SEISMOLOGY AND GEOLOGY ›› 2022, Vol. 44 ›› Issue (6): 1403-1420.DOI: 10.3969/j.issn.0253-4967.2022.06.004
• Research paper • Previous Articles Next Articles
ZHANG Xiu-li1)(), XIONG Jian-guo1),*(), ZHANG Pei-zhen2,1), LIU Qing-ri1,3), YAO Yong4), ZHONG Yue-zhi3), ZHANG Hui-ping1), LI You-li3)
Received:
2022-02-07
Revised:
2022-09-06
Online:
2022-12-20
Published:
2023-01-21
Contact:
XIONG Jian-guo
张秀丽1)(), 熊建国1),*(), 张培震2,1), 刘晴日1,3), 姚勇4), 钟岳志3), 张会平1), 李有利3)
通讯作者:
熊建国
作者简介:
张秀丽, 女, 1998年生, 现为中国地震局地质研究所构造地质学专业在读硕士研究生, 主要研究方向为活动构造与构造地貌, E-mail: 2547768244@qq.com。
基金资助:
CLC Number:
ZHANG Xiu-li, XIONG Jian-guo, ZHANG Pei-zhen, LIU Qing-ri, YAO Yong, ZHONG Yue-zhi, ZHANG Hui-ping, LI You-li. STUDY ON THE SLIP RATE OF THE NORTH ZHONGTIAO SHAN FAULT SINCE THE LATE MIDDLE PLEISTOCENE[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1403-1420.
张秀丽, 熊建国, 张培震, 刘晴日, 姚勇, 钟岳志, 张会平, 李有利. 中更新世晚期以来中条山北麓断层滑动速率研究[J]. 地震地质, 2022, 44(6): 1403-1420.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.06.004
样品号 | 地貌单元 | 埋藏深度 /m | 含水率 /% | U/ppm | Th/ppm | K /% | 剂量率 /Gy·ka-1 | 等效剂量 /Gy | 年龄 /ka |
---|---|---|---|---|---|---|---|---|---|
XLC1-2 | T1 | 1.8 | 5±3 | 2.47±0.04 | 11.80±0.19 | 2.29±0.04 | 4.56±0.16 | 49.51±1.22 | 10.9±0.5* |
XLC2-2 | T2 | 4.1 | 11±5 | 2.73±0.18 | 10.34±0.82 | 2.00±0.05 | 3.91±0.17 | 235.97±6.81 | 60.4±3.1 |
XLC2-3 | T2 | 1.9 | 6±3 | 2.85±0.05 | 9.65±0.11 | 1.74±0.02 | 3.88±0.14 | 231.24±4.84 | 59.6±2.4* |
XLC3-1 | T3 | 1.1 | 5±3 | 2.88±0.05 | 11.68±0.16 | 1.98±0.01 | 4.41±0.15 | 559.09±23.91 | 126.9±7.0 |
XLC3-2 | T3 | 1.1 | 5±3 | 2.53±0.06 | 10.74±0.21 | 2.05±0.03 | 4.26±0.15 | 504.80±21.29 | 118.5±6.4* |
XLC5-2 | T4 | 1.1 | 12±5 | 1.28±0.02 | 3.81±0.05 | 0.84±0.02 | 1.73±0.07 | 430.45±35.06 | 248.8±22.4 |
XLC5-3 | T4 | 0.7 | 12±5 | 6.03±0.09 | 6.03±0.09 | 1.20±0.01 | 2.50±0.09 | 535.73±27.02 | 214.3±13.5* |
XLC4-1 | 离石黄土基座 | 5.3 | 12±5 | 2.23±0.05 | 9.29±0.17 | 1.71±0.01 | 3.34±0.13 | 543.41±16.43 | 162.9±78.0 |
XLC4-2 | 离石黄土基座 | 7.6 | 14±5 | 2.67±0.09 | 14.51±0.49 | 2.04±0.03 | 4.13±0.16 | 611.63±24.61 | 147.9±8.4* |
Table1 Optical stimulated luminescence ages for terraces of the Xiaolicun River
样品号 | 地貌单元 | 埋藏深度 /m | 含水率 /% | U/ppm | Th/ppm | K /% | 剂量率 /Gy·ka-1 | 等效剂量 /Gy | 年龄 /ka |
---|---|---|---|---|---|---|---|---|---|
XLC1-2 | T1 | 1.8 | 5±3 | 2.47±0.04 | 11.80±0.19 | 2.29±0.04 | 4.56±0.16 | 49.51±1.22 | 10.9±0.5* |
XLC2-2 | T2 | 4.1 | 11±5 | 2.73±0.18 | 10.34±0.82 | 2.00±0.05 | 3.91±0.17 | 235.97±6.81 | 60.4±3.1 |
XLC2-3 | T2 | 1.9 | 6±3 | 2.85±0.05 | 9.65±0.11 | 1.74±0.02 | 3.88±0.14 | 231.24±4.84 | 59.6±2.4* |
XLC3-1 | T3 | 1.1 | 5±3 | 2.88±0.05 | 11.68±0.16 | 1.98±0.01 | 4.41±0.15 | 559.09±23.91 | 126.9±7.0 |
XLC3-2 | T3 | 1.1 | 5±3 | 2.53±0.06 | 10.74±0.21 | 2.05±0.03 | 4.26±0.15 | 504.80±21.29 | 118.5±6.4* |
XLC5-2 | T4 | 1.1 | 12±5 | 1.28±0.02 | 3.81±0.05 | 0.84±0.02 | 1.73±0.07 | 430.45±35.06 | 248.8±22.4 |
XLC5-3 | T4 | 0.7 | 12±5 | 6.03±0.09 | 6.03±0.09 | 1.20±0.01 | 2.50±0.09 | 535.73±27.02 | 214.3±13.5* |
XLC4-1 | 离石黄土基座 | 5.3 | 12±5 | 2.23±0.05 | 9.29±0.17 | 1.71±0.01 | 3.34±0.13 | 543.41±16.43 | 162.9±78.0 |
XLC4-2 | 离石黄土基座 | 7.6 | 14±5 | 2.67±0.09 | 14.51±0.49 | 2.04±0.03 | 4.13±0.16 | 611.63±24.61 | 147.9±8.4* |
样品号 | 采样层位 | 埋深/m | 传统年龄/ka | 校正年龄/ka | 参考文献 |
---|---|---|---|---|---|
X11 | 中粗砾石层 | 2 | 1.03±0.03 | 0.94±0.02 | 2014 |
XLC12 | 黑褐色古土壤条带 | 1.2 | 3.34±0.04 | 3.60±0.10 | 2014 |
X46 | 粗砾石层 | 1.8 | 3.61±0.04 | 3.91±0.08 | 2014 |
X47 | 灰黑色古土壤条带 | 3.2 | 4.85±0.05 | 5.60±0.10 | 2014 |
X40 | 浅棕黄色黄土层 | 3.6 | 5.25±0.04 | 5.97±0.03 | 2014 |
XLC10 | 灰白色粉砂层 | 5.5 | 9.36±0.05 | 10.60±0.20 | 2014 |
X17 | 浅棕色黄土层 | 3.5 | 14.49±0.08 | 17.45±0.34 | 2014 |
C04 | 灰黑色砾石层 | 11 | 20.64±0.09 | 24.70±0.20 | 2014 |
X31 | 灰黑色砾石层 | 4.8 | 20.67±0.09 | 24.70±0.20 | 2014 |
X23 | 棕色黄土 | 9.7 | 24.67±0.12 | 28.69±0.28 | 2014 |
X19 | 粗砂中砾石层 | 9.8 | 28.60±0.16 | 32.57±0.64 | 2014 |
X16 | 粗砂砾石层 | 9.5 | 28.80±0.16 | 33.30±0.20 | 2014 |
X28 | 浅褐色黄土层 | 2 | 31.39±0.20 | 35.27±0.47 | 2014 |
Table2 AMS 14C ages of sediments in the north wall(hanging wall)of the north Zhongtiao Shan Fault
样品号 | 采样层位 | 埋深/m | 传统年龄/ka | 校正年龄/ka | 参考文献 |
---|---|---|---|---|---|
X11 | 中粗砾石层 | 2 | 1.03±0.03 | 0.94±0.02 | 2014 |
XLC12 | 黑褐色古土壤条带 | 1.2 | 3.34±0.04 | 3.60±0.10 | 2014 |
X46 | 粗砾石层 | 1.8 | 3.61±0.04 | 3.91±0.08 | 2014 |
X47 | 灰黑色古土壤条带 | 3.2 | 4.85±0.05 | 5.60±0.10 | 2014 |
X40 | 浅棕黄色黄土层 | 3.6 | 5.25±0.04 | 5.97±0.03 | 2014 |
XLC10 | 灰白色粉砂层 | 5.5 | 9.36±0.05 | 10.60±0.20 | 2014 |
X17 | 浅棕色黄土层 | 3.5 | 14.49±0.08 | 17.45±0.34 | 2014 |
C04 | 灰黑色砾石层 | 11 | 20.64±0.09 | 24.70±0.20 | 2014 |
X31 | 灰黑色砾石层 | 4.8 | 20.67±0.09 | 24.70±0.20 | 2014 |
X23 | 棕色黄土 | 9.7 | 24.67±0.12 | 28.69±0.28 | 2014 |
X19 | 粗砂中砾石层 | 9.8 | 28.60±0.16 | 32.57±0.64 | 2014 |
X16 | 粗砂砾石层 | 9.5 | 28.80±0.16 | 33.30±0.20 | 2014 |
X28 | 浅褐色黄土层 | 2 | 31.39±0.20 | 35.27±0.47 | 2014 |
地貌面 | 废弃年代 /ka | 海拔 /m | 对应盆地地貌面 海拔/m | 坡降 /m | 气候堆积误差 /m | 盐湖南岸断层 断距/m① | 垂直断距 /m | 滑动速率 /mm·a-1 |
---|---|---|---|---|---|---|---|---|
T4 | 214.3±13.5 | 406.2 | 320.4 | 13.6 | ±3.8 | 5.1 | 67.1±6.7 | 0.31±0.05 |
T3 | 118.5±6.4 | 386.8 | 337.2 | 1.5 | ±1.5 | 1.9 | 40.4±3.2 | 0.34±0.04 |
洪积扇② | 24.7±0.2 | 383.6 | 370.3 | 0.7 | 18.4±1.0 | 0.75±0.05 | ||
唐县面③ | 3 120±100.0 | 680 | -104.7 | 784.7±10.0 | 0.25±0.01 | |||
夏县砾岩面③ | 2 580±100.0 | 638.5 | -62.6 | 701.1±10.0 | 0.27±0.01 |
Table3 Constraints on the slip rates of the northern Zhongtiaoshan Fault
地貌面 | 废弃年代 /ka | 海拔 /m | 对应盆地地貌面 海拔/m | 坡降 /m | 气候堆积误差 /m | 盐湖南岸断层 断距/m① | 垂直断距 /m | 滑动速率 /mm·a-1 |
---|---|---|---|---|---|---|---|---|
T4 | 214.3±13.5 | 406.2 | 320.4 | 13.6 | ±3.8 | 5.1 | 67.1±6.7 | 0.31±0.05 |
T3 | 118.5±6.4 | 386.8 | 337.2 | 1.5 | ±1.5 | 1.9 | 40.4±3.2 | 0.34±0.04 |
洪积扇② | 24.7±0.2 | 383.6 | 370.3 | 0.7 | 18.4±1.0 | 0.75±0.05 | ||
唐县面③ | 3 120±100.0 | 680 | -104.7 | 784.7±10.0 | 0.25±0.01 | |||
夏县砾岩面③ | 2 580±100.0 | 638.5 | -62.6 | 701.1±10.0 | 0.27±0.01 |
[1] | 陈杰, 卢演俦, 魏兰英, 等. 1999. 第四纪沉积物光释光测年中等效剂量测定方法的对比研究[J]. 地球化学, 28(5): 443-452. |
CHEN Jie, LU Yan-chou, WEI Lan-ying, et al. 1999. Optically stimulated luminescence dating of Quaternary sediments: A comparison using different equivalent dose determination methods[J]. Geochimica, 28(5): 443-452. (in Chinese) | |
[2] | 程绍平, 杨桂枝. 2002. 山西中条山断裂带的晚第四纪分段模型[J]. 地震地质, 24(3): 289-302. |
CHENG Shao-ping, YANG Gui-zhi. 2002. Late Quaternary segmentation model of Zhongtiaoshan Fault, Shanxi Province[J]. Seismology and Geology, 24(3): 289-302. (in Chinese) | |
[3] | 慈洪娟, 闫冬冬, 李有利, 等. 2016. 中条山北麓韩阳段冲沟发育及其新构造意义[J]. 水土保持研究, 23(4): 363-367. |
CI Hong-juan, YAN Dong-dong, LI You-li, et al. 2016. Geomorphic indices in the Hanyang segment of Zhongtiaoshan Mountains, Shanxi and its implication for neotectonics[J]. Research of Soil and Water Conservation, 23(4): 363-367. (in Chinese) | |
[4] | 邓起东, 王克鲁, 汪一鹏, 等. 1973. 山西隆起区断陷地震带地震地质条件及地震发展趋势概述[J]. 地质科学, 8(1): 37-47. |
DENG Qi-dong, WANG Ke-lu, WANG Yi-peng, et al. 1973. Overview of seismogeological conditions and seismic development trend of fault depression seismic belt in Shanxi uplift area[J]. Chinese Journal of Geology, 8(1): 37-47. (in Chinese) | |
[5] | 郭春杉, 李文巧, 田勤俭, 等. 2019. 中条山北麓断裂解州段晚更新世滑动速率研究[J]. 地震, 39(4): 13-26. |
GUO Chun-shan, LI Wen-qiao, TIAN Qin-jian, et al. 2019. Study on the Late Pleistocene sliding rate of Haizhou section of the north Zhongtiaoshan faults[J]. Earthquake, 39(4): 13-26. (in Chinese) | |
[6] | 李冬雪, 刘楠楠, 杨胜利, 等. 2021. 石英标准生长曲线在青藏高原东缘黄土光释光测年中的应用[J]. 第四纪研究, 41(1): 111-122. |
LI Dong-xue, LIU Nan-nan, YANG Sheng-li, et al. 2021. Application of quartz OSL standardized growth curve for De determination in loess on the eastern Tibetan plateau[J]. Quaternary Sciences, 41(1): 111-122. (in Chinese) | |
[7] | 李光涛, 程理, 吴昊, 等. 2020. 临潭-宕昌主干断裂南东段晚第四纪活动的地质地貌证据[J]. 地震工程学报, 42(2): 376-383. |
LI Guang-tao, CHENG Li, WU Hao, et al. 2020. Geological and geomorphological evidence of Late Quaternary activity along the southeastern segment of the Lintan-Tanchang major fault, China[J]. China Earthquake Engineering Journal, 42(2): 376-383. (in Chinese) | |
[8] | 李肖杨, 梁浩, 张珂, 等. 2020. 侯马-运城盆地沉积特征及其对构造运动、 气候变化及河流演化的响应[J]. 沉积学报, 38(2): 306-318. |
LI Xiao-yang, LIANG Hao, ZHANG Ke, et al. 2020. Depositional characteristics of the Houma-Yuncheng Basin and its response to tectonic activity, climate change, and river evolution[J]. Acta Sedimentologica Sinica, 38(2): 306-318. (in Chinese) | |
[9] |
李有利, 杨景春. 1994. 运城盐湖沉积环境演化[J]. 地理研究, 13(1): 70-75.
DOI |
LI You-li, YANG Jing-chun. 1994. Environmental evolution of Yuncheng saline lake[J]. Geographical Research, 13(1): 70-75. (in Chinese) | |
[10] | 申屠炳明, 宋方敏, 曹忠权, 等. 1991. 秦岭北麓晚第四纪断层陡坎的初步研究[J]. 地震地质, 13(1): 15-25. |
SHENTU Bing-ming, SONG Fang-min, CAO Zhong-quan, et al. 1991. Preliminary study on Late Quaternary fault scarps on the northern piedmont of Qinling Mountain[J]. Seismology and Geology, 13(1): 15-25. (in Chinese) | |
[11] | 司苏沛, 李有利, 吕胜华, 等. 2014. 山西中条山北麓断裂盐池段全新世古地震事件和滑动速率研究[J]. 中国科学(D辑), 44(9): 1958-1967. |
SI Su-pei, LI You-li, LÜ Sheng-hua, et al. 2014. Holocene slip rate and paleoearthquake records of the Salt Lake segment of the northern Zhongtiaoshan Fault, Shanxi Province[J]. Science in China(Ser D), 44(9): 1958-1967. (in Chinese) | |
[12] | 田建梅, 李有利, 司苏沛, 等. 2013. 中条山北麓中段洪积扇上全新世断层陡坎的发现及其新构造意义[J]. 北京大学学报(自然科学版), 49(6): 986-992. |
TIAN Jian-mei, LI You-li, SI Su-pei, et al. 2013. Discovery and neotectonic significance of fault scarps on alluvial fans in the middle of northern piedmont of the Zhongtiao Mountains[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6): 986-992. (in Chinese) | |
[13] | 王建, 徐孝彬. 2000. 地面测年技术: 宇生同位素测年[J]. 地球科学进展, 15(2): 237-240. |
WANG Jian, XU Xiao-bin. 2000. Technique for surface dating: Cosmogenic isotopes dating[J]. Advances in Earth Science, 15(2): 237-240. (in Chinese) | |
[14] | 王怡然, 李有利, 闫冬冬, 等. 2015. 中条山北麓断裂中南段全新世地震事件的初步研究[J]. 地震地质, 37(1): 1-12. |
WANG Yi-ran, LI You-li, YAN Dong-dong, et al. 2015. Holocene paleoseismology of the middle and south segments of the north Zhongtiaoshan fault zone, Shanxi[J]. Seismology and Geology, 37(1): 1-12. (in Chinese) | |
[15] | 闫纪元. 2021 运城盆地及北侧孤山晚新生代构造-沉积与隆升-剥蚀过程研究[D]. 北京: 中国地质科学院:25-27. |
YAN Ji-yuan. 2021. Late Cenozoic tectonic-sedimentary, uplifting and denudational process of the Yuncheng Basin and northern Gushan Mountain[D]. Chinese Academy of Geological Sciences, Beijing: 25-27. (in Chinese) | |
[16] |
杨景春. 1983. 中国北部和东北部构造地貌发育和第四纪构造应力状态的关系[J]. 地理学报, 38(3): 218-228.
DOI |
YANG Jing-chun. 1983. Relationship between morphotectonic evolution and Quaternary tectonic stress state in north and northeastern China[J]. Acta Geographica Sinica, 38(3): 218-228. (in Chinese)
DOI |
|
[17] | 杨晓平, 冯希杰, 黄雄南, 等. 2015. 礼县-罗家堡断裂晚第四纪活动特征: 兼论1654年礼县8级地震孕震机制[J]. 地球物理学报, 58(2): 504-519. |
YANG Xiao-ping, FENG Xi-jie, HUANG Xiong-nan, et al. 2015. The Late Quaternary activity characteristics of the Lixian-Luojiabu Fault: A discussion on the seismogenic mechanism of the Lixian M8 earthquake in 1654[J]. Chinese Journal of Geophysics, 58(2): 504-519. (in Chinese) | |
[18] | 易锦俊. 2008. 山西地堑系活动断裂与地震、 地裂缝灾害研究[D]. 西安: 长安大学:8-10. |
YI Jin-jun. 2008. Study on active faults and earthquake and ground fissure disasters in Shanxi graben system[D]. Chang'an University, Xi'an: 8-10 (in Chinese) | |
[19] | 曾金艳, 李自红, 陈文, 等. 2020. 运城盆地盐湖南岸断层晚第四纪活动特征研究[J]. 第四纪研究, 40(1): 124-131. |
ZENG Jin-yan, LI Zi-hong, CHEN Wen, et al. 2020. Study on the activity characteristics of the south bank fault of Yuncheng Salt Lake in Yuncheng Basin since the Late Quaternary[J]. Quaternary Sciences, 40(1): 124-131. (in Chinese) | |
[20] | 张家富, 袁宝印, 周力平. 2007. 福建晋江“老红砂”的释光年代学及对南方第四纪沉积物释光测年的指示意义[J]. 科学通报, 52(22): 2646-2654. |
ZHANG Jia-fu, YUAN Bao-yin, ZHOU Li-ping. 2007. Luminescence chronology of “old red sand” in Jinjiang, Fujian Province and its indicative significance for luminescence dating of Quaternary sediments in South China[J]. Chinese Science Bulletin, 52(22): 2646-2654. (in Chinese) | |
[21] | 张培震, 李传友, 毛凤英. 2008. 河流阶地演化与走滑断裂滑动速率[J]. 地震地质, 30(1): 44-57. |
ZHANG Pei-zhen, LI Chuan-you, MAO Feng-ying. 2008. Strath terrace formation and strike-slip faulting[J]. Seismology and Geology, 30(1): 44-57. (in Chinese) | |
[22] | 张岳桥, 廖昌珍, 施炜, 等. 2006. 鄂尔多斯盆地周边地带新构造演化及其区域动力学背景[J]. 高校地质学报, 12(3): 285-297. |
ZHANG Yue-qiao, LIAO Chang-zhen, SHI Wei, et al. 2006. Neotectonic evolution of the peripheral zones of the Ordos Basin and geodynamic setting[J]. Geological Journal of China Universities, 12(3): 285-297. (in Chinese) | |
[23] | 郑立龙, 孔凡全, 黄赞慧, 等. 2019. 小江断裂带中段西支沧溪-清水海断层更新世活动性[J]. 科学技术与工程, 19(14): 39-45. |
ZHENG Li-long, KONG Fan-quan, HUANG Zan-hui, et al. 2019. The Pleistocene activity of Cangxi-Qingshuihai Fault of the west branch in the middle segment of Xiaojiang Fault[J]. Science Technology and Engineering, 19(14): 39-45. (in Chinese) | |
[24] | Aitken M J. 1998. Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence [M]. Oxford University Press, Oxford: 7-13. |
[25] | Anders M H, Geissman J W, Piety L A, et al. 1989. Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot[J]. Journal of Geophysical Research: Solid Earth, 94(B2): 1589-1621. |
[26] |
Anderson R S, Repka J L, Dick G S. 1996. Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al[J]. Geology, 24(1): 47-51.
DOI URL |
[27] |
Bayliss A. 2009. Rolling out revolution: Using radiocarbon dating in archaeology[J]. Radiocarbon, 51(1): 123-147.
DOI URL |
[28] |
Cerling T E, Craig H. 1994. Geomorphology and in-situ cosmogenic isotopes[J]. Annual Review of Earth and Planetary Sciences, 22: 273-317.
DOI URL |
[29] | Gibbard P, Cohen K M. 2008. Global chronostratigraphical correlation table for the last 2.7 million years[J]. Episodes Journal of International Geoscience, 31(2): 243-247. |
[30] | Hetzel R, Hampel A, Gebbeken P, et al. 2019. A constant slip rate for the western Qilian Shan frontal thrust during the last 200ka consistent with GPS-derived and geological shortening rates[J]. Earth and Planetary Science Letters, 59: 100-113. |
[31] |
Li B, Jacobs Z, Roberts R G, et al. 2014. Review and assessment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence[J]. Geochronometria, 41(3): 178-201.
DOI URL |
[32] | Li C Y, Zhang P Z, Yin J H, et al. 2009. Late Quaternary left-lateral slip rate of the Haiyuan Fault, northeastern margin of the Tibetan plateau[J]. Tectonics, 28(TC5010): 1-26. |
[33] |
Li Y L, Yang J C, Xia Z K, et al. 1998. Tectonic geomorphology in the Shanxi graben system, northern China[J]. Geomorphology, 23(1): 77-89.
DOI URL |
[34] |
Libby W F, Anderson E C, Arnold J R. 1949. Age determination by radiocarbon content: World-wide assay of natural radiocarbon[J]. Science, 109(2827): 227-228.
PMID |
[35] | Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 20(1): PA1003. |
[36] |
Liu Q R, Li Y L, Xiong J G, et al. 2021. Late Quaternary steady deformation of the Minle Fault in the north Qilian Shan, NE Tibet[J]. Tectonophysics, 807:228775.
DOI URL |
[37] |
Lu H H, Li B J, Wu D Y, et al. 2019. Spatiotemporal patterns of the Late Quaternary deformation across the northern Chinese Tian Shan foreland[J]. Earth-Science Reviews, 194: 19-37.
DOI URL |
[38] |
Lü S H, Li Y L, Wang Y R, et al. 2014. The Holocene paleoseismicity of the North Zhongtiao Shan faults in Shanxi Province, China[J]. Tectonophysics, 623: 67-82. doi: 10.1016/j.tecto.2014.03.019.
DOI URL |
[39] |
Mouslopoulou V, Walsh J J, Nicol A. 2009. Fault displacement rates on a range of timescales[J]. Earth and Planetary Science Letters, 278(3-4): 186-197.
DOI URL |
[40] |
Newnham R M, Vandergoes M J, Garnett M H, et al. 2007. Test of AMS 14C dating of pollen concentrates using tephrochronology[J]. Journal of Quaternary Science, 22(1): 37-51.
DOI URL |
[41] |
Nicol A, Walsh J, Berryman K, et al. 2006. Interdependence of fault displacement rates and paleoearthquakes in an active rift[J]. Geology, 34(10): 865-868.
DOI URL |
[42] |
Nicol A, Walsh J J, Manzocchi T, et al. 2005. Displacement rates and average earthquake recurrence intervals on normal faults[J]. Journal of Structural Geology, 27(3): 541-551.
DOI URL |
[43] |
Sieh K E, Jahns R H. 1984. Holocene activity of the San Andreas Fault at Wallace Creek, California[J]. Geological Society of America Bulletin, 95(8): 883-896.
DOI URL |
[44] |
Wallace R E. 1977. Profiles and ages of young fault scarps, north-central Nevada[J]. Geological Society of America Bulletin, 88(9): 1267-1281.
DOI URL |
[45] |
Wang Q, Li C G, Tian G Q, et al. 2002. Tremendous change of the earth surface system and tectonic setting of salt-lake formation in Yuncheng Basin since 7.1Ma[J]. Science in China(Ser D), 45(2): 110-122.
DOI URL |
[46] |
Xiong J G, Li Y L, Zheng W J, et al. 2018. Climatically driven formation of the Tangxian planation surface in North China: An example from northwestern Zhongtiao Shan of the Shanxi Graben System[J]. Lithosphere, 10(4): 530-544.
DOI URL |
[47] |
Xiong J G, Li Y L, Zhong Y Z, et al. 2017. Latest Pleistocene to Holocene thrusting recorded by a flight of strath terraces in the eastern Qilian Shan, NE Tibetan plateau[J]. Tectonics, 36(12): 2973-2986.
DOI URL |
[48] |
Yan J Y, Hu J M, Gong W B, et al. 2020. Late Cenozoic magnetostratigraphy of the Yuncheng Basin, central North China Craton and its tectonic implications[J]. Geological Journal, 55(11): 7415-7428.
DOI URL |
[49] | Zhang P Z, Molnar P, Xu X W. 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan plateau[J]. Tectonics, 26: TC5010. |
[50] |
Zheng D W, Clark M K, Zhang P Z, et al. 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan(northern Tibetan plateau)[J]. Geosphere, 6(6): 937-941.
DOI URL |
[1] | YUAN Hao-dong, LI An, HUANG Wei-liang, HU Zong-kai, ZUO Yu-qi, YANG Xiao-ping. GEOLOGICAL DEFORMATION OF THE TUOLI FAULT IN THE WEST JUNGGAR SINCE THE LATE QUATERNARY [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 49-66. |
[2] | YANG Yuan-yuan, LI Peng-fei, LU Shuo, SHU Peng, PAN Hao-bo, FANG Liang-hao, ZHENG Hai-gang, ZHAO Peng, ZHENG Ying-ping, YAO Da-quan. PALEOEARTHQUAKES AND VERTICAL SLIP RATES ON THE HUAI RIVER-NÜSHAN LAKE SEGMENT OF FAULT F5 IN THE MIDDLE SECTION OF THE TANLU FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1365-1383. |
[3] | SHAO Yan-xiu, LIU-ZENG Jing, GAO Yun-peng, WANG Wen-xin, YAO Wen-qian, HAN Long-fei, LIU Zhi-jun, ZOU Xiao-bo, WANG Yan, LI Yun-shuai, LIU Lu. COSEISMIC DISPLACEMENT MEASUREMENT AND DISTRIBUTED DEFORMATION CHARACTERIZATION: A CASE OF 2021 MW7.4 MADOI EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 506-523. |
[4] | ZHANG Chi, LI Zhi-min, REN Zhi-kun, LIU Jin-rui, ZHANG Zhi-liang, WU Deng-yun. CHARACTERISTICS OF LATE QUATERNARY ACTIVITY OF THE SOUTHERN RIYUESHAN FAULT [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(1): 1-19. |
[5] | WAN Yong-kui, SHEN Xiao-qi, LIU Rui-feng, LIU Xia, ZHENG Zhi-jiang, LI Yuan, ZHANG Yang, WANG Lei. PRESENT SLIP AND STRESS DISTRIBUTION OF BLOCK BOUNDARY FAULTS IN THE SICHUAN-YUNNAN REGION [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1614-1637. |
[6] | LIU Rui-chun, ZHANG Jin, GUO Wen-feng, CHEN Hui, ZHENG Ya-di, CHENG Cheng. STUDY ON THE RECENT DEFORMATION CHARACTERISTIC AND STRUCTURAL DEFORMATION MODEL OF THE SOUTH-EASTERN MARGIN OF ORDOS BLOCK [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 540-558. |
[7] | DAI Cheng-long, ZHANG Ling, LIANG Shi-ming, ZHANG Ke-liang, XIONG Xiao-hui, GAN Wei-jun. PRESENT-DAY STRIKE-SLIP RATE AND ITS SEGMENTAL VARIATION OF THE TALAS-FERGHANA FAULT IN CENTRAL ASIA: INSIGHT FROM GPS GEODETIC OBSERVATIONS [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(2): 263-279. |
[8] | ZHANG Bo, TIAN Qin-jian, WANG Ai-guo, LI Wen-qiao, XU Yue-ren, GAO Ze-min. STUDIES ON NEW ACTIVITY OF LINTAN-DANGCHANG FAULT, WEST QINLING [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(1): 72-91. |
[9] | ZHU Shuang, LIANG Hong-bao, WEI Wen-xin, LI Jing-wei. SLIP RATES AND SEISMIC MOMENT DEFICITS ON MAJOR FAULTS IN THE TIANSHAN REGION [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(1): 249-261. |
[10] | CHEN Jian-long, ZHANG Dong-li, ZHOU Yu. ESTIMATING PRESENT SLIP RATE OF THE FAULTS IN THE WEIHE GRABEN USING ENVISAT ASAR DATA [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(2): 333-345. |
[11] | LUO Quan-xing, LI Chuan-you, REN Guang-xue, LI Xin-nan, MA Zi-fa, DONG Jin-yuan. THE LATE QUATERNARY ACTIVITY FEATURES AND SLIP RATE OF THE YANGGAO-TIANZHEN FAULT [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(2): 399-413. |
[12] | TIAN Zhen, YANG Zhi-qiang, WANG Shi-di. MOMENT DEFICITS ON THE MAJOR FAULTS AND EARTHQUAKE HAZARD ASSESSMENT IN THE EASTERN HIMALAYAN SYNTAXIS [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(1): 33-49. |
[13] | CHEN Fu-chao, GUO Liang-qian, ZHENG Zhi-jiang. RESEARCH ON ACTIVITY OF ZHANGJIAKOU-BOHAI FAULT ZONE BASED ON GPS OBSERVATIONS [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(1): 95-108. |
[14] | QIAO Xin, QU Chun-yan, SHAN Xin-jian, LI Yan-chuan, ZHU Chuan-hua. DEFORMATION CHARACTERISTICS AND KINEMATIC PARAMETERS INVERSION OF HAIYUAN FAULT ZONE BASED ON TIME SERIES INSAR [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(6): 1481-1496. |
[15] | YAO Yuan, LI Shuai, HUANG Shuai-tang, JIA Hai-liang. TERRACE DEFORMATION AND SLIP RATES OF THE DONGBIELIEKE FAULT IN WESTERN JUNGGAR BASIN SINCE THE LATE QUATERNARY [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(4): 803-820. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||