陈建业, 杨晓松, 党嘉祥, 等. 2011. 汶川地震断层带结构及渗透率
[J]. 地球物理学报, 54(7): 1805-1816.
CHEN Jian-ye, YANG Xiao-song, DANG Jia-xiang, et al. 2011. Internal structure and permeability of Wenchuan earthquake fault
[J]. Chinese Journal of Geophysics, 54(7): 1805-1816(in Chinese).
段庆宝, 杨晓松. 2014. 汶川地震断层岩气体和液体渗透率实验研究
[J]. 中国科学(D辑)(待刊).
DUAN Qing-bao, YANG Xiao-song. 2014. Experimental studies on gas and water permeability of fault rocks from the rupture of the 2008 Wenchuan earthquake, China
[J]. Science in China(Ser D)(in press).
杨献忠, 杨祝良, 陶奎元, 等. 2002. 含油玄武岩中绿泥石的形成温度
[J]. 矿物学报, 22(4): 365-370.
YANG Xian-zhong, YANG Zhu-liang, TAO Kui-yuan, et al. 2002. Formation temperature of chlorite in oil-bearing basalt
[J]. Acta Mineralogica Sinica, 22(4): 365-370(in Chinese).
杨彧, 陈进宇, 杨晓松. 2014. 汶川地震破裂带断层岩纵波速度与孔隙度关系的实验研究
[J]. 地球物理学报, 57(6):1883-1890.
YANG Yu, CHEN Jin-yu, YANG Xiao-song. 2014. Experimental study on relationship between Vp and porosity of fault rocks from Wenchuan earthquake fault zone
[J]. Chinese Journal of Geophysics, 57(6): 1883-1890(in Chinese).
张平萍, 陈雪刚, 程继鹏, 等. 2009. 水热条件下坡缕石在NaOH溶液中的行为及结构变化
[J]. 无机化学学报, 25(9):1545-1550.
ZHANG Ping-ping, CHEN Xue-gang, CHENG Ji-peng, et al. 2009. Behavior and structural transformation of palygorskite in NaOH solution under hydrothermal conditions
[J]. Chinese Journal of Inorganic Chemistry, 25(9):1545-1550(in Chinese).
张勇, 冯万鹏, 许力生, 等. 2008. 2008年汶川大地震的时空破裂过程
[J]. 中国科学(D辑), 38(10): 1186-1194.
ZHANG Yong, FENG Wan-peng, XU Li-sheng, et al. 2008. Spatio-temporal rupture process of the 2008 great Wenchuan earthquake
[J]. Science in China(Ser D), 38(10): 1186-1194(in Chinese).
Anderson J L, Osborne R H, Palmer D F. 1983. Cataclastic rocks of the San Gabriel Fault-An expression of deformation at deeper crustal levels in the San Andreas Fault zone
[J]. Tectonophysics, 98: 209-251.
Blenkinsop T G. 1991. Cataclasis and processes of particle size reduction
[J]. Pure Appl Geophys, 136: 59-86.
Boles J R, Franks S G. 1979. Clay diagenesis in Wilcox sandstones of southwest Texas: Implication of smectite diagenesis on sandstone cementation
[J]. Journal of Sed Petrol, 49: 55-70.
Chen J Y, Yang X S, Ma S L, et al. 2013a. Mass removal and clay mineral dehydration/rehydration in carbonate-rich surface exposures of the 2008 Wenchuan earthquake fault: Geochemical evidence and implications for fault zone evolution and coseismic slip
[J]. J Geophys Res, 118: 474-496.
Chen J Y, Yang X S, Duan Q B, et al. 2013b. Importance of thermochemical pressurization in the dynamic weakening of Longmenshan Fault during the 2008 Wenchuan earthquake: Inference from experiments and modeling
[J]. J Geophys Res, 118: 4145-4169.
Chen W-m D, Tanaka H, Huang H-j, et al. 2007. Fluid infiltration associated with seismic faulting: Examining chemical and mineralogical compositions of fault rocks from the active Chelungpu Fault
[J]. Tectonophysics, 443: 243-254.
Christensen N I. 1974. Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars
[J]. J Geophys Res, 79: 407-412.
Dor O, Ben-Zion Y, Rockwell K, et al. 2006. Pulverized rocks in the Mojave section of the San Andreas Fault zone
[J]. Earth Planet Sci Lett, 245: 642-654.
Di Toro G, Goldsby D, Tullis T E. 2004. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates
[J]. Nature, 427: 436-439.
Di Toro G, Han R, Hirose T, et al. 2011. Fault lubrication during earthquakes
[J]. Nature, 471: 494-499.
Evans J P, Forster C B, Goddard J V. 1997. Permeability of fault-related rocks, and implications for hydraulic structure of fault zone
[J]. J Struc Geol, 19: 1393-1404.
Evans J P, Chester F M. 1995. Fluid-rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures
[J]. Journal of Geophysical Research, 100: 13007-13013, 13020.
Faulkner D R, Rutter E H. 2000. Comparison of water and argon permeability in natural clay-bearing fault gouge under high pressure at 20℃
[J]. J Geophys Res, 105: 16415-16427.
Faure G. 1991. Principles and Applications of Inorganic Geochemistry
[M]. Macmllian Publishing Company, New York. 282-309.
Freund D. 1991. Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure
[J]. Geophysics, 56: 125-135.
Garrels R M, Christ C L. 1965. Solutions, Mineral and Equilibria
[M]. San Francisco: Freeman, Copper & Company. 325-370.
Goddard J V, Evans J P. 1995. Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, USA
[J]. Journal of Structural Geology, 17: 533-547.
Grant J A. 1986. The isocon diagram: A simple solution to Gresens equation for metasomatic alteration
[J]. Economic Geology, 81: 1976-1982.
Han D-hun, Nur A, Morgan D. 1986. Effect of porosity and clay content on wave velocities in sandstones
[J]. Geophysics, 51: 2093-2107.
Han R, Hirose T, Shimamoto T. 2010. Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates
[J]. Journal of Geophysical Research, 115: B03412. http://dx .doi .org/10 .1029/2008JB006136.
Hausegger S, Kurz W, Rabitsch R, et al. 2010. Analysis of the internal structure of a carbonate damaged zone: Implications for the mechanisms of fault breccia formation and fluid flow
[J]. J Struc Geol, 32(9): 1349-1362.
Hirose T, Shimamoto T. 2005. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting
[J]. Journal of Geophysical Research, 110: B05202. doi: 10.1029/2004JB 003207.
Hooke R L, Iverson N R. 1995. Grain-size distribution in deforming subglacial tills: Role of grain fracture
[J]. Geology, 23: 57-60.
Isaacs A J, Evans J P, Song S-R, et al. 2007. Structural, mineralogical, and geochemical characterization of the Chelungpu thrust fault, Taiwan
[J]. Terr Atmos Ocean Sci, 18(2): 183-221.
Ji S C, Salisbury M H, Hanmer S. 1993. Petrofabric, P-wave anisotropy and seismic reflectivity of high-grade tectonites
[J]. Tectonophysics, 222: 195-226.
Ji S C, Wang Q, Xia B. 2002. Handbook of Seismic Properties of Minerals, Rocks and Ores
[M]. Polytechnic International Press, Montreal. 630.
Kern H. 1982. P- and S-wave velocities in crustal and mantle rocks under the simultaneous action of high confining pressure and high temperature and the effect of the rock microstructure
[A]. In: Schreyer W(ed). High-Pressure Researches in Geoscience, Schweizerbart, Stuttgart. 15-45.
Keulen N, Heilbronner R, Stunitz H. 2007. Grain size distributions of fault rocks: A comparison between experimentally and naturally deformed granitoids
[J]. J Struct Geol, 1282-1300.
Klinkenberg L J. 1941. The permeability of porous media to liquids and gases
[R]. Am Pet Inst Drill Prod Pract, 200-213.
Li S L, Lai X L, Yao Z X, et al. 2009. Fault zone structures of northern and southern portions of the main central fault generated by the 2008 Wenchuan earthquake using fault zone trapped waves
[J]. Earthquake Sci, 22: 417-424.
Lockner D A, Naka H, Tanaka H, et al. 2000. Permeability and strength of core samples from the Nojima Fault of the 1995 Kobe earthquake
[A]. In: Proceedings of the International Workshop on the Nojima Fault Core and Porehoke Data Analysis. 147-152.
Ma K-F, Tanaka H, Song S-R, et al. 2006. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-Fault Drilling Project
[J]. Nature, 444: 473-476.
Mavko G H, Nur A M. 1978. The effect of nonelliptical cracks on the compressibility of rocks
[J]. J Geophys Res, 83: 4459-4468.
Mizoguchi K, Hirose T, Shimamoto T, et al. 2008. Internal structure and permeability of the Nojima Fault, southwest Japan
[J]. Journal of Structural Geology, 30: 513-524.
Mollia G, Cortecci G, Vaselli L, et al. 2010. Fault zone structure and fluid-rock interaction of a high angle normal fault in Carrara marble(NW Tuscany, Italy)
[J]. J Struc Geol, 32: 1334-1348.
Moore D E, Lockner D A, Morrow C A, et al. 2001. Permeability and strength of core samples from drillholes at the southern end of the Nojima Fault, Japan
[A]. In: AGU, Fall Meeting, abstract #S41A-0580.
Morrow C A, Byerlee J D. 1992. Permeability of core samples from Cajon Pass scientific drill hole: Results from 2100 to 3 500m depth
[J]. J Geophy Res, 97: 5145-5151.
Morrow C A, Shi L Q, Byerlee J D. 1981. Permeability and strength of San Andreas fault gouge under high pressure
[J]. Geophys Res Lett, 8: 325-328.
Pickett G R. 1963. Acoustic character logs and their application in formation evaluation
[J]. J Tetrol Technol, 15: 659-667.
Reches Z, Dewers T. 2005. Gouge formation by dynamic pulverization during earthquake rupture
[J]. Earth Planet Sci Lett, 235: 361-374.
Rice J R. 1999. Flash heating at asperity contacts and rate-dependent friction
[J]. Eos Trans, American Geophysical Union, 80(46): Fall Meeting Supplement, F681.
Roland P, K Ola. 1996. Physico/chemical stability of smectite clays
[J]. Engineering Geology, 41: 73-85.
Sammis C G, Osborne R H, Anderson J L, et al. 1986. Self-similar cataclasis in the formation of fault gouge
[J]. Pure Appl Geophys, 124: 54-77.
Sibson R H. 1992. Implications of fault-valve behavior for rupture nucleation and recurrence
[J]. Tectonophysics, 211: 283-293.
Sibson R H. 1973. Interaction between temperature and pore-fluid pressure during earthquake faulting-A mechanism for partial or total stress relief
[J]. Nature, 243: 66-68.
Storti F, Billi A, Salvini F. 2003. Particle size distributions in natural carbonate fault rocks: Insights for non-self-similar cataclasis
[J]. Earth Planet Sci Lett, 206: 173-186.
Tanaka H, Fujimoto K, Ohtani T, et al. 2001. Structural and chemical characterization of shear zones in the freshly activated Nojima Fault, Awaji Island, southwest Japan
[J]. J Geophys Res, 106(B5): 8789-8810. doi: 10.1029/2000JB900444.
Tanikawa W, Shimamoto T. 2009. Frictional and transport properties of the Chelungpu Fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake
[J]. J Geophys Res, 114, B01402. doi: 10.1029/2008JB005750.
Walsh J B. 1965. The effect of cracks on the uniaxial elastic compression of rocks
[J]. J Geophys Res, 70: 399-411.
Wang Q, Ji S C, Salisbury M H, et al. 2005. Pressure dependence and anisotropy of P-wave velocities in ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt(China): Implications for seismic properties of subducted slabs and origin of mantle reflections
[J]. Tectonophysics, 398: 67-99.
Wibberley C A, Shimamoto T. 2005. Earthquake slip weakening and asperities explained by thermal pressurization
[J]. Nature, 436: 689-692.
Wilson B, Dewers T, Reches Z, et al. 2005. Particle size and energetics of gouge from earthquake rupture zones
[J]. Nature, 434: 749-752.
Xu X, X Wen, G Yu, et al. 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 MW7.9, Wenchuan earthquake, China
[J]. Geology, 37(6):515-518.
Yang X S, Ma J, Jin Z M, et al. 2003. Partial melting and its implication for understanding of seismic velocity structure within southern Tibet crust
[J].Acta Geologica Sinica, 77: 64-71.
Yang X S, Yang Y, Chen J Y. 2014. Pressure dependence of density, porosity, compressional wave velocity of fault rocks from the rupture of the 2008 Wenchuan earthquake, China
[J]. Tectonophysics, 619:133-142.
Zhao Z Y, Wang U, Liu X H. 1990. Fractal analysis applied to cataclastic rocks
[J]. Tectonophysics, 178: 373-377.
Zhao G, Peacor D R, McDowell S D. 1999. “Retrograde Diagenesis” of clay minerals in the Precambrian Freda sandstone, Wisconsin
[J]. Clays Clay Miner, 47(2): 119-130.
Zhang P, Wen X, Shen Z, et al. 2010. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China
[J]. Annual Review of Earth and Planetary Science, 38: 353-382. |