SEISMOLOGY AND GEOLOGY ›› 2024, Vol. 46 ›› Issue (6): 1332-1356.DOI: 10.3969/j.issn.0253-4967.2024.06.007
• Research paper • Previous Articles Next Articles
SHAO Kang1)(), LIU Jin-feng1,2,3), XIE Bin1), ZHU Min-jie1)
Received:
2023-11-01
Revised:
2023-12-07
Online:
2024-12-20
Published:
2025-01-22
邵康1)(), 刘金锋1,2,3), 谢彬1), 朱民杰1)
作者简介:
邵康, 男, 1999年生, 现为中山大学岩土工程专业在读硕士研究生, 主要从事断层泥摩擦特性研究, E-mail: shaok@mail2.sysu.edu.cn。
基金资助:
SHAO Kang, LIU Jin-feng, XIE Bin, ZHU Min-jie. FRICTIONAL PROPERTIES ASSOCIATED WITH ACOUSTIC EMISSION CHARACTERISTICS OF SIMULATED GRANITE FAULT GOUGES: EFFECTS OF NORMAL STRESS AND WATER CONTENT[J]. SEISMOLOGY AND GEOLOGY, 2024, 46(6): 1332-1356.
邵康, 刘金锋, 谢彬, 朱民杰. 正应力和含水率对花岗岩断层泥摩擦特性和声发射特征的影响[J]. 地震地质, 2024, 46(6): 1332-1356.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2024.06.007
矿物种类 | 石英 | 钠长石 | 微斜长石 | 白云母 | 其他矿物 |
---|---|---|---|---|---|
花岗岩断层泥/wt% | 28 | 25 | 44 | 1 | 2 |
Table1 Semi-quantitative analysis of mineral composition in granite gouge
矿物种类 | 石英 | 钠长石 | 微斜长石 | 白云母 | 其他矿物 |
---|---|---|---|---|---|
花岗岩断层泥/wt% | 28 | 25 | 44 | 1 | 2 |
Fig. 4 Schematic diagram showing RA-AF crack classification(a) and Schematic diagram of crack cumulative summation curve showing inversed five types of microcrack developments with different k values(b) (indexed from FAN Cai-yuan et al., 2023).
Fig. 6 The relationship curves of apparent friction coefficient, normal displacement, and shear displacement for granite fault gouge(Slide-Hold-Slide experiment).
有效正应力/MPa | 含水率/% | ① | a-b② | a | b | 滑动模式 |
---|---|---|---|---|---|---|
0.5 | 10 | 0.569 | -4.58×10-3 | 1.26×10-3 | 5.84×10-3 | 速率弱化,10μm/s准静态振荡 |
1 | 10 | 0.591 | -4.20×10-3 | 2.10×10-3 | 6.30×10-3 | 速率弱化,10μm/s准静态振荡 |
2 | 10 | 0.632 | -3.52×10-3 | 2.65×10-3 | 6.17×10-3 | 速率弱化 |
5 | 10 | 0.607 | -1.68×10-3 | 4.02×10-3 | 5.70×10-3 | 速率弱化 |
10 | 10 | 0.561 | 1.53×10-3 | 3.94×10-3 | 2.41×10-3 | 速率强化 |
20 | 10 | 0.549 | 1.69×10-3 | 4.37×10-3 | 2.68×10-3 | 速率强化 |
10 | 0 | 0.646 | 0.70×10-3 | 4.59×10-3 | 3.89×10-3 | 速率强化 |
10 | 20 | 0.583 | 0.18×10-3 | 4.97×10-3 | 4.79×10-3 | 速率强化 |
10 | 25 | 0.561 | -0.52×10-3 | 2.43×10-3 | 2.95×10-3 | 速率弱化 |
Table2 Summary of friction constitutive parameters of granite gouge
有效正应力/MPa | 含水率/% | ① | a-b② | a | b | 滑动模式 |
---|---|---|---|---|---|---|
0.5 | 10 | 0.569 | -4.58×10-3 | 1.26×10-3 | 5.84×10-3 | 速率弱化,10μm/s准静态振荡 |
1 | 10 | 0.591 | -4.20×10-3 | 2.10×10-3 | 6.30×10-3 | 速率弱化,10μm/s准静态振荡 |
2 | 10 | 0.632 | -3.52×10-3 | 2.65×10-3 | 6.17×10-3 | 速率弱化 |
5 | 10 | 0.607 | -1.68×10-3 | 4.02×10-3 | 5.70×10-3 | 速率弱化 |
10 | 10 | 0.561 | 1.53×10-3 | 3.94×10-3 | 2.41×10-3 | 速率强化 |
20 | 10 | 0.549 | 1.69×10-3 | 4.37×10-3 | 2.68×10-3 | 速率强化 |
10 | 0 | 0.646 | 0.70×10-3 | 4.59×10-3 | 3.89×10-3 | 速率强化 |
10 | 20 | 0.583 | 0.18×10-3 | 4.97×10-3 | 4.79×10-3 | 速率强化 |
10 | 25 | 0.561 | -0.52×10-3 | 2.43×10-3 | 2.95×10-3 | 速率弱化 |
有效正应力/MPa | 含水率/% | ① | 保持时间阈值②/s | ③ | ④ | ⑤ |
---|---|---|---|---|---|---|
0.5 | 10 | 0.576 | 1000 | 0.019 | 0.063 | 0.022 |
1 | 10 | 0.621 | 1000 | 0.015 | 0.034 | 0.012 |
5 | 10 | 0.621 | 1000 | 0.011 | 0.036 | 0.009 |
10 | 10 | 0.604 | 300 | 0.0063 | 0.017 | 0.0055 |
20 | 10 | 0.607 | 300 | 0.0054 | 0.016 | 0.0049 |
10 | 0 | 0.665 | 1000 | 0.0067 | 0.0024 | 0.0061 |
10 | 20 | 0.595 | 300 | 0.0078 | 0.018 | 0.0059 |
10 | 25 | 0.584 | 300 | 0.0073 | 0.019 | 0.0077 |
Table3 Summary of frictional healing parameters of granite gouge
有效正应力/MPa | 含水率/% | ① | 保持时间阈值②/s | ③ | ④ | ⑤ |
---|---|---|---|---|---|---|
0.5 | 10 | 0.576 | 1000 | 0.019 | 0.063 | 0.022 |
1 | 10 | 0.621 | 1000 | 0.015 | 0.034 | 0.012 |
5 | 10 | 0.621 | 1000 | 0.011 | 0.036 | 0.009 |
10 | 10 | 0.604 | 300 | 0.0063 | 0.017 | 0.0055 |
20 | 10 | 0.607 | 300 | 0.0054 | 0.016 | 0.0049 |
10 | 0 | 0.665 | 1000 | 0.0067 | 0.0024 | 0.0061 |
10 | 20 | 0.595 | 300 | 0.0078 | 0.018 | 0.0059 |
10 | 25 | 0.584 | 300 | 0.0073 | 0.019 | 0.0077 |
Fig. 10 Crack cumulative summation curve of granite gouge at effective normal stress of 10MPa. a VS-10MPa-20%; b VS-10MPa-25%; c SHS-10MPa-20%; d SHS-10MPa-25%
[1] |
陈四利, 冯夏庭, 李邵军. 2003. 岩石单轴抗压强度与破裂特征的化学腐蚀效应[J]. 岩石力学与工程学报, 22(4): 547—551.
|
|
|
[2] |
储超群, 吴顺川, 曹振生, 等. 2021. 基于声发射技术的花岗岩破裂特征试验研究[J]. 中南大学学报(自然科学版), 52(8): 2919—2932.
|
|
|
[3] |
邓朝福, 刘建锋, 陈亮, 等. 2017. 不同含水状态花岗岩断裂力学行为及声发射特征[J]. 岩土工程学报, 39(8): 1538—1544.
|
|
|
[4] |
丁原章, 潘建雄, 肖安予, 等. 1983. 新丰江水库诱发地震的构造条件[J]. 地震地质, 5(3): 63—74.
|
|
|
[5] |
窦子豪, 赵志宏, 高天阳, 等. 2021. 水岩作用下花岗岩裂隙剪切力学特性演化规律[J]. 清华大学学报(自然科学版), 61(8): 792—798.
|
|
|
[6] |
范财源, 孟范宝, 刘金锋. 2023. 单轴压缩作用下岩石脆性破裂机制的声发射识别[J]. 中山大学学报(自然科学版), 62(3): 14—24.
|
|
|
[7] |
龚钢延, 谢原定. 1991. 新丰江水库地震区内孔隙流体扩散与原地水力扩散率的研究[J]. 地震学报, 13(3): 364—371.
|
|
|
[8] |
郭春清, 沈忠民, 张林晔, 等. 2003. 砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述[J]. 地质地球化学, 31(3): 53—57.
|
|
|
[9] |
郭贵安, 刘特培, 秦乃岗, 等. 2004. 新丰江水库1961—1999年小震综合机制解结果分析[J]. 地震学报, 26(3): 261—268.
|
|
|
[10] |
胡毓良, 陈献程. 1979. 我国的水库地震及有关成因问题的讨论[J]. 地震地质, 1(4): 45—57.
|
|
|
[11] |
雷蕙如, 周永胜, 姚文明, 等. 2022. 安宁河断层地震成核条件研究: 来自天然花岗岩断层泥摩擦实验的启示[J]. 地球物理学报, 65(3): 978—991.
|
|
|
[12] |
李铀, 朱维申, 白世伟, 等. 2003. 风干与饱水状态下花岗岩单轴流变特性试验研究[J]. 岩石力学与工程学报, 22(10): 1673—1677.
|
|
|
[13] |
刘洋, 何昌荣. 2020. 普通角闪石的速率依赖性及其对俯冲带慢滑移机制的启示[J]. 地震地质, 42(6): 1267—1281. doi:10.3969/j.issn.0253-4967.2020.06.001.
|
DOI |
|
[14] |
任凤文, 何昌荣. 2014. 热水条件下花岗质糜棱岩的摩擦滑动实验研究[J]. 地球物理学报, 57(3): 877—883.
|
|
|
[15] |
沈崇刚, 陈厚群, 张楚汉, 等. 1974. 新丰江水库地震及其对大坝的影响[J]. 中国科学, 4(2): 184—205.
|
|
|
[16] |
申林方, 冯夏庭, 潘鹏志, 等. 2010. 单裂隙花岗岩在应力-渗流-化学耦合作用下的试验研究[J]. 岩石力学与工程学报, 29(7): 1379—1388.
|
|
|
[17] |
谭文彬, 何昌荣. 2008. 高温高压及干燥条件下斜长石和辉石断层泥的摩擦滑动研究[J]. 地学前缘, 15(3): 279—286.
|
|
|
[18] |
于雯泉, 陈勇, 杨立干, 等. 2014. 酸性环境致密砂岩储层石英的溶蚀作用[J]. 石油学报, 35(2): 286—293.
DOI |
DOI |
|
[19] |
张虎男, 吴堑红. 1994. 华南沿海主要活动断裂带的比较构造研究[J]. 地震地质, 16(1): 43—52.
|
|
|
[20] |
周永胜. 2019. 基岩区断层黏滑与蠕滑的地质标志和岩石力学实验证据[J]. 地震地质, 41(5): 1266—1272. doi: 10.3969/j.issn.0253-4967.2019.05.013.
|
DOI |
|
[21] |
|
[22] |
|
[23] |
PMID |
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
Den Hartog S A M,
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[1] | ZHAO Qian-bai, ZHAO Yong, YANG Tian-hong, TENG Long, WANG Shu-hong, LIU Yi-long. DISCRETE ELEMENT SIMULATION STUDY OF FAULT STICK-SLIP INSTABILITY PATTERNS AT DIFFERENT MICROCRACK DENSITIES [J]. SEISMOLOGY AND GEOLOGY, 2024, 46(6): 1357-1373. |
[2] | LIU Shi-min, ZHANG Lei, HE Chang-rong. FRICTIONAL PROPERTIES OF SERPENTINE MINERALS UNDER HYDROTHERMAL CONDITIONS [J]. SEISMOLOGY AND GEOLOGY, 2024, 46(2): 235-250. |
[3] | LIU Yang, HE Chang-rong. RATE DEPENDENCE OF FRICTION OF HORNBLENDE AND IMPLICATIONS FOR UNSTABLE SLIPS [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(6): 1267-1281. |
[4] | YANG Hai-ming, CHEN Shun-yun, LIU Pei-xun, GUO Yan-shuang, ZHUO Yan-qun, QI Wen-bo. EXPERIMENTAL STUDY ON THE CHANGES OF ULTRASONIC CODA WAVE AND ACOUSTIC EMISSION DURING ROCK LOADING AND DEFORMATION [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(3): 715-731. |
[5] | LI Shi-nian, QI Wen-bo, LIU Li-qiang. A SUPER-DYNAMIC DEFORMATION MEASUREMENT SYSTEM WITH LONG-TIME PARALLEL CONTINUOUS ACQUISITION [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(6): 1529-1538. |
[6] | ZHANG Shu, HE Chang-rong. AN EXPERIMENTAL STUDY ON THE PROCESS OF INTERGRANULAR PRESSURE SOLUTION OF PLAGIOCLASE GOUGE UNDER HIGH TEMPERATURE AND PRESSURE: METHOD AND PRELIMINARY RESULTS [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(4): 1012-1026. |
[7] | ZHAO Yang-feng, LIU Li-qiang, PAN Yi-shan. EXPERIMENT STUDY ON ACOUSTIC EMISSION, MICROSEISM AND CHARGE INDUCTION DURING FRACTURE PROCESS OF GRANITE WITH FAULT ZONE UNDER UNIAXIAL COMPRESSION [J]. SEISMOLOGY AND GEOLOGY, 2017, 39(5): 964-980. |
[8] | YAO Sheng-nan, HE Chang-rong. FRICTIONAL SLIDING OF PLAGIOCLASE GOUGE UNDER LOWER-CRUST TEMPERATURE AND RELATIVELY LOW EFFECTIVE NORMAL STRESS [J]. SEISMOLOGY AND GEOLOGY, 2016, 38(2): 290-302. |
[9] | LEI Xing-lin, LI Xia-ying, LI Qi, MA Sheng-li, FU Bi-hong, CUI Yin-xiang. ROLE OF IMMATURE FAULTS IN INJECTION-INDUCED SEISMICITY IN OIL/GAS RESERVOIRS—A CASE STUDY OF THE SICHUAN BASIN, CHINA [J]. SEISMOLOGY AND GEOLOGY, 2014, 36(3): 625-643. |
[10] | CAO Feng-juan, WANG Liang, JIAO Ming-ruo, ZHAI Li-na, WANG Yan. DISCUSSION ON THE CHARACTERISTICS AND SEISMO-TECTONICS OF THE GAIZHOU ML 4.7 EARTHQUAKE SWARM SEQUENCE ON FEBRUARY 2, 2012 [J]. SEISMOLOGY AND GEOLOGY, 2013, 35(4): 842-852. |
[11] | LI Pu-chun, LIU Li-qiang, GUO ling-li, LIU Pei-xun. MULTI-POINT DISLOCATION IN STICK-SLIP PROCESS [J]. SEISMOLOGY AND GEOLOGY, 2013, 35(1): 125-137. |
[12] | YUN Long, GUO Yan-shuang, MA Jin. AN EXPERIMENTAL STUDY OF EVOLUTION OF PHYSICAL FIELD AND THE ALTERNATIVE ACTIVITIES DURING STICK-SLIP OF 5°|BEND FAULT [J]. SEISMOLOGY AND GEOLOGY, 2011, 33(2): 356-368. |
[13] | LUO Li, HE Chang-rong. FRICTIONAL SLIDING OF PYROXENE AND PLAGIOCLASE GOUGES UNDER HYDROTHERMAL CONDITIONS [J]. SEISMOLOGY AND GEOLOGY, 2009, 31(1): 84-96. |
[14] | LIU Pei-xun, LIU Li-qiang, CHEN Shun-yun, HU Xiao-yan. SOFTWARE FOR THREE-DIMENSIONAL LOCATION OF ACOUSTIC EMISSION IN LABORATORY [J]. SEISMOLOGY AND EGOLOGY, 2007, 29(3): 674-679. |
[15] | HU Xiao-yan, LIU Pei-xun, LIU Li-qiang, MA Sheng-li. DATA SERVICE SYSTEM FOR ACOUSTIC EMISSION EXPERIMENT IN LABORATORY [J]. SEISMOLOGY AND EGOLOGY, 2005, 27(4): 653-660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||