SEISMOLOGY AND GEOLOGY ›› 2022, Vol. 44 ›› Issue (2): 484-505.DOI: 10.3969/j.issn.0253-4967.2022.02.013
• Focus: Mechanical understanding of the surface ruptures of the 2021 Madoi earthquake • Previous Articles Next Articles
HAN Long-fei1)(), LIU-ZENG Jing1,2),*(), YAO Wen-qian1), WANG Wen-xin1), LIU Xiao-li3), GAO Yun-peng1), SHAO Yan-xiu1), LI Jin-yang1)
Received:
2022-02-13
Revised:
2022-04-01
Online:
2022-04-20
Published:
2022-06-14
Contact:
LIU-ZENG Jing
韩龙飞1)(), 刘静1,2),*(), 姚文倩1), 王文鑫1), 刘小利3), 高云鹏1), 邵延秀1), 李金阳1)
通讯作者:
刘静
作者简介:
韩龙飞, 男, 1994年生, 2019于中国地震局地质研究所获构造地质学专业硕士学位, 现为天津大学地球系统科学学院环境科学在读博士研究生, 主要从事大地震地表破裂与古地震研究, E-mail: hanlongfei_2019@tju.edu.cn。
基金资助:
CLC Number:
HAN Long-fei, LIU-ZENG Jing, YAO Wen-qian, WANG Wen-xin, LIU Xiao-li, GAO Yun-peng, SHAO Yan-xiu, LI Jin-yang. DETAILED MAPPING OF THE SURFACE RUPTURE NEAR THE EPICENTER SEGMENT OF THE 2021 MADOI MW7.4 EARTHQUAKE AND DISCUSSION ON DISTRIBUTED RUPTURE IN THE STEP-OVER[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 484-505.
韩龙飞, 刘静, 姚文倩, 王文鑫, 刘小利, 高云鹏, 邵延秀, 李金阳. 2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内的分布式破裂讨论[J]. 地震地质, 2022, 44(2): 484-505.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.02.013
[1] | 邓起东, 张培震, 冉勇康, 等. 2002. 中国活动构造基本特征[J]. 中国科学(D辑), 46(4): 1020-1030, 1057. |
DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang,et al. 2002. Basic characteristics of active tectonics in China[J]. Science in China(Ser D), 46(4): 1020-1030, 1057. (in Chinese) | |
[2] | 盖海龙, 姚生海, 杨丽萍, 等. 2021. 青海玛多“5·22” MS7.4 地震的同震地表破裂特征、 成因及意义[J]. 地质力学学报, 27(6): 899-912. |
GAI Hai-long, YAO Sheng-hai, YANG Li-ping,et al. 2021. Characteristics and causes of coseismic surface rupture triggered by the “5·22” MS7.4 Earthquake in Maduo, Qinghai, and their significance[J]. Journal of Geomechanics, 27(6): 899-912. (in Chinese) | |
[3] | 国家地震局地质研究所, 宁夏回族自治区地震局, 1990. 海原活动断裂带[M]. 北京: 地震出版社. |
Institute of Geology, China Earthquake Administration, Earthquake Agency of Ningxia Hui Autonomous Region, 1990. Active Haiyuan Fault Zone[M]. Seismological Press, Beijing. (in Chinese) | |
[4] |
华俊, 赵德政, 单新建, 等. 2021. 2021年青海玛多 MW7.3 地震InSAR的同震形变场、 断层滑动分布及其对周边区域的应力扰动[J]. 地震地质, 43(3): 677-691. doi: 10.3969/j.issn.0253-4967.2021.03.013.
DOI |
HUA Jun, ZHAO De-zheng, SHAN Xin-jian,et al. 2021. Coseismic deformation field, slip distribution and Coulomb stress disturbance of the 2021 MW7.3 Maduo earthquake using Sentinel-1 InSAR observations[J]. Seismology and Geology, 43(3): 677-691. (in Chinese) | |
[5] | 李陈侠, 徐锡伟, 闻学泽, 等. 2011. 东昆仑断裂带中东部地震破裂分段性与走滑运动分解作用[J]. 中国科学(D辑), 41(9): 1295-1310. |
LI Chen-xia, XU Xi-wei, WEN Xue-ze,et al. 2011. Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun Fault, north Tibetan plateau[J]. Science in China(Ser D), 41(9): 1295-1310. (in Chinese) | |
[6] | 李春峰, 贺群禄, 赵国光. 2004. 东昆仑活动断裂带东段全新世滑动速率研究[J]. 地震地质, 26(4): 676-687. |
LI Chun-feng, HE Qun-lu, ZHAO Guo-guang. 2004. Holocene slip rate along the eastern segment of the Kunlun Fault[J]. Seismology and Geology, 26(4): 676-687. (in Chinese) | |
[7] | 刘静, 陈涛, 张培震, 等. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 58(1): 41-45. |
LIU Jing, CHEN Tao, ZHANG Pei-zhen, et al. 2013. Illuminating the active Haiyuan Fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1): 41-45. (in Chinese) | |
[8] | 潘家伟, 白明坤, 李超, 等. 2021. 2021年5月22日青海玛多 MW7.4 地震地表破裂带及发震构造[J]. 地质学报, 95(6): 1655-1670. |
PAN Jia-wei, BAI Ming-kun, LI Chao,et al. 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo(Qinghai) MW7.4 earthquake[J]. Acta Geologica Sinica, 95(6): 1655-1670. (in Chinese) | |
[9] | 青海省地震局, 中国地震局地壳应力研究所. 1999. 东昆仑活动断裂带[M]. 北京: 地震出版社: 1-227. |
Seismological Bureau of Qinghai Province, Institute of Crustal Dynamics, China Earthquake Administration. 1999. The Eastern Kunlun Active Fault Zone[M]. Seismological Press, Beijing: 1-227. (in Chinese) | |
[10] | 王未来, 房立华, 吴建平, 等. 2021. 2021年青海玛多 MS7.4 地震序列精定位研究[J]. 中国科学(D辑), 51(7): 1193-1202. |
WANG Wei-lai, FANG Li-hua, WU Jian-ping,et al. 2021. Aftershock sequence relocation of the 2021 MS7.4 Maduo earthquake, Qinghai, China[J]. Science in China(Ser D), 51(7): 1193-1202. (in Chinese) | |
[11] | 魏占玉, Ramon A, 何宏林, 等. 2015. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 37(2): 636-648. |
WEI Zhan-yu, Ramon A, HE Hong-lin,et al. 2015. Accuracy analysis of terrain point cloud acquired by “Structure from Motion” using aerial photos[J]. Seismology and Geology, 37(2): 636-648. (in Chinese) | |
[12] | 姚文倩, 王子君, 刘静, 等. 2022. 2021年青海玛多 MW7.4 地震同震地表破裂长度的讨论[J]. 地震地质, 44(2): 541-559. |
YAO Wen-qian, WANG Zi-jun, LIU-ZENG Jing,et al. 2022. Discussion on coseismic surface rupture length of the 2021 MW7.4 Madoi earthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 541-559. (in Chinese) | |
[13] | 张裕明, 李闵峰, 孟勇琦, 等. 1996. 巴颜喀拉山地区断层活动性研究及其地震地质意义 [G]//邓起东(主编). 活动断裂研究理论与应用. 北京: 地震出版社: 236-244. |
ZHANG Yu-ming, LI Min-feng, MENG Yong-qi, et al. 1996. Research on fault activities and their seismogeological implication in Bayankala mountain area [G]//DENG Qi-dong(ed). Research on Active Fault. Seismological Press, Beijing: 154-171. (in Chinese) | |
[14] |
Ajayi O G, Salubi A A, Angbas A F,et al. 2017. Generation of accurate digital elevation models from UAV acquired low percentage overlapping images[J]. International Journal of Remote Sensing, 38(8-10): 3113-3134.
DOI URL |
[15] |
Angster S, Wesnousky S, Huang W L,et al. 2016. Application of UAV photography to refining the slip rate on the Pyramid Lake fault zone, Nevada[J]. Bulletin of the Seismological Society of America, 106(2): 785-798.
DOI URL |
[16] |
Bi H, Zheng W, Ge W,et al. 2018. Constraining the distribution of vertical slip on the South Heli Shan Fault(Northeastern Tibet)from high-resolution topographic data[J]. Journal of Geophysical Research: Solid Earth, 123(3): 1925-1953.
DOI URL |
[17] | Brown M, Lowe D G. 2005. Unsupervised 3D object recognition and reconstruction in unordered datasets[C]. Fifth International Conference on 3-D Digital Imaging Model, (5): 56-63. |
[18] |
Campillo M, Archuleta R J. 1993. A rupture model for the 28 June 1992 Landers, California, earthquake[J]. Geophysical Research Letters, 20(8): 647-650.
DOI URL |
[19] |
Choi J-H, Klinger Y, Ferry M,et al. 2018. Geologic inheritance and earthquake rupture processes: The 1905 M≥8 Tsetserleg-Bulnay strike-slip earthquake sequence, Mongolia[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1925-1953.
DOI URL |
[20] | Deng Q, Chen S, Song F, et al.al. 1986. Variations in the Geometry and Amount of Slip on the Haiyuan(Nanxihaushan)Fault Zone, China and the Surface Rupture of the 1920 Haiyuan Earthquake[M]. Earthquake Source Mechanics, Washington D C: 169-182. |
[21] | Deng Q, Zhang P, Xu X,et al. 1996. Paleoseismology of the northern piedmont of Tianshan Mountains, northwestern China[J]. Journal of Geophysical Research: Solid Earth, 101(B3): 5895-5920. |
[22] |
Di Toro G, Nielsen S, Pennacchioni G. 2005. Earthquake rupture dynamics frozen in exhumed ancient faults[J]. Nature, 436(7053): 1009-1102.
DOI URL |
[23] |
Eberhart-Phillips D, Haeussler P J, Freymueller J T,et al. 2003. The 2002 Denali Fault earthquake, Alaska: A large magnitude, slip-partitioned event[J]. Science, 300(5622): 1113-1118.
PMID |
[24] |
Elliott A J, Dolan J F, Oglesby D D. 2009. Evidence from coseismic slip gradients for dynamic control on rupture propagation and arrest through stepovers[J]. Journal of Geophysical Research: Solid Earth, 114(B2): 1-8. doi: 10.1029/2008JB005969.
DOI |
[25] |
Elliott A J, Oskin M E, Liu-Zeng J,et al. 2015. Rupture termination at restraining bends: The last great earthquake on the Altyn Tagh Fault[J]. Geophysical Research Letters, 42(7): 2164-2170.
DOI URL |
[26] | Fliss S, Bhat H S, Dmowska R,et al. 2005. Fault branching and rupture directivity[J]. Journal of Geophysical Research: Solid Earth, 110(B6): 1-8. |
[27] | Frankel K L, Dolan J F, Finkel R C,et al. 2007. Spatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined from LiDAR topographic data and cosmogenic 10Be geochronology[J]. Geophysical Research Letters, 34(18): 1-6. |
[28] | Hamling I J, Hreinsdottir S, Clark K,et al. 2017. Complex multifault rupture during the 2016 MW7.8 Kaikoura earthquake, New Zealand[J]. Science, 356(6334): 1-10. |
[29] |
Hudnut K W, Brooks B A, Scharer K,et al. 2020. Airborne Lidar and electro-optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, southern California[J]. Seismological Research Letters, 91(4): 2096-2107.
DOI URL |
[30] | Kame N, Rice J R, Dmowska R. 2003. Effects of prestress state and rupture velocity on dynamic fault branching[J]. Journal of Geophysical Research: Solid Earth, 108(B5): 1-21. |
[31] |
Kearse J, Little T A, Van Dissen R J,et al. 2018. Onshore to offshore ground-surface and seabed rupture of the Jordan-Kekerengu-Needles Fault network during the 2016 MW7.8 Kaikōura earthquake, New Zealand[J]. Bulletin of the Seismological Society of America, 108(3B): 1573-1595.
DOI URL |
[32] | Kirby E, Harkins N, Wang E,et al. 2007. Slip rate gradients along the eastern Kunlun Fault[J]. Tectonics, 26(2): 1-16. |
[33] |
Klinger Y, Etchebes M, Tapponnier P,et al. 2011. Characteristic slip for five great earthquakes along the Fuyun Fault in China[J]. Nature Geoscience, 4(6): 389-392.
DOI URL |
[34] |
Klinger Y, Xu X W, Tapponnier P,et al. 2005. High-resolution satellite imagery mapping of the surface rupture and slip distribution of the MW7.8, 14 November 2001 Kokoxili earthquake, Kunlun Fault, northern Tibet, China[J]. Bulletin of the Seismological Society of America, 95(5): 1970-1987.
DOI URL |
[35] |
Klinger Y, Okubo K, Vallage A,et al. 2018. Earthquake damage patterns resolve complex rupture processes[J]. Geophysical Research Letters, 45(19): 10279-10287. doi: 10.1029/2018GL078842.
DOI URL |
[36] |
Li H, Pan J, Lin A,et al. 2016. Coseismic surface ruptures associated with the 2014 MW6.9 Yutian earthquake on the Altyn Tagh Fault, Tibetan plateau[J]. Bulletin of the Seismological Society of America, 106(2): 595-608.
DOI URL |
[37] |
Liu-Zeng J, Zhang Z, Wen L,et al. 2009. Co-seismic ruptures of the 12 May 2008, MS8.0 Wenchuan earthquake, Sichuan: East-west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet[J]. Earth and Planetary Science Letters, 286(3): 355-370.
DOI URL |
[38] |
Manighetti I, Perrin C, Dominguez S,et al. 2015. Recovering paleoearthquake slip record in a highly dynamic alluvial and tectonic region(Hope Fault, New Zealand)from airborne lidar[J]. Journal of Geophysical Research: Solid Earth, 120(6): 4484-4509.
DOI URL |
[39] |
Mitchell T M, Faulkner D R. 2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile[J]. Journal of Structural Geology, 31(8): 802-816.
DOI URL |
[40] |
Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 189(4201): 419-426.
PMID |
[41] |
Oskin M E, Arrowsmith J R, Corona A H,et al. 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LiDAR[J]. Science, 335(6069): 702-705.
DOI URL |
[42] |
Pierce I, Williams A, Koehler R D,et al. 2020. High-resolution structure-from-motion models and orthophotos of the southern sections of the 2019 MW7.1 and 6.4 Ridgecrest earthquakes surface ruptures[J]. Seismological Research Letters, 91(4): 2124-2126.
DOI URL |
[43] |
Ren J J, Xu X, Yeats R S,et al. 2013. Millennial slip rates of the Tazang Fault, the eastern termination of Kunlun Fault: Implications for strain partitioning in eastern Tibet[J]. Tectonophysics, 608(26): 1180-1200.
DOI URL |
[44] |
Ren Z K, Zhang Z Q. 2019. Structural analysis of the 1997 MW7.5 Manyi earthquake and the kinematics of the Manyi Fault, central Tibetan plateau[J]. Journal of Asian Earth Sciences, 179: 149-164.
DOI URL |
[45] | Ren Z K, Zhang Z, Chen T,et al. 2016. Clustering of offsets on the Haiyuan Fault and their relationship to paleoearthquakes[J]. GSA Bulletin, 128(1-2): 3-18. |
[46] |
Rockwell T K, Klinger Y. 2013. Surface rupture and slip distribution of the 1940 Imperial Valley earthquake, Imperial Fault, southern California: Implications for rupture segmentation and dynamics[J]. Bulletin of the Seismological Society of America, 103(2A): 629-640.
DOI URL |
[47] | Schwartz D P, Coppersmith K J. 1984. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 5681-5698. |
[48] |
Sieh K, Jones L, Hauksson E,et al. 1993. Near-field investigations of the Landers earthquake sequence, April to July 1992 [J]. Science, 260(5105): 171-176.
PMID |
[49] |
Spotila J A, Sieh K. 1995. Geologic investigations of a “slip gap” in the surficial ruptures of the 1992 Landers earthquake, southern California[J]. Geophysical Research Letters, 100(B1): 543-559. doi: 10.1029/94JB02471.
DOI |
[50] |
Tapponnier P, Xu Z, Roger F,et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677.
PMID |
[51] |
Turner D, Lucieer A, Wallace L. 2014. Direct georeferencing of ultrahigh-resolution UAV imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2738-2745.
DOI URL |
[52] | Vallage A, Klinger Y, Grandin R,et al. 2015. Inelastic surface deformation during the 2013 MW7.7 Balochistan, Pakistan, earthquake[J]. Geology, 43(12): 1079-1082. |
[53] |
Vallage A, Klinger Y, Lacassin R,et al. 2016. Geological structures control on earthquake ruptures: The MW7.7, 2013, Balochistan earthquake, Pakistan[J]. Geophysical Research Letters, 43(19): 10155-10163.
DOI URL |
[54] |
van der Woerd J, Tapponnier P, Ryerson F J,et al. 2002. Uniform postglacial slip-rate along the central 600km of the Kunlun Fault(Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal International, 148(3): 356-388.
DOI URL |
[55] |
Wesnousky S G. 1988. Seismological and structural evolution of strike-slip faults[J]. Nature, 335(6188): 340-343.
DOI URL |
[56] |
Wesnousky S G. 1994. The Gutenberg-Richter or characteristic earthquake distribution, which is it?[J]. Bulletin of the Seismological Society of America, 84(6): 1940-1959.
DOI URL |
[57] |
Wesnousky S G. 2006. Predicting the endpoints of earthquake ruptures[J]. Nature, 444(7117): 358-360.
DOI URL |
[58] |
Wesnousky S G. 2008. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture[J]. Bulletin of the Seismological Society of America, 98(4): 1609-1632. doi: org/10.1785/0120070111.
DOI URL |
[59] |
Westoby M J, Brasington J, Glasser N F,et al. 2012. ‘Structure from Motion’ photogrammetry: A low cost, effective tool for geoscience applications[J]. Geomorphology, 179: 300-314.
DOI URL |
[60] |
Xu X, Chen W, Ma W,et al. 2002. Surface rupture of the Kunlunshan earthquake( MS8.1 ), northern Tibetan plateau, China[J]. Seismological Research Letters, 73(6): 884-892.
DOI URL |
[61] | Zachariasen J, Sieh K. 1995. The transfer of slip between two en echelon strike-slip faults: A case study from the 1992 Landers earthquake, southern California[J]. Journal of Geophysical Research: Solid Earth, 100(B8): 15281-15301. |
[62] |
Zhang P, Mao F, Slemmons D B. 1999. Rupture terminations and size of segment boundaries from historical earthquake ruptures in the Basin and Range Province[J]. Tectonophysics, 308(1): 37-52.
DOI URL |
[63] |
Zielke O, Arrowsmith J R, Grant Ludwig L,et al. 2012. High-resolution topography-derived offsets along the 1857 Fort Tejon earthquake rupture trace, San Andreas Fault[J]. Bulletin of the Seismological Society of America, 102(3): 1135-1154.
DOI URL |
[64] |
Zielke O, Arrowsmith J R, Ludwig L G,et al. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327(5969): 1119-1122.
DOI PMID |
[1] | DENG Wen-ze, LIU Jie, YANG Zhi-gao, SUN Li, ZHANG Xue-mei. PRELIMINARY ANALYSIS FOR RUPTURE PROCESS OF THE MAY 22TH, 2021, MADOI(QINGHAI) MS7.4 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 1059-1070. |
[2] | YAO Wen-qian, WANG Zi-jun, LIU-ZENG Jing, LIU Xiao-li, HAN Long-fei, SHAO Yan-xiu, WANG Wen-xin, XU Jing, QIN Ke-xin, GAO Yun-peng, WANG Yan, LI Jin-yang, ZENG Xian-yang. DISCUSSION ON COSEISMIC SURFACE RUPTURE LENGTH OF THE 2021 MW7.4 MADOI EARTHQUAKE, QINGHAI, CHINA [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 541-559. |
[3] | SHAO Yan-xiu, LIU-ZENG Jing, GAO Yun-peng, WANG Wen-xin, YAO Wen-qian, HAN Long-fei, LIU Zhi-jun, ZOU Xiao-bo, WANG Yan, LI Yun-shuai, LIU Lu. COSEISMIC DISPLACEMENT MEASUREMENT AND DISTRIBUTED DEFORMATION CHARACTERIZATION: A CASE OF 2021 MW7.4 MADOI EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 506-523. |
[4] | LIU Xiao-li, XIA Tao, LIU-ZENG Jing, YAO Wen-qian, XU Jing, DENG De-bei-er, HAN Long-fei, JIA Zhi-ge, SHAO Yan-xiu, WANG Yan, YUE Zi-yang, GAO Tian-qi. DISTRIBUTED CHARACTERISTICS OF THE SURFACE DEFORMATIONS ASSOCIATED WITH THE 2021 MW7.4 MADOI EARTHQUAKE, QINGHAI, CHINA [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 461-483. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||