, et al. 2005. Forecasting the evolution of seismicity in southern California:Animations built on earthquake stress transfer[J]. Journal of Geophysical Research:Solid Earth, 110(B5):1-17. Wang P, Scherler D, Liu-Zeng J, et al. 2014. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet[J]. Science, 346(6212):978-981. Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 294(5542):574-577. Wang R, Diao Q F, Hoechner A. 2013. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]. EGU General Assembly Conference. Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4):974-1002. Werner C, Wegmller U, Strozzi T, et al. 2000. GAMMA SAR and interferometric processing software[C]. ERS-ENVISAT Symposium, Gothenburg, Sweden. Wright T J. 1999. Source parameters of the 1 October 1995 Dinar(Turkey)earthquake from SAR interferometry and seismic body wave modelling[J]. Earth Planetary Science Letters, 172(1-2):23-37. Xu Z, Ji S, Cai Z, et al. 2012. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya:Constraints from deformation, fabrics and geochronology[J]. Gondwana Research, 21(1):19-36. Yague-Martinez N, Prats-Iraola P, Gonzalez F R, et al. 2016. Interferometric processing of Sentinel -1 TOPS data[J]. IEEE Transactions on Geoscience Remote Sensing, 54(4):2220-2234. Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9):809-812. Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 84(1):91-104. Zhu L, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International, 148(3):619-627. |
[1] | FAN Wen-jie. CHARACTERISTICS OF TECTONIC STRESS FIELD AROUND THE YANGBI MS6.4 EARTHQUAKE AND ITS SURROUNDING AREAS ON MAY 21, 2021 AND ITS GEODYNAMIC IMPLICATION [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 208-230. |
[2] | ZHANG Ke, WANG Xin, YANG Hong-ying, WANG Yue, XU Yan, LI Jing. THE CHARACTERISTICS AND SEISMOGENIC STRUCTURE ANALYSIS OF THE 2021 YANGBI MS6.4 EARTHQUAKE SEQUENCE, YUNNAN [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 231-251. |
[3] | DENG Wen-ze, LIU Jie, YANG Zhi-gao, SUN Li, ZHANG Xue-mei. PRELIMINARY ANALYSIS FOR RUPTURE PROCESS OF THE MAY 22TH, 2021, MADOI(QINGHAI) MS7.4 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 1059-1070. |
[4] | LI Zong-xu, HE Ri-zheng, JI Zhan-bo, LI Yu-lan, NIU Xiao. THE FOCAL MECHANISM AND TECTONIC SIGNIFICANCE OF THE MS5.6 EARTHQUAKE ON JULY 24, 2009 IN NIMA, TIBET [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 992-1010. |
[5] | WANG Xiao-shan, WAN Yong-ge. CHARACTERISTICS OF THE CRUSTAL STRESS FIELD AND ITS DIRECTION CONVERGENCE BEFORE THE WENCHUAN EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 363-377. |
[6] | YU Zhan-yang, SHEN Xu-zhang, LIANG Hao, ZHENG Wen-jun, LIU Xu-zhou. THE CHARACTERISTICS OF MAJOR FAULTS AND STRESS FIELD IN WEIHE-YUNCHENG BASIN CONSTRAINED BY SEISMIC ACTIVITY AND FOCAL MECHANISM SOLUTIONS [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 395-413. |
[7] | ZHANG Zhi-wei, LONG Feng, ZHAO Xiao-yan, WANG Di. STUDY ON FOCAL MECHANISM SOLUTION AND STRESS FIELD CHARACTERISTICS IN SICHUAN AND YUNNAN AREA [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(1): 170-187. |
[8] | ZHAO Tao, WANG Ying, MA Ji, SHAO Ruo-tong, XU Yi-fei, HU Jing. RELOCATION AND FOCAL MECHANISM SOLUTIONS OF THE 2021 MADUO, QINGHAI MS7.4 EARTHQUAKE SEQUENCE [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(4): 790-805. |
[9] | WANG Ying, ZHAO Tao, HU Jing, LIU Chun. RELOCATION AND FOCAL MECHANISM SOLUTIONS OF THE 2021 YANGBI, YUNNAN MS6.4 EARTHQUAKE SEQUENCE [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(4): 847-863. |
[10] | CUI Ren-sheng, ZHAO Cui-ping, ZHOU Lian-qing, CHEN Yang. SEISMICITY FEATURE AND SEISMOGENIC FAULT OF THE MS6.4 EARTHQUAKE SEQUENCE ON JANUARY 19, 2020 IN JIASHI, XINJIANG [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(2): 329-344. |
[11] | LI Jin, JIANG Hai-kun, WEI Yun-yun, SUN Zhao-jie. PRELIMINARY STUDY FOR SEISMOGENIC STRUCTURE OF THE MS6.4 JIASHI EARTHQUAKE ON JANUARY 19, 2020 [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(2): 357-376. |
[12] | ZHANG Wen-ting, JI Ling-yun, ZHU Liang-yu, JIANG Feng-yun, XU Xiao-xue. A TYPICAL THRUST RUPTURE EVENT OCCURRING IN THE FORELAND BASIN OF THE SOUTHERN TIANSHAN: THE 2020 XINJIANG JIASHI MS6.4 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(2): 394-409. |
[13] | LIU Xu-zhou, SHEN Xu-zhang, HE Xiao-hui, PU Ju. RELOCATION OF THE 28 OCTOBER 2019 XIAHE M5.7 EARTHQUAKE SEQUENCE AND ANALYSIS OF SEISMOGENIC FAULT [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(1): 197-208. |
[14] | LI Qi-lei, LI Yu-li, TU Hong-wei, LIU Wen-bang. THE RELOCATION, FOCAL MECHANISMS OF THE DINGQING EARTHQUAKES AND A PRELIMINARY STUDY OF ITS SEISMOGENIC STRUCTURE [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(1): 209-231. |
[15] | XU Zhi-guo, WANG Jun-cheng, WANG Zong-chen, LIANG Shan-shan, SHI Jian-yu. FOCAL MECHANISM AND TSUNAMI NUMERICAL SIMULATION OF THE NOVEMBER 14, 2019 MOLUCCA SEA MW7.1 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(6): 1417-1431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||