[1] |
姜丛, 蒋长胜, 尹凤玲, 等. 2021. 基于数据驱动的时间序列b值计算新方法(TbDD): 以2021年云南漾濞 MS6.4 地震序列为例[J]. 地球物理学报, 64(9): 3126-3134.
|
|
JIANG Cong, JIANG Chang-sheng, YIN Feng-ling, et al. 2021. A new method for calculating b-value of time sequence based on data-driven(TbDD): A case study of the 2021 Yangbi MS6.4 earthquake sequence in Yunnan[J]. Chinese Journal of Geophysics, 64(9): 3126-3134. (in Chinese)
|
[2] |
Ader T, Chendorain M, Free M, et al. 2020. Design and implementation of a traffic light system for deep geothermal well stimulation in Finland[J]. Journal of Seismology, 24(5): 991-1014.
DOI
URL
|
[3] |
Aiken C, Meng X, Hardebeck J. 2018. Testing for the ‘predictability’ of dynamically triggered earthquakes in the Geysers geothermal field[J]. Earth and Planetary Science Letters, 486: 129-140.
DOI
URL
|
[4] |
Atkinson G M, Eaton D W, Ghofrani H, et al. 2016. Hydraulic fracturing and seismicity in the western Canada sedimentary basin[J]. Seismological Research Letters, 87(3): 631-647.
DOI
URL
|
[5] |
Atkinson G M, Ghofrani H, Assatourians K. 2015. Impact of induced seismicity on the evaluation of seismic hazard: Some preliminary considerations[J]. Seismological Research Letters, 86(3): 1009-1021.
DOI
URL
|
[6] |
Bachmann C E, Wiemer S, Goertz-Allmann B P, et al. 2012. Influence of pore-pressure on the event-size distribution of induced earthquakes[J]. Geophysical Research Letters, 39(9): L09302.
|
[7] |
Bachmann C, Wiemer S, Woessner J, et al. 2011. Statistical analysis of the induced Basel 2006 earthquake sequence: Introducing a probability-based monitoring approach for Enhanced Geothermal Systems[J]. Geophysical Journal International, 186(2): 793-807.
DOI
URL
|
[8] |
Baisch S, Weidler R, Vörös R, et al. 2006. Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia[J]. Bulletin of the Seismological Society of America, 96(6): 2242-2256.
DOI
URL
|
[9] |
Bender B. 1983. Maximum likelihood estimation of b values for magnitude grouped data[J]. Bulletin of the Seismological Society of America, 73(3): 831-851.
DOI
URL
|
[10] |
Burridge R, Knopoff L. 1967. Model and theoretical seismicity[J]. Bulletin of the Seismological Society of America, 57(3): 341-371.
DOI
URL
|
[11] |
Chan L S, Chandler A M. 2001. Spatial bias in b-value of the frequency-magnitude relation for the Hong Kong region[J]. Journal of Asian Earth Sciences, 20(1): 73-81.
DOI
URL
|
[12] |
De Barros L, Cappa F, Guglielmi Y, et al. 2019. Energy of injection-induced seismicity predicted from in-situ experiments[J]. Scientific Reports, 9(1): 1-11.
DOI
URL
|
[13] |
Downie R, Kronenberger E, Maxwell S C. 2010. Using microseismic source parameters to evaluate the influence of faults on fracture treatments: A geophysical approach to interpretation[C]. SPE Annual Technical Conference and Exhibition. doi: 10.2118/134772-MS.
DOI
|
[14] |
Eaton D, Davidsen J, Pedersen P, et al. 2014. Breakdown of the Gutenberg-Richter relation for microearthquakes induced by hydraulic fracturing: Influence of stratabound fractures[J]. Geophysical Prospecting, 62(4): 806-818.
DOI
URL
|
[15] |
Eaton D W, Maghsoudi S. 2015. 2b … or not 2b? Interpreting magnitude distributions from microseismic catalogs[J]. First Break, 33(10): 79-86.
|
[16] |
El-Isa Z H, Eaton D W. 2014. Spatiotemporal variations in the b-value of earthquake magnitude-frequency distributions: Classification and causes[J]. Tectonophysics, 615-616: 1-11.
|
[17] |
Eyre T S, van der Baan M. 2018. Microseismic insights into the fracturing behavior of a mature reservoir in the Pembina field, Alberta[J]. Geophysics, 83(5): B289-B303.
DOI
URL
|
[18] |
Goebel T, Hosseini S M, Cappa F, et al. 2016. Wastewater disposal and earthquake swarm activity at the southern end of the Central Valley, California[J]. Geophysical Research Letters, 43(3): 1092-1099.
DOI
URL
|
[19] |
Goertz-Allmann B P, Wiemer S. 2013. Geomechanical modeling of induced seismicity source parameters and implications for seismic hazard assessment[J]. Geophysics, 78(1): KS25-KS39.
DOI
URL
|
[20] |
Gutenberg B, Richter C F. 1944. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 34(4): 185-188.
DOI
URL
|
[21] |
Häge M, Blascheck P, Joswig M. 2013. EGS hydraulic stimulation monitoring by surface arrays-location accuracy and completeness magnitude: The Basel Deep Heat Mining Project case study[J]. Journal of Seismology, 17(1): 51-61.
DOI
URL
|
[22] |
Hallo M, Oprsal I, Eisner L, et al. 2014. Prediction of magnitude of the largest potentially induced seismic event[J]. Journal of Seismology, 18(3): 421-431.
DOI
URL
|
[23] |
Häring M O, Schanz U, Ladner F, et al. 2008. Characterisation of the Basel 1 enhanced geothermal system[J]. Geothermics, 37(5): 469-495.
DOI
URL
|
[24] |
Hatzidimitriou P M, Papadimitriou E E, Mountrakis D M, et al. 1985. The seismic parameter b of the frequency-magnitude relation and its association with the geological zones in the area of Greece[J]. Tectonophysics, 120(1): 141-151.
DOI
URL
|
[25] |
Holub K. 1996. Space-time variations of the frequency-energy relation for mining-induced seismicity in the Ostrava-Karviná mining district[J]. Pure and Applied Geophysics, 146(2): 265-280.
DOI
URL
|
[26] |
Hu J, Xu B, Chen Z, et al. 2021. Hazard and risk assessment for hydraulic fracturing induced seismicity based on the Entropy-Fuzzy-AHP method in southern Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 90: 103908.
DOI
URL
|
[27] |
Huang Y, Beroza G C. 2015. Temporal variation in the magnitude-frequency distribution during the Guy-Greenbrier earthquake sequence[J]. Geophysical Research Letters, 42(16): 6639-6646.
DOI
URL
|
[28] |
Igonin N, Poulin A, Eaton D W. 2017. A comparison of surface and near surface acquisition techniques for induced seismicity and microseismic monitoring[C]. 79th EAGE Conference and Exhibition 2017, European Association of Geoscientists & Engineers: 1-5.
|
[29] |
Igonin N, Zecevic M, Eaton D W. 2018. Bilinear magnitude-frequency distributions and characteristic earthquakes during hydraulic fracturing[J]. Geophysical Research Letters, 45(23): 12866-12874.
|
[30] |
Iwata T. 2013. Estimation of completeness magnitude considering daily variation in earthquake detection capability[J]. Geophysical Journal International, 194(3): 1909-1919.
DOI
URL
|
[31] |
Ji Y L, Wanniarachchi W A M, Wu W. 2020. Effect of fluid pressure heterogeneity on injection-induced fracture activation[J]. Computers and Geotechnics, 123: 103589.
DOI
URL
|
[32] |
Jiang C S, Han L B, Long F, et al. 2021. Spatiotemporal heterogeneity of b values revealed by a data-driven approach for June 17, 2019 MS6.0, Changning Sichuan, China earthquake sequence[J]. Natural Hazards and Earth System Sciences, 21(7): 2233-2244.
|
[33] |
Jung S, Diaz M B, Kim K Y, et al. 2021. Fatigue behavior of granite subjected to cyclic hydraulic fracturing and observations on pressure for fracture growth[J]. Rock Mechanics and Rock Engineering, 54(10): 5207-5220.
DOI
URL
|
[34] |
Kettlety T, Verdon J P, Butcher A, et al. 2021. High-resolution imaging of the ML2.9 August 2019 earthquake in Lancashire, United Kingdom, induced by hydraulic fracturing during Preston New Road PNR -2 operations[J]. Seismological Research Letters, 92(1): 151-169.
DOI
URL
|
[35] |
Kim K I, Min K B, Kim K Y, et al. 2018. Protocol for induced microseismicity in the first enhanced geothermal systems project in Pohang, Korea[J]. Renewable and Sustainable Energy Reviews, 91: 1182-1191.
DOI
URL
|
[36] |
Király E, Gischig V, Karvounism D, et al. 2014. Validating models to forecasting induced seismicity related to deep geothermal energy projects[C]. In: Thirty-Ninth Workshop on Geothermal Reservoir Engineering, Stanford University: 24-26.
|
[37] |
Király-Proag E, Gischig V, Zechar J D, et al. 2018. Multicomponent ensemble models to forecast induced seismicity[J]. Geophysical Journal International, 212(1): 476-490.
DOI
URL
|
[38] |
Kozlowska M, Brudzinski M R, Friberg P, et al. 2018. Maturity of nearby faults influences seismic hazard from hydraulic fracturing[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(8): E1720-E1729.
|
[39] |
Langenbruch C, Weingarten M, Zoback M D. 2018. Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas[J]. Nature Communications, 9(1): 3946.
DOI
PMID
|
[40] |
Lei Q H, Doonechaly N G, Tsang C F. 2021. Modelling fluid injection-induced fracture activation, damage growth, seismicity occurrence and connectivity change in naturally fractured rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 138: 104598.
DOI
URL
|
[41] |
Lei X, Huang D, Su J, et al. 2017. Fault reactivation and earthquakes with magnitudes of up to MW4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China[J]. Scientific Reports, 7(1): 1-12.
DOI
URL
|
[42] |
Lei X, Yu G, Ma S, et al. 2008. Earthquakes induced by water injection at -3km depth within the Rongchang gas field, Chongqing, China[J]. Journal of Geophysical Research, 113(B10): B10310.
DOI
URL
|
[43] |
Maity D, Ciezobka J. 2019. Using microseismic frequency-magnitude distributions from hydraulic fracturing as an incremental tool for fracture completion diagnostics[J]. Journal of Petroleum Science and Engineering, 176: 1135-1151.
DOI
URL
|
[44] |
Majer E L, Baria R, Stark M, et al. 2007. Induced seismicity associated with Enhanced Geothermal Systems[J]. Geothermics, 36(3): 185-222.
DOI
URL
|
[45] |
Maxwell S C, Waltman C, Warpinski N R, et al. 2009. Imaging seismic deformation induced by hydraulic fracture complexity[J]. SPE Reservoir Evaluation & Engineering, 12(1): 48-52.
|
[46] |
Mena B, Wiemer S, Bachmann C. 2013. Building robust models to forecast the induced seismicity related to geothermal reservoir enhancement[J]. Bulletin of the Seismological Society of America, 103(1): 383-393.
DOI
URL
|
[47] |
Mori J, Abercrombie R E. 1997. Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation[J]. Journal of Geophysical Research, 102(B7): 15081-15090.
DOI
URL
|
[48] |
Mousavi S M. 2016. Comment on “Recent developments of the Middle East catalog” by Zare et al.[J]. Journal of Seismology, 21(1): 257-268.
DOI
URL
|
[49] |
Mousavi S M, Ogwari P O, Horton S P, et al. 2017. Spatio-temporal evolution of frequency-magnitude distribution and seismogenic index during initiation of induced seismicity at Guy-Greenbrier, Arkansas[J]. Physics of the Earth and Planetary Interiors, 267: 53-66.
DOI
URL
|
[50] |
Mukuhira Y, Asanuma H, Niitsuma H, et al. 2008. Characterization of microseismic events with larger magnitude collected at Basel, Switzerland in 2006[C]. Geothermal Resources Council Annual Meeting 2008: “Geothermal-Gaining Steam”: 74-80.
|
[51] |
Mukuhira Y, Fehler M C, Ito T, et al. 2021. Injection-induced seismicity size distribution dependent on shear stress[J]. Geophysical Research Letters, 48(8): e2020GL090934.
|
[52] |
Muntendam-Bos A G, Roest J P A, De Waal J A. 2015. A guideline for assessing seismic risk induced by gas extraction in the Netherlands[J]. The Leading Edge, 34(6): 672-677.
DOI
URL
|
[53] |
Nava F A, Márquez-Ramírez V H, Zúñiga F R, et al. 2017. Gutenberg-Richter b-value maximum likelihood estimation and sample size[J]. Journal of Seismology, 21(1): 127-135.
DOI
URL
|
[54] |
Ogata Y, Katsura K. 1993. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues[J]. Geophysical Journal International, 113(3): 727-738.
DOI
URL
|
[55] |
Olsson R. 1999. An estimation of the maximum b-value in the Gutenberg-Richter relation[J]. Journal of Geodynamics, 27(4): 547-552.
DOI
URL
|
[56] |
Omi T, Ogata Y, Hirata Y, et al. 2013. Forecasting large aftershocks within one day after the main shock[J]. Scientific Reports, 3: 2218. doi: 10.1038/srep02218.
DOI
|
[57] |
Pacheco J F, Sykes L R. 1992. Seismic moment catalog of large shallow earthquakes, 1900 to 1989[J]. Bulletin of the Seismological Society of America, 82(3): 1306-1349.
DOI
URL
|
[58] |
Rajesh R, Gupta H K. 2021. Characterization of injection-induced seismicity at north central Oklahoma, USA[J]. Journal of Seismology, 25(1): 327-337.
DOI
URL
|
[59] |
Reasenberg P A, Jones L M. 1989. Earthquake hazard after a mainshock in California[J]. Science, 243(4895): 1173-1176.
PMID
|
[60] |
Roche V, Grob M, Eyre T, et al. 2015. Statistical characteristics of microseismic events and in-situ stress in the Horn River Basin[C]. In: Proceedings of GeoConvention.
|
[61] |
Rutledge J T, Phillips W S, Mayerhofer M J. 2004. Faulting induced by forced fluid injection and fluid flow forced by faulting: An interpretation of hydraulic-fracture microseismicity, Carthage Cotton Valley gas field, Texas[J]. Bulletin of the Seismological Society of America, 94(5): 1817-1830.
DOI
URL
|
[62] |
Sandri L, Marzocchi W. 2007. A technical note on the bias in the estimation of the b-value and its uncertainty through the least squares technique[J]. Annals of Geophysics, 50(3): 329-339.
|
[63] |
Scholz C H. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes[J]. Bulletin of the Seismological Society of America, 58(1): 399-415.
DOI
URL
|
[64] |
Scholz C H. 2015. On the stress dependence of the earthquake b-value[J]. Geophysical Research Letters, 42(5): 1399-1402.
DOI
URL
|
[65] |
Schorlemmer D, Wiemer S, Wyss M. 2005. Variations in earthquake-size distribution across different stress regimes[J]. Nature, 437(7058): 539-542.
DOI
URL
|
[66] |
Schultz R, Skoumal R J, Brudzinski M R, et al. 2020. Hydraulic fracturing-induced seismicity[J]. Reviews of Geophysics, 58(3): e2019RG000695.
|
[67] |
Senatorski P. 2017. Effect of slip-area scaling on the earthquake frequency-magnitude relationship[J]. Physics of the Earth and Planetary Interiors, 267: 41-52.
DOI
URL
|
[68] |
Shapiro S A. 2018. Seismogenic index of underground fluid injections and productions[J]. Journal of Geophysical Research, 123(9): 7983-7997.
|
[69] |
Shapiro S A, Dinske C, Langenbruch C. 2010. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations[J]. The Leading Edge, 29(3): 304-309.
DOI
URL
|
[70] |
Shapiro S A, Krüger O S, Dinske C, et al. 2011. Magnitudes of induced earthquakes and geometric scales of fluid-stimulated rock volumes[J]. Geophysics, 76(6): WC53-WC61.
|
[71] |
Si Z Y, Jiang C S. 2019. Research on parameter calculation for the Ogata-Katsura 1993 model in terms of the frequency-magnitude distribution based on a data-driven approach[J]. Seismological Research Letters, 90(3): 1318-1329.
DOI
URL
|
[72] |
Sil S, Bankhead B, Zhou C, et al. 2012. Analysis of b value from Barnett Shale microseismic data[C]. 74th EAGE Conference and Exhibition Incorporating EUROPEC 2012, European Association of Geoscientists & Engineers, cp-293.
|
[73] |
Tsapanos T M. 1990. b-values of two tectonic parts in the circum-Pacific belt[J]. Pure and Applied Geophysics, 134(2): 229-242.
DOI
URL
|
[74] |
Urbancic T, Trifu C, Long J, et al. 1992. Space-time correlations of b values with stress release[J]. Pure and Applied Geophysics, 139(3): 449-462.
DOI
URL
|
[75] |
van der Elst N, Page M T, Weiser D A, et al. 2016. Induced earthquake magnitudes are as large as(statistically)expected[J]. Journal of Geophysical Research, 121(6): 4575-4590.
|
[76] |
Verdon J P, Bommer J J. 2021. Green, yellow, red, or out of the blue?An assessment of Traffic Light Schemes to mitigate the impact of hydraulic fracturing-induced seismicity[J]. Journal of Seismology, 25(1): 301-326.
DOI
URL
|
[77] |
Verdon J P, Wuestefeld A, Rutledge J T, et al. 2013. Correlation between spatial and magnitude distributions of microearthquakes during hydraulic fracture stimulation[C]. 75th European Association of Geoscientists and Engineers Conference and Exhibition 2013 Incorporating SPE EUROPEC 2013: Changing Frontiers: 5374-5378.
|
[78] |
Vermylen J P, Zoback M D. 2011. Hydraulic fracturing, microseismic magnitudes, and stress evolution in the Barnett Shale, Texas, USA[C]. SPE Hydraulic Fracturing Technology Conference. https://doi.org/10.2118/140507-MS.
|
[79] |
Villiger L, Gischig V S, Doetsch J, et al. 2020. Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock[J]. Solid Earth, 11(2): 627-655.
DOI
URL
|
[80] |
Vogelaar A, Oates S, Herber R, et al. 2013. On the relationship between levels of seismicity and pump parameters in a hydraulic fracturing job[J]. In 4th EAGE Passive Seismic Workshop, European Association of Geoscientists & Engineers: 337.
|
[81] |
Wang B, Harrington R M, Liu Y, et al. 2020. A study on the largest hydraulic-fracturing-induced earthquake in Canada: Observations and static stress-drop estimation[J]. Bulletin of the Seismological Society of America, 110(5): 2283-2294.
DOI
URL
|
[82] |
Wang D, Bian X, Qin H, et al. 2021. Experimental investigation of mechanical properties and failure behavior of fluid-saturated hot dry rocks[J]. Natural Resources Research, 30(1): 289-305.
DOI
URL
|
[83] |
Wang R, Gu Y J, Schultz R, et al. 2017. Source characteristics and geological implications of the January 2016 induced earthquake swarm near Crooked Lake, Alberta[J]. Geophysical Journal International, 210(2): 979-988.
DOI
URL
|
[84] |
Wangen M. 2019. A 3D model of hydraulic fracturing and microseismicity in anisotropic stress fields[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 5(1): 17-35.
DOI
URL
|
[85] |
Wessels S, Kratz M, Pena A D L. 2011. Identifying fault activation during hydraulic stimulation in the Barnett Shale:Source mechanisms, b values, and energy release analyses of microseismicity[C]. SEG Technical Program Expanded Abstracts 2011, Society of Exploration Geophysicists: 1463-1467.
|
[86] |
Westaway R. 2021. Extrapolation of populations of small earthquakes to predict consequences of low-probability high impact events: The Pohang case study revisited[J]. Geothermics, 92(1): 102035.
DOI
URL
|
[87] |
Wyss M. 1973. Towards a physical understanding of the earthquake frequency distribution[J]. Geophysical Journal International, 31(4): 341-359.
DOI
URL
|
[88] |
Xu B, Hu J, Hu T, et al. 2021. Quantitative assessment of seismic risk in hydraulic fracturing areas based on rough set and Bayesian network: A case analysis of Changning shale gas development block in Yibin City, Sichuan Province, China[J]. Journal of Petroleum Science and Engineering, 200(5): 108226.
DOI
URL
|
[89] |
Yeo I W, Brown M R M, Ge S, et al. 2020. Causal mechanism of injection-induced earthquakes through the MW5.5 Pohang earthquake case study[J]. Nature Communications, 11(1): 1-12. https://doi.org/10.1038/s41467-020-16408-0.
DOI
URL
|
[90] |
Yousefzadeh A, Li Q, Virues C, et al. 2018. An interpretation of microseismic spatial anomalies, b-values, and magnitude analyses to identify activated fracture networks in Horn River Basin[J]. SPE Production & Operations, 33(4): 679-696.
|
[91] |
Zorn E, Kumar A, Harbert W, et al. 2019. Geomechanical analysis of microseismicity in an organic shale: A West Virginia Marcellus shale example[J]. Interpretation, 7(1): T231-T239.
DOI
URL
|