SEISMOLOGY AND GEOLOGY ›› 2017, Vol. 39 ›› Issue (4): 656-674.DOI: 10.3969/j.issn.0253-4967.2017.04.003
Previous Articles Next Articles
BI Hai-yun1, ZHENG Wen-jun2, ZENG Jiang-yuan3, YU Jing-xing1, REN Zhi-kun1
Received:
2016-12-19
Revised:
2017-04-18
Online:
2017-08-20
Published:
2017-09-15
毕海芸1, 郑文俊2, 曾江源3, 俞晶星1, 任治坤1
作者简介:
毕海芸,女,1988年生,2015年在中国科学院遥感与数字地球研究所获博士学位,助理研究员,主要从事摄影测量与活动构造方面的研究,电话:010-62009085,E-mail:bihaiyun@ies.ac.cn。
基金资助:
CLC Number:
BI Hai-yun, ZHENG Wen-jun, ZENG Jiang-yuan, YU Jing-xing, REN Zhi-kun. APPLICATION OF SFM PHOTOGRAMMETRY METHOD TO THE QUANTITATIVE STUDY OF ACTIVE TECTONICS[J]. SEISMOLOGY AND GEOLOGY, 2017, 39(4): 656-674.
毕海芸, 郑文俊, 曾江源, 俞晶星, 任治坤. SfM摄影测量方法在活动构造定量研究中的应用[J]. 地震地质, 2017, 39(4): 656-674.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2017.04.003
陈桂华, 徐锡伟, 闻学泽, 等. 2006. 数字航空摄影测量学方法在活动构造中的应用[J]. 地球科学-中国地质大学学报, 31(3):405-410. CHEN Gui-hua, XU Xi-wei, WEN Xue-ze, et al. 2006. Application of digital aerophotogrammetry in active tectonics[J]. Earth Science-Journal of China University of Geosciences, 31(3):405-410(in Chinese). 邓起东, 陈立春, 冉勇康. 2004. 活动构造定量研究与应用[J]. 地学前缘, 11(4):383-392. DENG Qi-dong, CHEN Li-chun, RAN Yong-kang. 2004. Quantitative studies and applications of active tectonics[J]. Earth Science Frontiers, 11(4):383-392(in Chinese). 邓起东, 张培震, 冉勇康, 等. 2002. 中国活动构造基本特征[J]. 中国科学(D辑), 32(12):1020-1030. DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. 2003. Basic characteristics of active tectonics of China[J]. Science in China(Ser D), 46(4):356-372. 丁国瑜, 田勤俭, 孔凡臣, 等. 1993. 活断层分段:原则、方法及应用[M]. 北京:地震出版社. DING Guo-yu, TIAN Qin-jian, KONG Fan-chen, et al. 1993. Segmentation of Active Faults:Principles, Methods and Applications[M]. Seismological Press, Beijing(in Chinese). 刘静, 陈涛, 张培震, 等. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 58(1):41-45. LIU Jing, CHEN Tao, ZHANG Pei-zhen, et al. 2013. Illuminating the active Haiyuan Fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1):41-45(in Chinese). 马洪超. 2011. 激光雷达测量技术在地学中的若干应用[J]. 地球科学-中国地质大学学报, 36(2):347-354. MA Hong-chao. 2011. Review on applications of LiDAR mapping technology to geosciences[J]. Earth Science-Journal of China University of Geosciences, 36(2):347-354(in Chinese). 马素颜. 2009. 基于高分辨率卫星遥感数据提取DEM方法研究[D]. 上海:华东师范大学. MA Su-yan. 2009. Research on the extraction of DEM based on high resolution remotely-sensed data[D]. East China Normal University, Shanghai(in Chinese). 闵伟, 张培震, 何文贵, 等. 2002. 酒西盆地断层活动特征及古地震研究[J]. 地震地质, 24(1):35-44. doi:10.3969/j.issn.0253-4967.2002.01.004. MIN Wei, ZHANG Pei-zhen, HE Wen-gui, et al. 2002. Research on the active faults and paleoearthquakes in the western Jiuquan Basin[J]. Seismology and Geology, 24(1):35-44(in Chinese). 冉勇康, 邓起东. 1999. 古地震学研究的历史、现状和发展趋势[J]. 科学通报, 44(1):12-20. RAN Yong-kang, DENG Qi-dong. 1999. History, status and trend about the research of paleoseismology[J]. Chinese Science Bulletin, 44(10):880-889. 任治坤, 陈涛, 张会平, 等. 2014. LiDAR技术在活动构造研究中的应用[J]. 地质学报, 88(6):1196-1207. REN Zhi-kun, CHEN Tao, ZHANG Hui-ping, et al. 2014. LiDAR survey in active tectonics studies:An introduction and overview[J]. Acta Geologica Sinica, 88(6):1196-1207(in Chinese). 王朋涛, 邵延秀, 张会平, 等. 2016. sUAV摄影技术在活动构造研究中的应用:以海原断裂骟马沟为例[J]. 第四纪研究, 36(2):433-442. WANG Peng-tao, SHAO Yan-xiu, ZHANG Hui-ping, et al. 2016. The application of sUAV photogrammetry in active tectonics:Shanmagou site of Haiyuan Fault, for example[J]. Quaternary Sciences, 36(2):433-442(in Chinese). 魏占玉, Ramon A, 何宏林, 等. 2015. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 37(2):636-648. doi:10.3969/j.issn.0253-4967.2002.01.004. WEI Zhan-yu, Ramon A, HE Hong-lin, et al. 2015. Accuracy analysis of terrain point cloud acquired by "Structure from Motion" using aerial photos[J]. Seismology and Geology, 37(2):636-648(in Chinese). 袁道阳, 张培震, 刘百篪, 等. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 78(2):270-278. YUAN Dao-yang, ZHANG Pei-zhen, LIU Bai-chi, et al. 2004. Geometrical imagery and tectonic transformation of late Quaternary active tectonics in northeastern margin of Qinghai-Xizang plateau[J]. Acta Geologica Sinica, 78(2):270-278(in Chinese). 张剑清, 潘励, 王树根. 2009. 摄影测量学[M]. 武汉:武汉大学出版社. ZHANG Jian-qing, PAN Li, WANG Shu-gen. 2009. Photogrammetry[M]. Wuhan University Press, Wuhan(in Chinese). 张祖勋, 张剑清. 2012. 数字摄影测量学[M]. 武汉:武汉大学出版社. ZHANG Zu-xun, ZHANG Jian-qing. 2012. Digital Photogrammetry[M]. Wuhan University Press, Wuhan(in Chinese). 郑文俊, 雷启云, 杜鹏, 等. 2015. 激光雷达(LiDAR):获取高精度古地震探槽信息的一种新技术[J]. 地震地质, 37(1):232-241. doi:10.3969/j.issn.0253-4967.2002.01.004. ZHENG Wen-jun, LEI Qi-yun, DU Peng, et al. 2015. 3-D laser scanner(LiDAR):A new technology for acquiring high precision palaeoearthquake trench information[J]. Seismology and Geology, 37(1):232-241(in Chinese). Angster S, Wesnousky S, Huang W L, et al. 2016. Application of UAV photography to refining the slip rate on the Pyramid Lake fault zone, Nevada[J]. Bulletin of the Seismological Society of America, 106(2):785-798. Arrowsmith J R, Zielke O. 2009. Tectonic geomorphology of the San Andreas fault zone from high resolution topography:An example from the Cholame segment[J]. Geomorphology, 113(1-2):70-81. Baltsavias E P, Favey E, Bauder A, et al. 2001. Digital surface modelling by airborne laser scanning and digital photogrammetry for glacier monitoring[J]. The Photogrammetric Record, 17(98):243-273. Bemis S P, Micklethwaite S, Turner D, et al. 2014. Ground-based and UAV-Based photogrammetry:A multi-scale, high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 69:163-178. Bi H Y, Zheng W J, Ren Z K, et al. 2017. Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry[J]. International Journal of Remote Sensing, 38:2495-2510. Chen T, Zhang P Z, Liu J, et al. 2014. Quantitative study of tectonic geomorphology along Haiyuan Fault based on airborne LiDAR[J]. Chinese Science Bulletin, 59(20):2396-2409. Crone A J, Haller K M. 1991. Segmentation and the coseismic behavior of Basin and Range normal faults:Examples from east-central Idaho and southwestern Montana, U.S.A.[J]. Journal of Structural Geology, 13(2):151-164. Cunningham D, Grebby S, Tansey K, et al. 2006. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia[J]. Geophysical Research Letters, 33(20):L20308. Fonstad M A, Dietrich J T, Courville B C, et al. 2013. Topographic structure from motion:A new development in photogrammetric measurement[J]. Earth Surface Processes and Landforms, 38(4):421-430. Fraser C S, Cronk S. 2009. A hybrid measurement approach for close-range photogrammetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 64(3):328-333. Graham L C. 1974. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 62(6):763-768. Harwin S, Lucieer A. 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle(UAV)imagery[J]. Remote Sensing, 4(6):1573-1599. Hudnut K W, Borsa A, Glennie C, et al. 2002. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California, earthquake(MW7.1)from airborne laser swath mapping[J]. Bulletin of the Seismological Society of America, 92(4):1570-1576. James M R, Robson S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera:Accuracy and geoscience application[J]. Journal of Geophysical Research:Earth Surface, 117(F3):94-96. Javernick L, Brasington J, Caruso B. 2014. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry[J]. Geomorphology, 213:F03017. Johnson K, Nissen E, Saripalli S, et al. 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5):969-986. Lasserre C, Morel P H, Gaudemer Y, et al. 1999. Postglacial left slip rate and past occurrence of M ≥ 8 earthquakes on the western Haiyuan Fault, Gansu, China[J]. Journal of Geophysical Research:Solid Earth, 104(B8):17633-17651. Lin Z, Kaneda H, Mukoyama S, et al. 2013. Detection of subtle tectonic-geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey[J]. Geomorphology, 182:104-115. Lucieer A, de Jong S M, Turner D. 2014a. Mapping landslide displacements using Structure from Motion(SfM)and image correlation of multi-temporal UAV photography[J]. Progress in Physical Geography, 38(1):97-116. Lucieer A, Turner D, King D H, et al. 2014b. Using an unmanned aerial vehicle(UAV)to capture micro-topography of Antarctic moss beds[J]. International Journal of Applied Earth Observation and Geoinformation, 27:53-62. Machette M N, Personius S F, Nelson A R, et al. 1991. The Wasatch fault zone, Utah-Segmentation and history of Holocene earthquakes[J]. Journal of Structural Geology, 13(2):137-149. Mancini F, Dubbini M, Gattelli M, et al. 2013. Using unmanned aerial vehicles(UAV)for high-resolution reconstruction of topography:The structure from motion approach on coastal environments[J]. Remote Sensing, 5(12):6880-6898. Matthews N A. 2008. Aerial and close-range photogrammetric technology:Providing resource documentation, interpretation, and preservation:Technical note, 428[R]. U.S. Department of the Interior, Bureau of Land Management, National Operations Center, Denver, Colorado:42. McCalpin J P. 1996. Trench technology[C]//The Paleoseismology Workshop of 30th IGC. Beijing:86-111. Micheletti N, Chandler J H, Lane S N. 2015. Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone[J]. Earth Surface Processes and Landforms, 40(4):473-486. Middleton T A, Walker R T, Parsons B, et al. 2016. A major, intraplate, normal-faulting earthquake:The 1739 Yinchuan event in northern China[J]. Journal of Geophysical Research:Solid Earth, 121(1):293-320. Oskin M E, Arrowsmith J R, Corona A H, et al. 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LIDAR[J]. Science, 335(6069):702-705. Ouédraogo M M, Degré A, Debouche C, et al. 2014. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds[J]. Geomorphology, 214:339-355. Peltzer G, Tapponnier P, Armijo R. 1989. Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet[J]. Science, 246(4935):1285-1289. Rabus B, Eineder M, Roth A, et al. 2003. The shuttle radar topography mission:A new class of digital elevation models acquired by spaceborne radar[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4):241-262. Reitman N G, Bennett S E K, Gold R D, et al. 2015. High-resolution trench photomosaics from image-based modeling:Workflow and error analysis[J]. Bulletin of the Seismological Society of America, 105(5):2354-2366. Ren Z K, Zhang Z W, Chen T, et al. 2016. Clustering of offsets on the Haiyuan Fault and their relationship to paleoearthquakes[J]. Geological Society of America Bulletin, 128(1-2):3-18. Ritts B D, Yue Y J, Graham S A. 2004. Oligocene-Miocene tectonics and sedimentation along the Altyn Tagh Fault, northern Tibetan plateau:Analysis of the Xorkol, Subei, and Aksay Basins[J]. The Journal of Geology, 112(2):207-229. Snavely N, Seitz S M, Szeliski R. 2008. Modeling the world from internet photo collections[J]. International Journal of Computer Vision, 80(2):189-210. Tapponnier P, Meyer B, Avouac J P, et al. 1990. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters, 97(3-4):382-403. Ullman S. 1979. The interpretation of structure from motion[J]. Proceedings of the Royal Society B:Biological Sciences, 203(1153):405-426. Westoby M J, Brasington J, Glasser N F, et al. 2012. ‘Structure-from-Motion’ photogrammetry:A low-cost, effective tool for geoscience applications[J]. Geomorphology, 179:300-314. Whitehead K, Moorman B J, Hugenholtz C H. 2013. Low-cost, on-demand aerial photogrammetry for glaciological measurement[J]. Cryosphere Discussions, 7(3):3043-3057. Yuan D Y, Champagnac J D, Ge W P, et al. 2011. Late Quaternary right-lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan plateau[J]. Geological Society of America Bulletin, 123(9-10):2016-2030. Zebker H A, Goldstein R M. 1986. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research:Solid Earth, 91(B5):4993-4999. Zebker H A, Werner C L, Rosen P A, et al. 1994. Accuracy of topographic maps derived from ERS -1 interferometric radar[J]. IEEE transactions on Geoscience and Remote Sensing, 32(4):823-836. Zhang P Z, Molnar P, Xu X W. 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan plateau[J]. Tectonics, 26(5):TC5010. Zheng W J, Zhang P Z, He W G, et al. 2013a. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan plateau:Evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics, 584:267-280. Zheng W J, Zhang H P, Zhang P Z, et al. 2013b. Late Quaternary slip rates of the thrust faults in western Hexi Corridor(northern Qilian Shan, China)and their implications for northeastward growth of the Tibetan plateau[J]. Geosphere, 9(2):342-354. Zhou Y, Parsons B, Elliott J R, et al. 2015. Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes:A case study for the El Mayor-Cucapah epicentral area[J]. Journal of Geophysical Research:Solid Earth, 120(12):8793-8808. Zhou Y, Walker R T, Hollingsworth J, et al. 2016. Coseismic and postseismic displacements from the 1978 MW7.3 Tabas-e-Golshan earthquake in eastern Iran[J]. Earth and Planetary Science Letters, 452:185-196. Zielke O, Arrowsmith J R, Ludwig L G, et al. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327(5969):1119-1122. Zielke O, Arrowsmith J R, Ludwig L G, et al. 2012. High-resolution topography-derived offsets along the 1857 Fort Tejon earthquake rupture trace, San Andreas Fault[J]. Bulletin of the Seismological Society of America, 102(3):1135-1154. |
[1] | ZHANG Ling, MIAO Shu-qing, YANG Xiao-ping. THE ANALYSIS AND IMPLEMENTATION OF THE AUTOMATIC EXTRACTING METHOD FOR ACTIVE THRUST FAULTS IN THE NORTH TIANSHAN MOUNTAINS BASED ON ARCGIS SOFTWARE PLATFORM [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 422-434. |
[2] | WANG Wen-xin, SHAO Yan-xiu, YAO Wen-qian, LIU-ZENG Jing, HAN Long-fei, LIU Xiao-li, GAO Yun-peng, WANG Zi-jun, QIN Ke-xin, TU Hong-wei. RAPID EXTRACTION OF FEATURES AND INDOOR RECON-STRUCTION OF 3D STRUCTURES OF MADOI MW7.4 EARTHQUAKE SURFACE RUPTURES BASED ON PHOTOGRAMMETRY METHOD [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 524-540. |
[3] | AI Ming, BI Hai-yun, ZHENG Wen-jun, YIN Jin-hui, YUAN Dao-yang, REN Zhi-kun, CHEN Gan, LIU Jin-rui. USING UNMANNED AERIAL VEHICLE PHOTOGRAMMETRY TECHNOLOGY TO OBTAIN QUANTITATIVE PARAMETERS OF ACTIVE TECTONICS [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(6): 1276-1293. |
[4] | WANG Si-yu, AI Ming, WU Chuan-yong, LEI Qi-yun, ZHANG Hui-ping, REN Guang-xue, LI Chuan-you, REN Zhi-kun. APPLICATION OF DEM GENERATION TECHNOLOGY FROM HIGH RESOLUTION SATELLITE IMAGE IN QUANTITATIVE ACTIVE TECTONICS STUDY: A CASE STUDY OF FAULT SCARPS IN THE SOUTHERN MARGIN OF KUMISHI BASIN [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(5): 999-1017. |
[5] | HAN Xiao-ming, Liu Fang, ZHANG Fan, CHEN Li-feng, LI Juan, LI Shuan-hu, YANG Hong-ying. 3D P-WAVE VELOCITY STRUCTURE AT THE NORTHEASTERN MARGIN OF ORDOS BLOCK [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(1): 215-231. |
[6] | WU Xi-yan, XU Xi-wei, YU Gui-hua, CHENG Jia, CHEN Gui-hua, AN Yan-fen, WANG Qi-xin. MAP PREPARATION OF EARTHQUAKE SURFACE RUPTURES IN THE NATIONAL EXPERIMENTAL FIELD OF EARTHQUAKE MONITORING AND PREDICTION IN SICHUAN AND YUNNAN PROVINCE [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(1): 27-41. |
[7] | YANG Hai-bo, YANG Xiao-ping, HUANG Xiong-nan, HUANG Wei-liang, LUO Jia-hong. DATA COMPARATIVE ANALYSIS BETWEEN SFM DATA AND DGPS DATA: A CASE STUDY FROM FAULT SCARP IN THE EAST BANK OF HONGSHUIBA RIVER, NORTHERN MARGIN OF THE QILIAN SHAN [J]. SEISMOLOGY AND GEOLOGY, 2016, 38(4): 1030-1046. |
[8] | SUN Xin-zhe, TANG Sheng-quan. THE DEVELOPMENT OF OPTICAL REMOTE SENSING TECHNOLOGY AND ITS APPLICATION TO THE ACTIVE TECTONICS RESEARCH [J]. SEISMOLOGY AND GEOLOGY, 2016, 38(1): 211-220. |
[9] | WEI Zhan-yu, Arrowsmith Ramon, HE Hong-lin, GAO Wei. ACCURACY ANALYSIS OF TERRAIN POINT CLOUD ACQUIRED BY "STRUCTURE FROM MOTION" USING AERIAL PHOTOS [J]. SEISMOLOGY AND GEOLOGY, 2015, 37(2): 636-648. |
[10] | MA Chao, QU Chun-yan, MENG Xiu-jun. EMBANKMENT STABILITY OF THE NORTH HENAN SECTION OF MIDDLE ROUTE PROJECT(MRP) OF SOUTH-TO-NORTH WATER DIVERSION BASED ON INSAR TIME SERIES ANALYSIS [J]. SEISMOLOGY AND GEOLOGY, 2014, 36(3): 749-762. |
[11] | YU Gui-hua, DU Ke-ping, XU Xi-wei, WU Xi-yan, WANG Yin. RESEARCH ON ACTIVE FAULT DATABASE CONSTRUCTION RELATED ISSUES [J]. SEISMOLOGY AND GEOLOGY, 2012, (4): 713-725. |
[12] | DENG Qi-dong, WEN Xue-ze. A REVIEW ON THE RESEARCH OF ACTIVE TECTONICS——HISTORY, PROGRESS AND SUGGESTIONS [J]. SEISMOLOGY AND GEOLOGY, 2008, 30(1): 1-30. |
[13] | ZHANG Hui-ping, ZHANG Pei-zhen, ZHENG Wen-jun, ZHENG De-wen, CHEN Zheng-wei. ACTIVE TECTONIC RATES CONSTRAINED BY TERRESTRIAL IN SITU COSMOGENIC NUCLIDES DATING [J]. SEISMOLOGY AND EGOLOGY, 2007, 29(2): 418-430. |
[14] | CHEN Li-chun, CHEN Gui-hua, CHEN Li-ze, RAN Yong-kang, YANG Xiao-ping. ETM IMAGE CHARACTERISTICS AND INTERPRETATION OF ACTIVE TECTONICS OF THE AREA AROUND THE KALPINTAG THRUST SYSTEM [J]. SEISMOLOGY AND GEOLOGY, 2006, 28(2): 289-298. |
[15] | SHEN Jun, WU Chuan-yong, LI Jun, XIANG Zhi-yong, CHEN Jian-bo, XIE Tian, SONG Zheng-na, WANG Cui. THE BASIC FEATURES OF THE ACTIVE TECTONICS IN THE KUQA DEPRESSION OF THE SOUTHERN TIANSHAN [J]. SEISMOLOGY AND GEOLOGY, 2006, 28(2): 269-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||