SEISMOLOGY AND GEOLOGY ›› 2022, Vol. 44 ›› Issue (4): 925-943.DOI: 10.3969/j.issn.0253-4967.2022.04.007
• Research paper • Previous Articles Next Articles
XU Wei1,2)(), LIU Zhi-cheng2), WANG Ji2), GAO Zhan-wu2), YIN Jin-hui1)
Received:
2021-06-15
Revised:
2021-08-30
Online:
2022-08-20
Published:
2022-09-23
徐伟1,2)(), 刘志成2), 王继2), 高战武2), 尹金辉1)
作者简介:
徐伟, 男, 1986年生, 2011年于中国地震局地壳应力研究所获固体地球物理学专业硕士学位, 现为中国地震局地质研究所构造地质学专业在读博士研究生, 主要从事活动构造、 第四纪年代、 构造地貌等研究, 电话: 13426220213, E-mail: xwazhy@163.com。
基金资助:
CLC Number:
XU Wei, LIU Zhi-cheng, WANG Ji, GAO Zhan-wu, YIN Jin-hui. PRELIMINARY STUDY ON FAULTED LANDFORMS AND AGES OF RECENT STRONG EARTHQUAKE ACTIVITY ON THE KARAKORUM FAULT IN NGARI, TIBET[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 925-943.
徐伟, 刘志成, 王继, 高战武, 尹金辉. 西藏阿里地区喀喇昆仑断裂断错地貌及最近强震活动时代的初步研究[J]. 地震地质, 2022, 44(4): 925-943.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.04.007
Fig. 7 DEM image(a), typical topographic elevation lines(b), river offset and geomorphic surface interpretation(c)along the fault east of Yaerqin River.
样品编号 | 埋深 /m | U /μg·g-1 | Th /μg·g-1 | K /% | 含水量 /% | 环境剂量率 /Gy·ka-1 | 等效剂量 /Gy | 年龄 /ka |
---|---|---|---|---|---|---|---|---|
KKF-1 | 0.28 | 4.04±0.08 | 16.5±0.26 | 3.00±0.02 | 14.09 | 5.83±0.38 | 74.93±10.88 | 12.84±2.04 |
KKF-2 | 0.34 | 1.7±0.01 | 18.5±0.14 | 2.14±0.01 | 7.39 | 4.84±0.32 | 12.3±1.15 | 2.54±0.29 |
KKF-3 | 0.21 | 1.67±0.03 | 19.5±0.30 | 2.74±0.01 | 22.86 | 4.74±0.28 | 13.35±1.00 | 2.82±0.27 |
KKF-4 | 0.24 | 2.36±0.03 | 28.8±0.29 | 2.81±0.01 | 26.37 | 5.59±0.31 | 10.39±0.56 | 1.86±0.15 |
KKF-6 | 0.18 | 3.38±0.06 | 20.2±0.26 | 2.61±0.01 | 6.37 | 6.09±0.42 | 19.93±1.56 | 3.27±0.34 |
KKF-11 | 0.25 | 2.26±0.04 | 15.7±0.20 | 1.76±0.01 | 4.93 | 4.51±0.31 | 21.07±1.69 | 4.67±0.49 |
KKF-12 | 0.17 | 2.27±0.04 | 14±0.16 | 1.67±0.01 | 2.52 | 4.39±0.30 | 12.01±0.78 | 2.74±0.26 |
Table 1 OSL test parameters and age of samples
样品编号 | 埋深 /m | U /μg·g-1 | Th /μg·g-1 | K /% | 含水量 /% | 环境剂量率 /Gy·ka-1 | 等效剂量 /Gy | 年龄 /ka |
---|---|---|---|---|---|---|---|---|
KKF-1 | 0.28 | 4.04±0.08 | 16.5±0.26 | 3.00±0.02 | 14.09 | 5.83±0.38 | 74.93±10.88 | 12.84±2.04 |
KKF-2 | 0.34 | 1.7±0.01 | 18.5±0.14 | 2.14±0.01 | 7.39 | 4.84±0.32 | 12.3±1.15 | 2.54±0.29 |
KKF-3 | 0.21 | 1.67±0.03 | 19.5±0.30 | 2.74±0.01 | 22.86 | 4.74±0.28 | 13.35±1.00 | 2.82±0.27 |
KKF-4 | 0.24 | 2.36±0.03 | 28.8±0.29 | 2.81±0.01 | 26.37 | 5.59±0.31 | 10.39±0.56 | 1.86±0.15 |
KKF-6 | 0.18 | 3.38±0.06 | 20.2±0.26 | 2.61±0.01 | 6.37 | 6.09±0.42 | 19.93±1.56 | 3.27±0.34 |
KKF-11 | 0.25 | 2.26±0.04 | 15.7±0.20 | 1.76±0.01 | 4.93 | 4.51±0.31 | 21.07±1.69 | 4.67±0.49 |
KKF-12 | 0.17 | 2.27±0.04 | 14±0.16 | 1.67±0.01 | 2.52 | 4.39±0.30 | 12.01±0.78 | 2.74±0.26 |
[1] |
陈杰, 李涛, 李文巧, 等. 2011. 帕米尔构造结及邻区的晚新生代构造与现今变形[J]. 地震地质, 33(2): 241-259. doi: 10.3969/j.issn.0253-4967.2011.02.001.
DOI |
CHEN Jie, LI Tao, LI Wen-qiao, et al. 2011. Late Cenozoic and present tectonic deformation in the Pamir salient, northwestern China[J]. Seismology and Geology, 33(2): 241-259. (in Chinese) | |
[2] |
陈杰, 李涛, 孙建宝, 等. 2016. 2016年11月25日新疆阿克陶 MW6.6 地震发震构造与地表破裂[J]. 地震地质, 38(4): 1161-1174. doi: 10.3969/j.issn.0253-4967.2016.04.028.
DOI |
CHEN Jie, LI Tao, SUN Jian-bao, et al. 2016. Coseismic surface ruptures and seismogenic Muji Fault of the 25 November 2016 Arketao MW6.6 earthquake in northern Pamir[J]. Seismology and Geology, 38(4): 1161-1174. (in Chinese) | |
[3] | 邓起东. 2005. 活动构造研究及其应用: 谨以此文深切悼念先师陈国达院士[J]. 大地构造与成矿学, 29(1): 17-23. |
DENG Qi-dong. 2005. Studies and applications of active tectonics: Mourning for Academician CHEN Guo-da, the great master of Chinese geology[J]. Geotectonica et Metallogenia, 29(1): 17-23. (in Chinese) | |
[4] | 邓起东, 闻学泽. 2008. 活动构造研究: 历史、 进展与建议[J]. 地震地质, 30(1): 1-30. |
DENG Qi-dong, WEN Xue-ze. 2008. A review on the research of active tectonics: History, progress and suggestions[J]. Seismology and Geology, 30(1): 1-30. (in Chinese) | |
[5] | 付碧宏, 时丕龙, 贾营营. 2009. 青藏高原大型走滑断裂带晚新生代构造地貌生长及水系响应[J]. 地质科学, 44(4): 1343-1363. |
FU Bi-hong, SHI Pi-long, JIA Ying-ying. 2009. Late Cenozoic tectono-geomorphic growth and drainage response along the large-scale strike-slip fault system, Tibetan plateau[J]. Chinese Journal of Geology, 44(4): 1343-1363. (in Chinese) | |
[6] | 顾功叙. 1983. 中国地震目录(公元前1831-公元1969年)[Z]. 北京: 科学出版社. |
GU Gong-xu. 1983. Catalogue of Chinese Earthquakes(1831BC-1969AD)[Z]. Science Press, Beijing. (in Chinese) | |
[7] | 雷东宁, 蔡永建, 李媛. 2018. 西藏喀喇昆仑断裂东南段晚第四纪活动的地质地貌特征[J]. 科学技术与工程, 18(32): 152-156. |
LEI Dong-ning, CAI Yong-jian, LI Yuan. 2018. Geological and topographical features of Karakorum Fault in southeastern segment, western Tibet Plateau at Late Quaternary[J]. Science Technology and Engineering, 18(32): 152-156. (in Chinese) | |
[8] | 李传友, 张培震, 袁道阳, 等. 2010. 活动走滑断裂上断塞塘沉积特征及其构造含义: 以西秦岭北缘断裂带断塞塘为例[J]. 地质学报, 84(1): 90-105. |
LI Chuan-you, ZHANG Pei-zhen, YUAN Dao-yang, et al. 2010. Sedimentary characteristics of sag-pond on the active strike-slip fault and its tectonic implications: An example from sag pond along the West Qinling Fault[J]. Acta Geologica Sinica, 84(1): 90-105. (in Chinese) | |
[9] | 李海兵, Valli F, 刘敦一, 等. 2007. 喀喇昆仑断裂的形成时代: 锆石SHRIMP U-Pb年龄的制约[J]. 科学通报, 52(4): 438-447. |
LI Hai-bing, Valli F, LIU Dun-yi, et al. 2007. Initial movement of the Karakorum Fault in western Tibet: Constraints from SHRIMP U-Pb dating of zircons[J]. Chinese Science Bulletin, 52(8): 1089-1100.
DOI URL |
|
[10] | 李海兵, Valli F, 许志琴, 等. 2006. 喀喇昆仑断裂的变形特征及构造演化[J]. 中国地质, 33(2): 239-255. |
LI Hai-bing, Valli F, XU Zhi-qin, et al. 2006. Deformation and tectonic evolution of the Karakorum Fault, western Tibet[J]. Geology in China, 33(2): 239-255. (in Chinese) | |
[11] |
冉勇康, 王虎, 李彦宝, 等. 2012. 中国大陆古地震研究的关键技术与案例解析(1):走滑活动断裂的探槽地点、 布设与事件识别标志[J]. 地震地质, 34(2): 197-210. doi: 10.3969/j.issn.0253-4967.2012.02.001.
DOI |
RAN Yong-kang, WANG Hu, LI Yan-bao, et al. 2012. Key techniques and several cases analysis in paleoseismic studies in mainland China(1): Trenching sites, layouts and paleoseismic indicators on active strike-slip faults[J]. Seismology and Geology, 34(2): 197-210. (in Chinese) | |
[12] | 王世锋, 江万, 王超. 2016. 喀喇昆仑断裂沿雅鲁藏布江缝合带活动的构造地貌特征[J]. 地球科学与环境学报, 38(4): 483-493. |
WANG Shi-feng, JIANG Wan, WANG Chao. 2016. Geomorphic evidence for recent right-lateral shear of Karakorum Fault along Indus-Yalu suture zone of Tibet[J]. Journal of Earth Sciences and Environment, 38(4): 483-493. (in Chinese) | |
[13] | 许志琴, 李海兵, 杨经绥. 2006. 造山的高原: 青藏高原巨型造山拼贴体和造山类型[J]. 地学前缘, 13(4): 1-17. |
XU Zhi-qin, LI Hai-bing, YANG Jing-sui. 2006. An orogenic plateau: The orogenic collage and orogenic types of the Qinghai-Tibet plateau[J]. Earth Science Frontiers, 13(4): 1-17. (in Chinese) | |
[14] | 赵一霖, 刘健, 姜科庆, 等. 2019. 喀喇昆仑断裂北段晚第四纪活动特征及其构造意义[J]. 地球学报, 40(4): 601-613. |
ZHAO Yi-lin, LIU Jian, JIANG Ke-qing, et al. 2019. Late Quaternary activity characteristics and tectonics significance of the northern Karakorum Fault[J]. Acta Geoscientica Sinica, 40(4): 601-613. (in Chinese) | |
[15] | 中国地震局震害防御司. 1999. 中国近代地震目录(公元1912-1990年, MS≥4.7)[Z]. 北京. 中国科学技术出版社. |
Department of Earthquake Disaster Prevention, China Earthquake Administration. 1999. Catalogue of Recent Chinese Earthquakes(1912-1990AD, MS≥4.7)[Z]. China Science and Technology Press, Beijing. (in Chinese) | |
[16] | Boutonnet E, Leloup P H, Arnaud N, et al. 2012. Synkinematic magmatism, heterogeneous deformation, and progressive strain localization in a strike-slip shear zone: The case of the right-lateral Karakorum Fault[J]. Tectonics, 31(4): TC4012. |
[17] | Brown E T, Bendick R, Bourlès D L, et al. 2002. Slip rates of the Karakorum Fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines[J]. Journal of Geophysical Research: Solid Earth, 107(B9): ESE7-1-ESE7-13. |
[18] | Burtman V S, Molnar P. 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir [G]. Special Paper of the Geological Society of America, 281: 1-76. |
[19] | Chevalier M L. 2019. Active tectonics along the Karakorum Fault, western Tibetan plateau: A review[J]. Acta Geoscientica Sinica, 40(1): 37-54. |
[20] |
Chevalier M L. 2005. Slip-rate measurements on the Karakorum Fault may imply secular variations in fault motion[J]. Science, 307(5708): 411-414.
PMID |
[21] | Chevalier M L, Li H, Pan J, et al. 2011. Fast slip-rate along the northern end of the Karakorum fault system, western Tibet[J]. Geophysical Research Letters, 38(22): L22309. |
[22] |
Chevalier M L, Pan J, Li H, et al. 2015. Quantification of both normal and right-lateral late Quaternary activity along the Kongur Shan extensional system, Chinese Pamir[J]. Terra Nova, 27(5): 379-391.
DOI URL |
[23] | Chevalier M L, Tapponnier P, van der Woerd J, et al. 2012. Spatially constant slip rate along the southern segment of the Karakorum Fault since 200ka[J]. Tectonophysics, 530-531: 152-179. |
[24] | Chevalier M L, van der Woerd J, Tapponnier P, et al. 2016. Late Quaternary slip-rate along the central Bangong-Chaxikang segment of the Karakorum Fault, western Tibet[J]. Geological Society of America Bulletin, 128(42737): 284-314. |
[25] |
Cowgill E. 2010. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China[J]. Geological Society of America Bulletin, 122(1-2): 145-161.
DOI URL |
[26] |
Lacassin R, Valli F, Arnaud N, et al. 2004. Large-scale geometry, offset and kinematic evolution of the Karakorum Fault, Tibet[J]. Earth and Planetary Science Letters, 219(3-4): 255-269.
DOI URL |
[27] |
Matte P, Tapponnier P, Arnaud N, et al. 1996. Tectonics of western Tibet, between the Tarim and the Indus[J]. Earth and Planetary Science Letters, 142(3-4): 311-330.
DOI URL |
[28] | McCarthy M R, Weinberg R F. 2010. Structural complexity resulting from pervasive ductile deformation in the Karakorum shear zone, Ladakh, NW India[J]. Tectonics, 29(3): TC3004. |
[29] |
Murphy M A, Burgess W P. 2006. Geometry, kinematics, and landscape characteristics of an active transtension zone, Karakorum fault system, southwest Tibet[J]. Journal of Structural Geology, 28(2): 268-283.
DOI URL |
[30] |
Murphy M A, Yin A, Kapp P, et al. 2002. Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: Implications for the eastward extent of the Karakorum fault system[J]. Geological Society of America Bulletin, 114(4): 428-447.
DOI URL |
[31] | Peltzer G, Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach[J]. Journal of Geophysical Research: Solid Earth, 93(B12): 15085-15117. |
[32] |
Phillips R J, Parrish R R, Searle M P. 2004. Age constraints on ductile deformation and long-term slip rates along the Karakorum fault zone, Ladakh[J]. Earth and Planetary Science Letters, 226(3-4): 305-319.
DOI URL |
[33] |
Robinson A C. 2009. Evidence against Quaternary slip on the northern Karakorum Fault suggests kinematic reorganization at the western end of the Himalayan-Tibetan orogen[J]. Earth and Planetary Science Letters, 286(1-2): 158-170.
DOI URL |
[34] | Robinson A C, Owen L A, Chen J, et al. 2015. No late Quaternary strike-slip motion along the northern Karakoram Fault[J]. Earth and Planetary Science Letters, 49: 290-298. |
[35] |
Robinson A C, Yin A, Manning C E, et al. 2007. Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen[J]. Geological Society of America Bulletin, 119(7-8): 882-896.
DOI URL |
[36] |
Rolland Y, Mahéo G, Pêcher A, et al. 2009. Syn-kinematic emplacement of the Pangong metamorphic and magmatic complex along the Karakorum Fault(N Ladakh)[J]. Journal of Asian Earth Sciences, 34(1): 10-25.
DOI URL |
[37] | Valli F, Arnaud N, Leloup P H, et al. 2007. Twenty million years of continuous deformation along the Karakorum Fault, western Tibet: A thermochronological analysis[J]. Tectonics, 26(4): TC4004. |
[38] | Valli F, Leloup P H, Paquette J L, et al. 2008. New U-Th/Pb constraints on timing of shearing and long-term slip-rate on the Karakorum Fault[J]. Tectonics, 27(5): TC5007. |
[39] |
Wallace R E 1970. Earthquake recurrence intervals on the San Andreas Fault[J]. Geological Society of America Bulletin, 81(10): 2875-2890.
DOI URL |
[40] |
Wright T J, Parsons B, England P C, et al. 2004. InSAR observations of low slip rates on the major faults of western Tibet[J]. Science, 305(5681): 236-239.
PMID |
[41] |
Zhou Y, Ronghua X U, Yan Y, et al. 2001. Dating of the Karakorum strike-slip fault[J]. Acta Geologica Sinica, 75(1): 10-18.
DOI URL |
[1] | LIU Qing, LIU Shao, ZHANG Shi-min. PALEOSEISMOLOGIC STUDY ON THE YUEXI FAULT IN THE MIDSECTION OF THE DALIANGSHAN FAULT ZONE SINCE THE LATE QUATERNARY [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(2): 321-337. |
[2] | YUAN Hao-dong, LI An, HUANG Wei-liang, HU Zong-kai, ZUO Yu-qi, YANG Xiao-ping. GEOLOGICAL DEFORMATION OF THE TUOLI FAULT IN THE WEST JUNGGAR SINCE THE LATE QUATERNARY [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 49-66. |
[3] | ZHANG Wei-heng, CHEN Jie, LI Tao, DI Ning, YAO Yuan. LATE QUATERNARY SHORTENING RATE OF THE SANSUCHANG ANTICLINE, SOUTHERN LONGMEN SHAN FORELAND THRUST BELT [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1351-1364. |
[4] | FENG Jing-jing, ZHAO Yong-wei, LI Ni, CHEN Zheng-quan, WANG Li-zhu, LIU Yong-shun, NIE Bao-feng, ZHANG Xue-bin. CONE MORPHOLOGY AND ERUPTION MECHANISMS OF THE LATE QUATERNARY VOLCANO IN NORTHERN HAINAN ISLAND [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(5): 1107-1127. |
[5] | SHEN Jun, DAI Xun-ye, XIAO Chun, JIAO Xuan-kai, BAI Qilegeer, DENG Mei, LIU Ze-zhong, XIA Fang-hua, LIU Yu, LIU Ming. STUDY ON THE LATE QUATERNARY ACTIVITY OF THE WEST XIADIAN FAULT IN BEIJING PLAIN [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 909-924. |
[6] | ZHANG Chi, LI Zhi-min, REN Zhi-kun, LIU Jin-rui, ZHANG Zhi-liang, WU Deng-yun. CHARACTERISTICS OF LATE QUATERNARY ACTIVITY OF THE SOUTHERN RIYUESHAN FAULT [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(1): 1-19. |
[7] | CHANG Hao, CHANG Zu-feng, LIU Chang-wei. THE RELATIONSHIP BETWEEN ACTIVITY OF JINSHA RIVER FAULT ZONE AND LARGE-SCALE LANDSLIDES: A CASE STUDY OF THE SECTION BETWEEN NARONG AND RONGXUE ALONG THE JINSHA RIVER [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1435-1458. |
[8] | BAI Luan-xi, XU Xi-wei, LUO Hao, LI Kang, LI Meng-ni, WEI Lei-ming, WANG Qi-xin, ZHAO Jun-xiang. DISCUSSION ON THE TIMING AND ITS TECTONIC SIGNIFICANCE OF ANGULAR UNCONFORMITY IN HETAO BASIN IN THE LATE QUATERNARY SEDIMENTS [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(4): 806-824. |
[9] | LIANG Ming-jian, YANG Yao, DU Fang, GONG Yue, SUN Wei, ZHAO Min, HE Qiang. LATE QUATERNARY ACTIVITY OF THE CENTRAL SEGMENT OF THE DARI FAULT AND RESTUDY OF THE SURFACE RUPTURE ZONE OF THE 1947 M73/4 DARI EARTHQUAKE, QINGHAI PROVINCE [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(3): 703-714. |
[10] | LI Yan-bao, CHEN Li-chun, WANG Hu, ZENG Di, LIU Cheng-long. EVIDENCES OF THE LATE QUATERNARY ACTIVITY OF THE ANGREN SEGMENT OF THE YARLUNG TSANGPO FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(5): 1091-1104. |
[11] | LI Guang-tao, SU Gang, CHENG Li, LI Feng, WU Hao. LATE QUATERNARY ACTIVITY OF THE SOUTHEASTERN SECTION OF ZHONGDIAN-DAJU FAULT [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(3): 545-560. |
[12] | WANG Ming-ming, HE Yu-lin, LIU Shao, WANG Shi-yuan, MA Chao, ZHANG Wei, JIA Zhao-liang. LATE QUATERNARY ACTIVITY AND PALEOSEISMIC RUPTURE BEHAVIOR FOR THE SOUTHEAST SECTION OF THE GANZI-YUSHU FAULT [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(4): 738-752. |
[13] | YAO Yuan, SONG He-ping, CHEN Jian-bo, LI Shuai, JIA Hai-liang. LATE QUATERNARY CRUSTAL SHORTENING RATE OF THE BEILUNTAI FAULT IN SOUTHERN TIAN SHAN, XINJIANG [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(1): 71-86. |
[14] | LIU Rui, LI An, ZHANG Shi-min, CHEN Zhi-dan, GUO Chang-hui. THE LATE QUATERNARY TECTONIC DEFORMATION REVEALED BY THE TERRACES ON THE BAIYANG RIVER IN THE NORTHERN QILIAN MOUNTAINS [J]. SEISMOLOGY AND GEOLOGY, 2017, 39(6): 1237-1255. |
[15] | YANG Yuan-yuan, ZHAO Peng, ZHENG Hai-gang, YAO Da-quan, WANG Xing-zhou, MIAO Peng, LI Jun-hui, WANG Xiao-li, SHU Peng. EVIDENCE OF HOLOCENE ACTIVITY DISCOVERED IN ANHUI ZIYANGSHAN SEGMENT OF TANLU FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2017, 39(4): 644-655. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||