SEISMOLOGY AND GEOLOGY ›› 2023, Vol. 45 ›› Issue (2): 570-592.DOI: 10.3969/j.issn.0253-4967.2023.02.016
• Review • Previous Articles
ZHAO De-zheng1)(), QU Chun-yan1),*(), ZHANG Gui-fang1), GONG Wen-yu1), SHAN Xin-jian1), ZHU Chuan-hua2), ZHANG Guo-hong1), SONG Xiao-gang1)
Revised:
2022-09-21
Online:
2023-04-20
Published:
2023-05-18
赵德政1)(), 屈春燕1),*(), 张桂芳1), 龚文瑜1), 单新建1), 朱传华2), 张国宏1), 宋小刚1)
通讯作者:
*屈春燕, 女, 1966年生, 博士, 研究员, 主要研究方向为InSAR地壳形变与模拟, E-mail: 作者简介:
赵德政, 男, 1992年生, 2021年于中国地震局地质研究所获地球物理专业博士学位, 现为中国地震局地质研究所博士后, 主要研究方向为地震周期形变与断层运动学, E-mail: dezhengzhao@ies.ac.cn。
基金资助:
CLC Number:
ZHAO De-zheng, QU Chun-yan, ZHANG Gui-fang, GONG Wen-yu, SHAN Xin-jian, ZHU Chuan-hua, ZHANG Guo-hong, SONG Xiao-gang. APPLICATIONS AND ADVANCES FOR THE COSEISMIC DEFORMA-TION OBSERVATIONS, EARTHQUAKE EMERGENCY RESPONSE AND SEISMOGENIC STRUCTURE INVESTIGATION USING INSAR[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 570-592.
赵德政, 屈春燕, 张桂芳, 龚文瑜, 单新建, 朱传华, 张国宏, 宋小刚. 基于InSAR技术的同震形变获取、地震应急监测和发震构造研究应用进展[J]. 地震地质, 2023, 45(2): 570-592.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2023.02.016
Fig. 4 Example of the atmospheric phase correction for coseismic deformation field. GACOS: Generic Atmospheric Correction Online Service(Chen et al., 2021); SSC: Simple-Stratification-Correction scheme
Fig. 6 Difference of centroid location between InSAR based observation and seismic data superimposed on the number of seismic stations from Zhu et al.(2021).
[1] | 季灵运, 刘传金, 徐晶, 等. 2017. 九寨沟 MS7.0 地震的InSAR观测及发震构造分析[J]. 地球物理学报, 60(10): 4069-4082. |
JI Ling-yun, LIU Chuan-jin, XU Jing, et al. 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China[J]. Chinese Journal of Geophysics, 60(10): 4069-4082. (in Chinese) | |
[2] | 刘传金, 邱江涛, 王金烁. 2018. 基于升降轨 Sentinel-1 SAR 影像研究精河 MS6.6 地震震源机制[J]. 大地测量与地球动力学, 38(11): 1111-1116. |
LIU Chuan-jin, QIU Jiang-tao, WANG Jin-shuo. 2018. The 2017 Jinghe MS6. 6 earthquake inversion from ascending and descending Sentinel-1 observations[J]. Journal of Geodesy and Geodynamics, 38(11): 1111-1116. (in Chinese) | |
[3] | 刘云华, 汪驰升, 单新建, 等. 2014. 芦山 MS7.0 地震InSAR形变观测及震源参数反演[J]. 地球物理学报, 57(8): 2495-2506. |
LIU Yun-hua, WANG Chi-sheng, SHAN Xin-jian, et al. 2014. Result of SAR differential interferometry for the co-seismic deformation and source parameter of the MS7.0 Lushan Earthquake[J]. Chinese Journal of Geophysics, 57(8): 2495-2506. (in Chinese) | |
[4] | 屈春燕, 左荣虎, 单新建, 等. 2017. 尼泊尔 MW7.8 地震InSAR同震形变场及断层滑动分布[J]. 地球物理学报, 60(1): 151-162. |
QU Chun-yan, ZUO Rong-hu, SHAN Xin-jian, et al. 2017. Coseismic deformation field of the Nepal MS8.1 earthquake from Sentinel-1A/InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics, 60(1): 151-162. (in Chinese) | |
[5] | 孙建宝, 石耀霖, 沈正康, 等. 2007. 基于线弹性位错模型反演1997年西藏玛尼 MW7.5 地震的干涉雷达同震形变场--Ⅱ滑动分布反演[J]. 地球物理学报, 50(5): 1390-1397. |
SUN Jian-bao, SHI Yao-lin, SHEN Zheng-kang, et al. 2007. Parameter inversion of the 1997 Mani earthquake from INSAR co-seismic deformation field based on linear elastic dislocation model: Ⅱ. Slip distribution inversion[J]. Chinese Journal of Geophysics, 50(5): 1390-1397. (in Chinese) | |
[6] | 万永革, 沈正康, 王敏, 等. 2008. 根据GPS和InSAR数据反演2001年昆仑山口西地震同震破裂分布[J]. 地球物理学报, 51(4): 1074-1084. |
WAN Yong-ge, SHEN Zheng-kang, WANG Min, et al. 2008. Coseismic slip distribution of the 2001 Kunlun mountain pass west earthquake constrained using GPS and InSAR data[J]. Chinese Journal of Geophysics, 51(4): 1074-1084. (in Chinese) | |
[7] | 温少妍, 单新建, 张迎峰, 等. 2016. 基于InSAR的青海大柴旦地震三维同震形变场获取与震源特征分析[J]. 地球物理学报, 59(3): 912-921. |
WEN Shao-yan, SHAN Xin-jian, ZHANG Ying-feng, et al. 2016. Three-dimensional co-seismic deformation of the Da Qaidam, Qinghai earthquakes derived from D-InSAR data and their source features[J]. Chinese Journal of Geophysics, 59(3): 912-921. (in Chinese) | |
[8] | 张桂芳, 屈春燕, 单新建, 等. 2011. 2010年青海玉树 MS7.1 地震地表破裂带和形变特征分析[J]. 地球物理学报, 54(1): 121-127. |
ZHANG Gui-fang, QU Chun-yan, SHAN Xin-jian, et al. 2011. The surface rupture and coseismic deformation characteristics of the MS7.1 earthquake at Qinghai Yushu in 2010[J]. Chinese Journal of Geophysics, 54(1): 121-127. (in Chinese) | |
[9] | 张国宏, 屈春燕, 单新建, 等. 2011. 2008年 MS7.1 于田地震InSAR同震形变场及其震源滑动反演[J]. 地球物理学报, 54(11): 2753-2760. |
ZHANG Guo-hong, QU Chun-yan, SHAN Xin-jian, et al. 2011. The coseismic InSAR measurements of 2008 Yutian earthquake and its inversion for source parameters[J]. Chinese Journal of Geophysics, 54(11): 2753-2760. (in Chinese) | |
[10] | 郑文俊, 袁道阳, 张培震, 等. 2016. 青藏高原东北缘活动构造几何图像、运动转换与高原扩展[J]. 第四纪研究, 36(4): 775-788. |
ZHENG Wen-jun, YUAN Dao-yang, ZHANG Pei-zhen, et al. 2016. Tectonic geometry and kinematic dissipation of the active faults in the northeastern Tibetan plateau and their implications for understanding northeastward growth of the plateau[J]. Quaternary Sciences, 36(4): 775-788. (in Chinese) | |
[11] |
Barbot S, Agram P, De Michele M. 2013. Change of apparent segmentation of the San Andreas fault around Parkfield from space geodetic observations across multiple periods[J]. Journal of Geophysical Research: Solid Earth, 118(12): 6311-6327.
DOI URL |
[12] |
Bürgmann R. 2018. The geophysics, geology and mechanics of slow fault slip[J]. Earth and Planetary Science Letters, 495(2018): 112-134.
DOI URL |
[13] |
Bürgmann R, Dresen G. 2008. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations[J]. Annual Review of Earth and Planetary Sciences, 36(1): 531-567.
DOI URL |
[14] | Cavalié O, Lasserre C, Doin M P, et al. 2008. Measurement of interseismic strain across the Haiyuan fault(Gansu, China), by InSAR[J]. Earth and Planetary Science Letters, 275(3-4): 246-257. |
[15] | Chen Y U, Li Z, Bai L, et al. 2021. Successful applications of generic atmospheric correction online service for InSAR(GACOS)to the reduction of atmospheric effects on InSAR observations[J]. Journal of Geodesy and Geoinformation Science, 4(1): 109-115. |
[16] |
Daout S, Sudhaus H, Kausch T, et al. 2019. Interseismic and postseismic shallow creep of the North Qaidam Thrust faults detected with a multitemporal InSAR analysis[J]. Journal of Geophysical Research: Solid Earth, 124(7): 7259-7279.
DOI URL |
[17] | Dawson J, Tregoning P. 2007. Uncertainty analysis of earthquake source parameters determined from InSAR: A simulation study[J]. Journal of Geophysical Research: Solid Earth, 112(B9): B09406. |
[18] | Devlin S, Isacks B L, Pritchard M E, et al. 2012. Depths and focal mechanisms of crustal earthquakes in the central Andes determined from teleseismic waveform analysis and InSAR[J]. Tectonics, 31(2): TC2002. |
[19] |
Diao F, Xiong X, Wang R, et al. 2019. Slip rate variation along the Kunlun fault(Tibet): Results from new GPS observations and a viscoelastic earthquake-cycle deformation model[J]. Geophysical Research Letters, 46(5): 2524-2533.
DOI URL |
[20] | Elliott J R, Biggs J, Parsons B, et al. 2008. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays[J]. Geophysical Research Letters, 35(12): L12309. |
[21] |
Elliott J R, Jolivet R, González P J, et al. 2016. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake[J]. Nature Geoscience, 9(2): 174-180.
DOI |
[22] | Elliott J R, Parsons B, Jackson J A, et al. 2011. Depth segmentation of the seismogenic continental crust: The 2008 and 2009 Qaidam earthquakes[J]. Geophysical Research Letters, 38(6): L06305. |
[23] | Feng G C, Hetland E A, Ding X L, et al. 2010. Coseismic fault slip of the 2008 MW7.9 Wenchuan earthquake estimated from InSAR and GPS measurements[J]. Geophysical Research Letters, 37(1): L01302. |
[24] |
Feng G C, Li Z W, Shan X J, et al. 2015. Geodetic model of the 2015 April 25 MW7.8 Gorkha Nepal Earthquake and MW7.3 aftershock estimated from InSAR and GPS data[J]. Geophysical Journal International, 203(2): 896-900.
DOI URL |
[25] |
Fialko Y, Sandwell D, Simons M, et al. 2005. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit[J]. Nature, 435(7040): 295-299.
DOI |
[26] | Funning G J, Parsons B, Wright T J, et al. 2005. Surface displacements and source parameters of the 2003 Bam(Iran)earthquake from Envisat advanced synthetic aperture radar imagery[J]. Journal of Geophysical Research: Solid Earth, 110(B9): B09406. |
[27] |
Garthwaite M C, Wang H, Wright T J. 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan plateau observed using InSAR[J]. Journal of Geophysical Research: Solid Earth, 118(9): 5071-5083.
DOI URL |
[28] |
Gong W Y, Zhang Y F, Li T, et al. 2019. Multi-sensor geodetic observations and modeling of the 2017 MW6.3 Jinghe earthquake[J]. Remote Sensing, 11(18): 2157.
DOI URL |
[29] |
Grandin R, Doin M P, Bollinger L, et al. 2012. Long-term growth of the Himalaya inferred from interseismic InSAR measurement[J]. Geology, 40(12): 1059-1062.
DOI URL |
[30] |
Grandin R, Klein E, Métois M, et al. 2016. Three-dimensional displacement field of the 2015 MW8.3 Illapel earthquake(Chile)from across- and along-track Sentinel-1 TOPS interferometry[J]. Geophysical Research Letters, 43(6): 2552-2561.
DOI URL |
[31] |
Guo R, Yang H, Li Y, et al. 2021. Complex slip distribution of the 2021 MW7.4 Maduo, China, earthquake: An event occurring on the slowly slipping fault[J]. Seismological Research Letters, 93(2A): 653-665.
DOI URL |
[32] |
Hamling I J, Hreinsdóttir S, Clark K, et al. 2017. Complex multifault rupture during the 2016 MW7.8 Kaikōura earthquake, New Zealand[J]. Science, 356(6334): eaam7194.
DOI URL |
[33] |
Hao K X, Si H, Fujiwara H, et al. 2009. Coseismic surface-ruptures and crustal deformations of the 2008 Wenchuan earthquake MW7.9, China[J]. Geophysical Research Letters, 36(11): L11303.
DOI URL |
[34] | He L J, Feng G C, Wu X X, et al. 2021. Coseismic and early postseismic slip models of the 2021 MW7.4 Maduo earthquake(western China)estimated by space-based geodetic data[J]. Geophysical Research Letters, 48(24): e2021GL095860. |
[35] |
He P, Ding K, Xu C. 2018. The 2016 MW6.7 Aketao earthquake in Muji range, northern Pamir: Rupture on a strike-slip fault constrained by Sentinel-1 radar interferometry and GPS[J]. International Journal of Applied Earth Observation and Geoinformation, 73: 99-106.
DOI URL |
[36] | Hooper A, Zebker H, Segall P, et al. 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 31(23): L23611. |
[37] |
Hu J, Li Z W, Ding X L, et al. 2014. Resolving three-dimensional surface displacements from InSAR measurements: A review[J]. Earth-Science Reviews, 133: 1-17.
DOI URL |
[38] | Huang M H, Huang H H. 2018. The complexity of the 2018 MW6.4 Hualien earthquake in east Taiwan[J]. Geophysical Research Letters, 45(24): 13249-13257. |
[39] | Jin Z, Fialko Y. 2021. Coseismic and early postseismic deformation due to the 2021 M7.4 Maduo(China)earthquake[J]. Geophysical Research Letters, 48(21): e2021GL095213. |
[40] | Jolivet R, Lasserre C, Doin M P, et al. 2013. Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: Implications for fault frictional properties[J]. Earth and Planetary Science Letters, 377-378: 23-33. |
[41] | Lasserre C, Peltzer G, Crampé F, et al. 2005. Coseismic deformation of the 2001 MW=7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 110(B12): B12408. |
[42] |
Lee S J, Lin T C, Liu T Y, et al. 2019. Fault-to-fault jumping rupture of the 2018 MW6.4 Hualien earthquake in eastern Taiwan[J]. Seismological Research Letters, 90(1): 30-39.
DOI URL |
[43] | Li X, Jónsson S, Cao Y. 2021. Interseismic deformation from Sentinel-1 burst-overlap interferometry: Application to the Southern Dead Sea Fault[J]. Geophysical Research Letters, 48(16): e2021GL093481. |
[44] |
Li Y, Bürgmann R, Zhao B. 2020. Evidence of fault immaturity from shallow slip deficit and lack of postseismic deformation of the 2017 MW6.5 Jiuzhaigou earthquake[J]. Bulletin of the Seismological Society of America, 110(1): 154-165.
DOI URL |
[45] |
Liu C, Ji L, Zhu L, et al. 2018. InSAR-constrained interseismic deformation and potential seismogenic asperities on the Altyn Tagh fault at 91.5°-95°E, northern Tibetan plateau[J]. Remote Sensing, 10(6): 943.
DOI URL |
[46] | Liu F, Elliott J R, Craig T J, et al. 2021. Improving the resolving power of InSAR for earthquakes using time series: a case study in Iran[J]. Geophysical Research Letters, 48(14): e2021GL093043. |
[47] |
Liu G, Xiong W, Wang Q, et al. 2019. Source characteristics of the 2017 MS7.0 Jiuzhaigou, China, earthquake and implications for recent seismicity in eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 124(5): 4895-4915.
DOI URL |
[48] |
Lo Y C, Yue H, Sun J, et al. 2019. The 2018 MW6. 4 Hualien earthquake: dynamic slip partitioning reveals the spatial transition from mountain building to subduction[J]. Earth and Planetary Science Letters, 524: 115729.
DOI URL |
[49] |
Luo H, Wang T, Wei S, et al. 2021. Deriving centimeter-level coseismic deformation and fault geometries of small-to-moderate earthquakes from time-series Sentinel-1 SAR images[J]. Frontiers in Earth Science, 9: 636398.
DOI URL |
[50] | Materna K, Wei S, Wang X, et al. 2019. Source characteristics of the 2017 MW6.4 Moijabana, Botswana earthquake, a rare lower-crustal event within an ancient zone of weakness[J]. Earth and Planetary Science Letters, 56: 348-359. |
[51] | Mellors R J, Magistrale H, Earle P, et al. 2004. Comparison of four moderate-size earthquakes in southern California using seismology and InSAR[J]. Bulletin of the Seismological Society of America, 94(6): 2004-2014. |
[52] |
Mencin D, Bendick R, Upreti B N, et al. 2016. Himalayan strain reservoir inferred from limited afterslip following the Gorkha earthquake[J]. Nature Geoscience, 9(7): 533-537.
DOI |
[53] |
Mueller C S. 2019. Earthquake catalogs for the USGS national seismic hazard maps[J]. Seismological Research Letters, 90(1): 251-261.
DOI |
[54] |
Qian Y, Chen X, Luo H, et al. 2019. An extremely shallow MW4.1 thrust earthquake in the eastern Sichuan Basin(China)likely triggered by unloading during infrastructure construction[J]. Geophysical Research Letters, 46(23): 13775-13784.
DOI URL |
[55] |
Qu C Y, Zhang G H, Shan X J, et al. 2013. Coseismic deformation derived from analyses of C and L band SAR data and fault slip inversion of the Yushu MS7.1 earthquake, China in 2010[J]. Tectonophysics, 584: 119-128.
DOI URL |
[56] |
Ryder I, Bürgmann R, Pollitz F. 2011. Lower crustal relaxation beneath the Tibetan plateau and Qaidam Basin following the 2001 Kokoxili earthquake[J]. Geophysical Journal International, 187(2): 613-630.
DOI URL |
[57] | Shan X, Ma J, Wang C, et al. 2004. Co-seismic ground deformation and source parameters of Mani M7.9 earthquake inferred from spaceborne D-InSAR observation data[J]. Science in China(Ser D), 47(6): 481-488. |
[58] |
Shan X, Zhang G, Wang C, et al. 2011. Source characteristics of the Yutian earthquake in 2008 from inversion of the co-seismic deformation field mapped by InSAR[J]. Journal of Asian Earth Sciences, 40(4): 935-942.
DOI URL |
[59] |
Shen Z K, Sun J, Zhang P, et al. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2(10): 718-724.
DOI |
[60] | Sun J, Johnson K M, Cao Z, et al. 2011. Mechanical constraints on inversion of coseismic geodetic data for fault slip and geometry: Example from InSAR observation of the 6 October 2008 MW6.3 Dangxiong-Yangyi(Tibet)earthquake[J]. Journal of Geophysical Research: Solid Earth, 116(B1): B01406. |
[61] |
Sun J, Yue H, Shen Z, et al. 2018. The 2017 Jiuzhaigou earthquake: A complicated event occurred in a young fault system[J]. Geophysical Research Letters, 45(5): 2230-2240.
DOI URL |
[62] |
Tao W, Shen Z K, Wan Y G, et al. 2007. Crustal elasticity contrast across the East Kunlun fault in northern Tibet inferred from InSAR measurements of the 2001 MW7.8 Kokoxili earthquake[J]. Chinese Journal of Geophysics, 50(3): 658-665.
DOI URL |
[63] | Talebian M, Fielding E J, Funning G J, et al. 2004. The 2003 Bam(Iran)earthquake: Rupture of a blind strike-slip fault[J]. Geophysical research letters, 31(11): L11611. |
[64] |
Tong X, Sandwell D T, Smith-Konter B. 2013. High-resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR[J]. Journal of Geophysical Research: Solid Earth, 118(1): 369-389.
DOI URL |
[65] | Vallage A, Klinger Y, Grandin R, et al. 2015. Inelastic surface deformation during the 2013 MW7.7 Balochistan, Pakistan, earthquake[J]. Geology, 43(12): 1079-1082. |
[66] | Wang H, Wright T J, Biggs J. 2009. Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data[J]. Geophysical Research Letters, 36(3): L03302. |
[67] |
Wang H, Wright T J, Liu-Zeng J, et al. 2019. Strain rate distribution in south-central Tibet from two decades of InSAR and GPS[J]. Geophysical Research Letters, 46(10): 5170-5179.
DOI |
[68] |
Wang K, Dreger D S, Tinti E, et al. 2020. Rupture process of the 2019 Ridgecrest, California MW6.4 foreshock and MW7.1 earthquake constrained by seismic and geodetic data[J]. Bulletin of the Seismological Society of America, 110(4): 1603-1626.
DOI URL |
[69] |
Wang K, Fialko Y. 2015. Slip model of the 2015 MW7.8 Gorkha(Nepal)earthquake from inversions of ALOS-2 and GPS data[J]. Geophysical Research Letters, 42(18): 7452-7458.
DOI URL |
[70] | Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. |
[71] |
Wang Q, Qiao X J, Lan Q G, et al. 2011. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan[J]. Nature Geoscience, 4(9): 634-640.
DOI |
[72] |
Wang S, Xu C, Wen Y, et al. 2017. Slip model for the 25 November 2016 MW6.6 Aketao earthquake, western China, revealed by Sentinel-1 and ALOS-2 observations[J]. Remote Sensing, 9(4): 325.
DOI URL |
[73] |
Wang X, Liu G, Yu B, et al. 2014. 3D coseismic deformations and source parameters of the 2010 Yushu earthquake(China)inferred from DInSAR and multiple-aperture InSAR measurements[J]. Remote sensing of environment, 152: 174-189.
DOI URL |
[74] |
Wei S, Fielding E, Leprince S, et al. 2011. Superficial simplicity of the 2010 El Mayor-Cucapah earthquake of Baja California in Mexico[J]. Nature Geoscience, 4(9): 615-618.
DOI |
[75] |
Wimpenny S, Copley A, Ingleby T. 2017. Fault mechanics and post-seismic deformation at Bam, SE Iran[J]. Geophysical Journal International, 209(2): 1018-1035.
DOI URL |
[76] |
Wimpenny S, Watson C S. 2021. gWFM: A global catalog of moderate-magnitude earthquakes studied using teleseismic body waves[J]. Seismological Research Letters, 92(1): 212-226.
DOI URL |
[77] | Wright T J, Parsons B E, Lu Z. 2004. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 31(1): L01607. |
[78] |
Xu C, Liu Y, Wen Y, et al. 2010. Coseismic slip distribution of the 2008 MW7.9 Wenchuan earthquake from joint inversion of GPS and InSAR data[J]. Bulletin of the Seismological Society of America, 100(5B): 2736-2749.
DOI URL |
[79] | Yu C, Penna N T, Li Z. 2017. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research: Atmospheres, 122(3): 2008-2025. |
[80] |
Zhang G H, Qu C Y, Shan X J, et al. 2011. Slip distribution of the 2008 Wenchuan MS7.9 earthquake by joint inversion from GPS and InSAR measurements: a resolution test study[J]. Geophysical Journal International, 186(1): 207-220.
DOI URL |
[81] |
Zhang G H, Shan X J, Delouis B, et al. 2013. Rupture history of the 2010 MS7.1 Yushu earthquake by joint inversion of teleseismic data and InSAR measurements[J]. Tectonophysics, 584: 129-137.
DOI URL |
[82] |
Zhang Y, Shan X, Gong W, et al. 2021. The ambiguous fault geometry derived from InSAR measurements of buried thrust earthquakes: a synthetic data based study[J]. Geophysical Journal International, 225(3): 1799-1811.
DOI URL |
[83] | Zhao D, Qu C, Bürgmann R, et al. 2022. Large-scale crustal deformation, slip-rate variation, and strain distribution along the Kunlun Fault(Tibet)from Sentinel-1 InSAR observations(2015-2020)[J]. Journal of Geophysical Research: Solid Earth, 127(1): e2021JB022892. |
[84] | Zhao D, Qu C, Chen H, et al. 2021. Tectonic and geometric control on fault kinematics of the 2021 MW7.3 Maduo(China)earthquake inferred from interseismic, coseismic, and postseismic InSAR observations[J]. Geophysical Research Letters, 48(18): e2021GL095417. |
[85] |
Zhao D, Qu C, Shan X, et al. 2018. InSAR and GPS derived coseismic deformation and fault model of the 2017 MS7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block[J]. Tectonophysics, 726: 86-99.
DOI URL |
[86] |
Zhu C, Wang C, Zhang B, et al. 2021. Differential Interferometric Synthetic Aperture Radar data for more accurate earthquake catalogs[J]. Remote Sensing of Environment, 266: 112690.
DOI URL |
[87] |
Zuo R, Qu C, Shan X J, et al. 2016. Coseismic deformation fields and a fault slip model for the MW7.8 mainshock and MW7.3 aftershock of the Gorkha-Nepal 2015 earthquake derived from Sentine-1A SAR interferometry[J]. Tectonophysics, 686: 158-169.
DOI URL |
[1] | LIU Bai-yun, ZHAO Li, LIU Yun-yun, WANG Wen-cai, ZHANG Wei-dong. THE RESEARCH ON RELOCATION AND FAULT PLANE SOLUTION AND GEOMETRIC MEANING OF THE MADUO M7.4 EARTHQUAKE ON 22 MAY 2021 [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 500-516. |
[2] | ZHANG Ke, WANG Xin, YANG Hong-ying, WANG Yue, XU Yan, LI Jing. THE CHARACTERISTICS AND SEISMOGENIC STRUCTURE ANALYSIS OF THE 2021 YANGBI MS6.4 EARTHQUAKE SEQUENCE, YUNNAN [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 231-251. |
[3] | LI Chuan-you, SUN Kai, MA Jun, LI Jun-jie, LIANG Ming-jian, FANG Li-hua. THE 2022 M6.8 LUDING EARTHQUAKE: A COMPLICATED EVENT BY FAULTING OF THE MOXI SEGMENT OF THE XIANSHUIHE FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1648-1666. |
[4] | ZHANG Bo-xuan, ZHENG Wen-jun, CHEN Jie, HE Xiao-hui, LI Qi-lei, ZHANG Dong-li, DUAN Lei, CHEN Gan. ANALYSIS OF THE SEISMOGENIC STRUCTURE OF THE JUNE 2021 MS5.8 MANG’AI EARTHQUAKE IN NORTHERN QAIDAM BASIN [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(5): 1313-1332. |
[5] | YAO Sheng-hai, GAI Hai-long, YIN Xiang, LIU Wei, ZHANG Jia-qing, YUAN Jian-xin. A DISCUSSION ON THE RELATIONSHIP BETWEEN THE SUR-FACE RUPTURE ZONE IN FRONT OF THE AMUNIKESHAN MOUNTAIN AND THE 1962 M6.8 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 976-991. |
[6] | LIANG Kuan, HE Zhong-tai, JIANG Wen-liang, LI Yong-sheng, LIU Ze-min. SURFACE RUPTURE CHARACTERISTICS OF THE MENYUAN MS6.9 EARTHQUAKE ON JANUARY 8, 2022, QINGHAI PROVINCE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(1): 256-278. |
[7] | GAO Fan, HAN Zhu-jun, YUAN Ren-mao, DONG Shao-peng, GUO Peng. FEATURES OF ANCIENT LANDSLIDES AND THEIR SEISMIC-GEOLOGICAL SIGNIFICANCE ALONG THE SOUTHERN SEGMENT OF XIAOJIANG FAULT IN THE SOUTHEASTERN YUNNAN, CHINA [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1412-1434. |
[8] | YAO Sheng-hai, GAI Hai-long, YIN Xiang, LI Xin. THE BASIC CHARACTERISTICS AND TYPICAL PHENOMENA OF THE SURFACE RUPTURE ZONE OF THE MADUO MS7.4 EARTHQUAKE IN QINGHAI [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(5): 1060-1072. |
[9] | JIA Rui, ZHANG Guo-hong, XIE Chao-di, SHAN Xin-jian, ZHANG Ying-feng, LI Cheng-long, HUANG Zi-cheng. COSEISMIC DEFORMATION FIELD AND FAULT SLIP MODEL OF THE MW6.0 PAKISTAN EARTHQUAKE CONSTRAINED BY SENTINEL-1A SAR DATA [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 600-613. |
[10] | ZHAO Qi-guang, SUN Ye-jun, HUANG Yun, YANG Wei-lin, GU Qin-ping, MENG Ke, YANG Hao. A STUDY ON THE SEISMOGENIC STRUCTURE OF GAOYOU-BAOYING MS4.9 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 630-646. |
[11] | LI Qi-lei, LI Yu-li, TU Hong-wei, LIU Wen-bang. THE RELOCATION, FOCAL MECHANISMS OF THE DINGQING EARTHQUAKES AND A PRELIMINARY STUDY OF ITS SEISMOGENIC STRUCTURE [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(1): 209-231. |
[12] | LIU Bai-yun, YIN Zhi-wen, YUAN Dao-yang, LI Liang, WANG Wei-huan. THE RESEARCH ON FAULT PLANE SOLUTION AND GEOMETRIC MEANING OF THE LAOHUSHAN FAULT IN THE NORTHEASTERN TIBETAN PLATEAU [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(6): 1354-1369. |
[13] | DONG Li-na, LIAN Wei-ping, CHEN Wei-tao, MA Hai-jian. INVESTIGATION OF STATUS AND DEMAND ON PUBLIC SERVICE OF EARTHQUAKE DISASTER MITIGATION IN CHINA [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(3): 762-771. |
[14] | WU Wei-wei, WEI Ya-ling, LONG Feng, LIANG Ming-jian, CHEN Xue-fen, SUN Wei, ZHAO Jing. STUDY ON SOURCE PARAMETERS OF THE 8 AUGUST 2017 M7.0 JIUZHAIGOU EARTHQUAKE AND ITS AFTERSHOCKS, NORTHERN SICHUAN [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(2): 492-512. |
[15] | MAO Ze-bin, CHANG Zu-feng, LI Jian-lin, CHANG Hao, ZHAO Jin-min, CHEN Gang. LATE QUATERNARY ACTIVITY OF FAULTS IN THE EPICENTER AREA OF JINGGU M6.6 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(4): 821-836. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||