SEISMOLOGY AND GEOLOGY ›› 2023, Vol. 45 ›› Issue (2): 435-454.DOI: 10.3969/j.issn.0253-4967.2023.02.008
• Research paper • Previous Articles Next Articles
CHEN Kun1)(), GAO Meng-tan1), YU Yan-xiang1), XU Wei-jin1), DU Yi2), LI Xue-jin1), LU Dong-hua1)
Revised:
2022-12-09
Online:
2023-04-20
Published:
2023-05-18
陈鲲1)(), 高孟潭1), 俞言祥1), 徐伟进1), 杜义2), 李雪靖1), 陆东华1)
作者简介:
陈鲲, 男, 1976年生, 2013年于中国地震局地球物理研究所获固体地球物理博士学位, 研究员, 主要从事地震区划、地震危险性分析及地震动强度图等方面的研究, E-mail: Chenkun-6620@163.com。
基金资助:
CLC Number:
CHEN Kun, GAO Meng-tan, YU Yan-xiang, XU Wei-jin, DU Yi, LI Xue-jin, LU Dong-hua. PROBABILISTIC SEISMIC HAZARD ANALYSIS ALGORITHM INTEGRATING THREE-DIMENSIONAL FAULT SOURCES AND POTENTIAL SEISMIC SOURCE ZONE USING RANDOM SAMPLING[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 435-454.
陈鲲, 高孟潭, 俞言祥, 徐伟进, 杜义, 李雪靖, 陆东华. 融合三维断层源和二维潜在震源区的随机抽样概率地震危险性分析算法研发[J]. 地震地质, 2023, 45(2): 435-454.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2023.02.008
Fig. 3 Statistics of the magnitude frequency for simulated earthquakes in the middle and lower reaches of the Changjian River seismic belt(simulation duration 247 500 years).
地表形迹坐标 | 宽度/km | 倾角/(°) | 顶面埋深/km |
---|---|---|---|
29.47°N, 112.00°E; 29.33°N, 111.91°E; 29.25°N, 111.83°E | 60 | 60 | 0 |
29.15°N, 111.76°E; 29.04°N, 111.73°E; 28.99°N, 111.70°E |
Table1 3D fault source parameters of the Taiyangshan fault
地表形迹坐标 | 宽度/km | 倾角/(°) | 顶面埋深/km |
---|---|---|---|
29.47°N, 112.00°E; 29.33°N, 111.91°E; 29.25°N, 111.83°E | 60 | 60 | 0 |
29.15°N, 111.76°E; 29.04°N, 111.73°E; 28.99°N, 111.70°E |
[1] | 陈鲲, 高孟潭. 2015. 中国大陆地区一般建设工程抗地震倒塌风险研究[J]. 建筑结构学报, 36(1): 23-29. |
CHEN Kun, GAO Meng-tan. 2015. Controlling seismic collapse risk of general construction projects in China mainland[J]. Journal of Building Structures, 36(1): 23-29. (in Chinese) | |
[2] | 高孟潭. 1986. 地震危险性分析方法概述[J]. 国际地震动态, (11): 10-13. |
GAO Meng-tan. 1986. An outline of the analytic methods for Seismic risk assessment[J]. Recent Developments in World Seismology, (11): 10-13. (in Chinese) | |
[3] | 高孟潭. 2015. 《中国地震动参数区划图》宣贯教材(GB 18306-2015)[M]. 北京: 中国标准出版社, 中国质检出版社. |
GAO Meng-tan. 2015. Chinese Ground Motion Intensity Measures Zoning Map Publicity Materials(GB 18306-2015)[M]. Beijing: Standards Press of China. Zhijian Publishing House. (in Chinese) | |
[4] | 汪素云, 俞言祥, 高阿甲, 等. 2000. 中国分区地震动衰减关系的确定[J]. 中国地震, 16(2): 99-106. |
WANG Su-yun, YU Yan-xiang, GAO A-jia, et al. 2000. Development of attenuation relations for ground motion in China[J]. Earthquake Research in China, 16(2): 99-106. (in Chinese) | |
[5] | 徐伟进, 高孟潭, 左惠强. 2020. 地震巨灾模型中的随机地震事件集模拟[J]. 地震工程学报, 42(4): 1024-1034. |
XU Wei-jin, GAO Meng-tan, ZUO Hui-qiang. 2020. Simulations of stochastic seismic event set using the earthquake catastrophe model[J]. China Earthquake Engineering Journal, 42(4): 1024-1034. | |
[6] | 俞言祥, 李山有, 肖亮. 2013. 为新区划图编制所建立的地震动衰减关系[J]. 震灾防御技术, 8(1): 24-33. |
YU Yan-xiang, LI Shan-you, XIAO Liang. 2013. Development of ground motion attenuation relations for the new seismic hazard map of China[J]. Technology for Earthquake Disaster Prevention, 8(1): 24-33. | |
[7] | 章在墉, 陈达生. 1982. 二滩水电站坝区场地地震危险性分析[J]. 地震工程与工程振动, 2(3): 1-15. |
ZHANG Zai-yong, CHEN Da-sheng. 1982. Seismic hazard analysis of the Ertan dam site[J]. Earthquake Engineering and Engineering Vibration, 2(3): 1-15.
DOI URL |
|
[8] |
Bazzurro P, Cornell C A. 1999. Disaggregation of seismic hazard[J]. Bulletin of the Seismological Society of America, 89(2): 501-520.
DOI URL |
[9] | Bender B, Perkins D M. 1987. SEISRISK Ⅲ: A computer program for seismic hazard estimation[R]. US Geological Survey Bulletin, 1772:48. |
[10] |
Cornell C A. 1968. Engineering seismic risk analysis[J]. Bulletin of Seismological Society of America, 58(5): 1583-1606.
DOI URL |
[11] |
Ebel J E, Kafka A L. 1999. A Monte Carlo approach to seismic hazard analysis[J]. Bulletin of the Seismological Society of America, 89(4): 854-866.
DOI URL |
[12] |
Field E H, Jordan T H, Cornell C A. 2003. Open SHA: A developing community-modeling environment for seismic hazard analysis[J]. Seismological Research Letters, 74(4): 406-419.
DOI URL |
[13] | Hong H P, Goda K. 2006. A comparison of seismic-hazard and risk deaggregation[J]. Bulletin of the Seismological Society of America, 96(6): 2021-2039. |
[14] | McGuire R K. 1976. Fortran computer program for seismic risk analysis[R]. US Geological Survey. Open-File Report: 76-67. |
[15] | McGuire R K. 1978. FRISK: Computer program for seismic risk analysis using faults as earthquake sources[R]. US Geological Survey. Open-File Report: 78-1007. |
[16] | McGuire R K. 2004. Seismic hazard and risk analysis[R]. Earthquake Engineering Research Institute, Report MNO-10: 240. |
[17] | McGuire R K. 2008. Probabilistic seismic hazard analysis: early history[J]. Earthquake Engineering& Structural Dynamics, 37(3): 329-338. |
[18] | Musson R M W. 1999. Determination of design earthquakes in seismic hazard analysis through Monte Carlo simulation[J]. Journal of Earthquake Engineering, 3(4): 463-474. |
[19] | Musson R M W. 2000. The use of Monte Carlo simulations for seismic hazard assessment in the UK[J]. Annali Di Geofisica, 43(1): 1-9. |
[20] | Musson R M W. 2004. Objective validation of seismic hazard source models[C]. Proceedings of the thirteenth World Conference on Earthquake Engineering, Vancouver, Paper No. 2492. |
[21] |
Musson R M W. 2012. PSHA validated by quasi observational means[J]. Seismological Research Letters, 83(1): 130-134.
DOI URL |
[22] |
Ordaz M, Martinelli F, D’Amico V, et al. 2013. CRISIS2008: A flexible tool to perform probabilistic seismic hazard assessment[J]. Seismological Research Letters, 84(3): 495-504.
DOI URL |
[23] |
Pagani M, Marcellini A. 2007. Seismic-hazard disaggregation: A fully probabilistic methodology[J]. Bulletin of the Seismological Society of America, 97(5): 1688-1701.
DOI URL |
[24] |
Pagani M, Monelli D, Weatherill G, et al. 2014. OpenQuake engine: An open hazard(and risk)software for the global earthquake model[J]. Seismological Research Letters, 85(3): 692-702.
DOI URL |
[25] | Patricia T, Ivan W, Norman A, et al. 2010. Verification of probabilistic seismic hazard analysis computer programs[R]. Pacific Earthquake Engineering Research Center Report 2010/106. |
[26] | Petersen M D, Eeri M, Shumway A M, et al. 2020. The 2018 update of the US National Seismic Hazard Model: Overview of model and implications[J]. Earthquake Spectra, 36(1): 5-41. |
[27] | Petersen M D, Frankel A D, Harmsen S C, et al. 2008. Documentation for the 2008 update of the United States National Seismic Hazard Maps[R]. US Geological Survey Open-File Report 2008-1128: 61. |
[28] |
Powers P M, Clayton B S, Altekruse J M. 2022. Nshmp-haz: National Seismic Hazard Model Project hazard applications and web services[CP]. US Geological Survey Software Release. doi: 10.5066/P9STF5GK.
DOI |
[29] | Robinson D, Fulford G, Dhu T. 2005. EQRM: Geoscience Australia’s Earthquake Risk Model: Technical Manual: Version 3.0[R]. Geoscience Australia Record 2005-01:148. |
[30] |
Sadigh K, Chang C Y, Egan J A, et al. 1997. Attenuation relationships for shallow crustal earthquakes based on California strong motion data[J]. Seismological Research Letters, 68(1): 180-189.
DOI URL |
[31] |
Weatherill G, Burton P W. 2010. An alternative approach to probabilistic seismic hazard analysis in the Aegean region using Monte Carlo simulation[J]. Tectonophysics, 492(1): 253-278.
DOI URL |
[32] | Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. |
[1] | RAN Hong-liu. EMPIRICAL RELATIONS BETWEEN EARTHQUAKE MAGNITUDE AND PARAMETERS OF STRIKE-SLIP SEISMOGENIC ACTIVE FAULTS ASSOCIATED WITH HISTORICAL EARTHQUAKES IN WESTERN CHINA [J]. SEISMOLOGY AND GEOLOGY, 2011, 33(3): 577-585. |
[2] | Zhang Yuming. THE CONNOTATION OF SOME TERMS AND THE ASSESSMENT OF MAXIMUM POTENTIAL EARTHQUAKE IN SEISMOTECTONIC PROVINCE [J]. SEISMOLOGY AND GEOLOGY, 1993, 15(4): 375-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||