SEISMOLOGY AND EGOLOGY ›› 2021, Vol. 43 ›› Issue (5): 1101-1126.DOI: 10.3969/j.issn.0253-4967.2021.05.005
• Special topic on the Yunnan Yangbi MS6.4 and Qinghai Maduo MS7.4 earthquakes • Previous Articles Next Articles
LU Chang1,2)(), ZHOU Xiao-cheng2),*(), LI Ying2), LIU Lei3), YAN Yu-cong2), XU Yue-ren2)
Received:
2021-06-15
Revised:
2021-07-21
Online:
2021-10-20
Published:
2021-12-06
Contact:
ZHOU Xiao-cheng
路畅1,2)(), 周晓成2),*(), 李营2), 刘磊3), 颜玉聪2), 徐岳仁2)
通讯作者:
周晓成
作者简介:
路畅, 男, 1993年生, 2016年于吉林大学获地质学专业学士学位, 现为中国地震局地球物理研究所固体地球物理专业在读博士研究生, 主要从事与地震、 构造相关的水文与气体地球化学等研究, 电话: 15901252713, E-mail: cealuchang@163.com。
基金资助:
CLC Number:
LU Chang, ZHOU Xiao-cheng, LI Ying, LIU Lei, YAN Yu-cong, XU Yue-ren. HYDROGEOCHEMICAL CHARACTERISTICS OF GROUND-WATER IN THE SURFACE RUPTURE ZONE OF MADOI MS7.4 EARTHQUAKE AND HOT SPRINGS IN THE EAST KUNLUN FAULT[J]. SEISMOLOGY AND EGOLOGY, 2021, 43(5): 1101-1126.
路畅, 周晓成, 李营, 刘磊, 颜玉聪, 徐岳仁. 玛多MS7.4 地表破裂带与东昆仑断裂温泉的水文地球化学特征[J]. 地震地质, 2021, 43(5): 1101-1126.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2021.05.005
样品 编号 | T /℃ | 东经 /(°) | 北纬 /(°) | pH | 电导率 /μs· cm-1 | TDS /mg· L-1 | Na+ /mg· L-1 | K+ /mg· L-1 | Mg2+ /mg· L-1 | Ca2+ /mg· L-1 | Cl- /mg· L-1 | /mg· L-1 | /mg· L-1 | /mg· L-1 | HC /mg· L-1 | ib /% | 87Sr/86Sr | 水化学类型 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDW1 | 8 | 98.086 | 34.675 | 8.1 | 426.7 | 407.8 | 21.5 | 2.2 | 18.4 | 58.6 | 15.5 | 15.6 | 17.0 | — | 258.9 | 0.73 | 0.712 315 | Ca·Mg-HCO3 |
MDW2 | 5 | 98.522 | 34.470 | 7.7 | 200.3 | 207.8 | 6.9 | 2.3 | 10.3 | 26.6 | 4.3 | 0.2 | 4.2 | — | 153.0 | -1.66 | 0.711 197 | Ca·Mg-HCO3 |
MDW3 | 5 | 98.262 | 34.634 | 8.1 | 865.2 | 847.7 | 51 | 4.1 | 40.0 | 125.3 | 32.8 | 3.4 | 78.2 | — | 512.8 | 1.95 | 0.711 292 | Ca·Mg-HCO3 |
MDW4 | 8 | 98.018 | 34.694 | 8.3 | 560.4 | 467.0 | 38.3 | 2.2 | 24.8 | 59.3 | 21.8 | 13.7 | 32.9 | 31.7 | 242.4 | 0.62 | 0.711 293 | Ca·Mg-HCO3 |
MDW5 | 8 | 98.006 | 34.695 | 8.2 | 521.3 | 475.3 | 33.5 | 2.2 | 20.2 | 62.7 | 18.6 | 5.8 | 26.2 | — | 306.0 | 0.44 | 0.711 326 | Ca·Mg·Na-HCO3 |
MDW6 | 5 | 97.932 | 34.718 | 8.3 | 639.9 | 649.3 | 38.3 | 3.0 | 28.1 | 94.4 | 25.8 | 12.1 | 67.9 | — | 379.7 | 0.63 | 0.710 724 | Ca·Mg-HCO3 |
MDW7 | 6 | 97.625 | 34.750 | 8.2 | 440 | 447.2 | 16.0 | 2.2 | 13.7 | 75.0 | 14.0 | 3.0 | 16.3 | — | 306.9 | -0.85 | 0.710 828 | Ca-HCO3 |
MDW8 | 6 | 98.830 | 34.542 | 8.1 | 656.8 | 595.6 | 24.9 | 6.5 | 49.2 | 62.3 | 24.6 | — | 7.4 | 22.8 | 397.9 | 0.82 | 0.710 879 | Ca·Mg-HCO3 |
MDW9 | 11 | 98.466 | 34.466 | 8.2 | 716.4 | 522.2 | 59.4 | 3.3 | 31.3 | 54.5 | 74.9 | 0.5 | 34.2 | 38.2 | 225.8 | 0.58 | 0.710 748 | Na·Ca·Mg-HCO3·Cl |
MDW10 | 3 | 98.432 | 34.572 | 8.1 | 339.8 | 325.0 | 10.7 | 2.4 | 21.9 | 37.3 | 8.1 | 3.2 | 9.7 | — | 221.7 | 0.39 | 0.711 77 | Ca·Mg-HCO3 |
MDW11 | 5 | 98.233 | 34.643 | 8.2 | 464.8 | 429.6 | 23.1 | 2.0 | 19.8 | 62.7 | 15.8 | 7.7 | 17.7 | 29.3 | 241.5 | -0.22 | 0.711 773 | Ca·Mg-HCO3 |
MDW12 | 4.5 | 99.289 | 34.985 | 8.1 | 865.7 | 1071.1 | 18.3 | 2.1 | 44.1 | 145.4 | 31.1 | 5.4 | 207.5 | 67.0 | 397.0 | 0.45 | 0.708 718 | Ca·Na·Mg-HCO3·SO4 |
MDW13 | 10 | 100.310 | 34.441 | 8.1 | 694.5 | 472.0 | 24.8 | 1.7 | 37.7 | 100.7 | 8.7 | 1.1 | 74.6 | 47.0 | 440.0 | 2.45 | 0.715 374 | Ca·Na·Mg-HCO3 |
MDW14 | 4.5 | 100.556 | 34.357 | 8.2 | 349.8 | 113.2 | 5.5 | 1.6 | 13.6 | 65.7 | 0.5 | 4.8 | 6.6 | — | 300.0 | 2.03 | 0.712 455 | Ca·Na-HCO3 |
MDW15 | 6.5 | 101.132 | 34.242 | 7.9 | 464.3 | 187.4 | 7.4 | 1.2 | 20.2 | 100.9 | 0.4 | 2.4 | 14.3 | — | 508.0 | -0.56 | 0.718 426 | Ca·Na-HCO3 |
MDW16 | 9.5 | 101.488 | 34.182 | 7.8 | 470 | 165.0 | 6.5 | 1.5 | 9.8 | 124.3 | 2.2 | 8.6 | 5.2 | — | 497.0 | 1.01 | 0.707 998 | Ca·Na-HCO3 |
MDW17 | 9 | 102.266 | 34.015 | 8.0 | 460.2 | 141.2 | 5.2 | 0.8 | 19.9 | 95.5 | 0.5 | 4.0 | 4.8 | — | 406.0 | 3.97 | 0.708 728 | Ca·Na·Mg-HCO3 |
MDW18 | 4.5 | 102.389 | 34.024 | 7.9 | 509.4 | 140.3 | 9.4 | 1.3 | 26.8 | 100.9 | 1.1 | — | 0.9 | — | 574.0 | -0.41 | 0.715 199 | Ca·Na·Mg-HCO3 |
MDW19 | 12 | 102.458 | 34.019 | 8.0 | 445.9 | 142.5 | 3.5 | 0.8 | 21.4 | 76.3 | 0.4 | 0.6 | 10.0 | 23.0 | 397.0 | -0.72 | 0.708 887 | Ca·Na·Mg-HCO3 |
MDW20 | 28 | 102.680 | 34.035 | 8.0 | 441.2 | 149.3 | 4.0 | 1.4 | 17.9 | 86.7 | 0.3 | 0.7 | 10.0 | 24.0 | 432.0 | -1.91 | 0.711 761 | Ca·Na-HCO3 |
MDW21 | 49 | 102.783 | 34.203 | 7.6 | 1201 | 1264.6 | 44.6 | 7.0 | 66.5 | 226.4 | 1.5 | 0.4 | 229.7 | — | 1083.0 | -0.75 | 0.708 718 | Ca·Na·Mg-HCO3 |
Table1 Spring water ion composition, hydrochemistry type and 87Sr/86Sr
样品 编号 | T /℃ | 东经 /(°) | 北纬 /(°) | pH | 电导率 /μs· cm-1 | TDS /mg· L-1 | Na+ /mg· L-1 | K+ /mg· L-1 | Mg2+ /mg· L-1 | Ca2+ /mg· L-1 | Cl- /mg· L-1 | /mg· L-1 | /mg· L-1 | /mg· L-1 | HC /mg· L-1 | ib /% | 87Sr/86Sr | 水化学类型 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDW1 | 8 | 98.086 | 34.675 | 8.1 | 426.7 | 407.8 | 21.5 | 2.2 | 18.4 | 58.6 | 15.5 | 15.6 | 17.0 | — | 258.9 | 0.73 | 0.712 315 | Ca·Mg-HCO3 |
MDW2 | 5 | 98.522 | 34.470 | 7.7 | 200.3 | 207.8 | 6.9 | 2.3 | 10.3 | 26.6 | 4.3 | 0.2 | 4.2 | — | 153.0 | -1.66 | 0.711 197 | Ca·Mg-HCO3 |
MDW3 | 5 | 98.262 | 34.634 | 8.1 | 865.2 | 847.7 | 51 | 4.1 | 40.0 | 125.3 | 32.8 | 3.4 | 78.2 | — | 512.8 | 1.95 | 0.711 292 | Ca·Mg-HCO3 |
MDW4 | 8 | 98.018 | 34.694 | 8.3 | 560.4 | 467.0 | 38.3 | 2.2 | 24.8 | 59.3 | 21.8 | 13.7 | 32.9 | 31.7 | 242.4 | 0.62 | 0.711 293 | Ca·Mg-HCO3 |
MDW5 | 8 | 98.006 | 34.695 | 8.2 | 521.3 | 475.3 | 33.5 | 2.2 | 20.2 | 62.7 | 18.6 | 5.8 | 26.2 | — | 306.0 | 0.44 | 0.711 326 | Ca·Mg·Na-HCO3 |
MDW6 | 5 | 97.932 | 34.718 | 8.3 | 639.9 | 649.3 | 38.3 | 3.0 | 28.1 | 94.4 | 25.8 | 12.1 | 67.9 | — | 379.7 | 0.63 | 0.710 724 | Ca·Mg-HCO3 |
MDW7 | 6 | 97.625 | 34.750 | 8.2 | 440 | 447.2 | 16.0 | 2.2 | 13.7 | 75.0 | 14.0 | 3.0 | 16.3 | — | 306.9 | -0.85 | 0.710 828 | Ca-HCO3 |
MDW8 | 6 | 98.830 | 34.542 | 8.1 | 656.8 | 595.6 | 24.9 | 6.5 | 49.2 | 62.3 | 24.6 | — | 7.4 | 22.8 | 397.9 | 0.82 | 0.710 879 | Ca·Mg-HCO3 |
MDW9 | 11 | 98.466 | 34.466 | 8.2 | 716.4 | 522.2 | 59.4 | 3.3 | 31.3 | 54.5 | 74.9 | 0.5 | 34.2 | 38.2 | 225.8 | 0.58 | 0.710 748 | Na·Ca·Mg-HCO3·Cl |
MDW10 | 3 | 98.432 | 34.572 | 8.1 | 339.8 | 325.0 | 10.7 | 2.4 | 21.9 | 37.3 | 8.1 | 3.2 | 9.7 | — | 221.7 | 0.39 | 0.711 77 | Ca·Mg-HCO3 |
MDW11 | 5 | 98.233 | 34.643 | 8.2 | 464.8 | 429.6 | 23.1 | 2.0 | 19.8 | 62.7 | 15.8 | 7.7 | 17.7 | 29.3 | 241.5 | -0.22 | 0.711 773 | Ca·Mg-HCO3 |
MDW12 | 4.5 | 99.289 | 34.985 | 8.1 | 865.7 | 1071.1 | 18.3 | 2.1 | 44.1 | 145.4 | 31.1 | 5.4 | 207.5 | 67.0 | 397.0 | 0.45 | 0.708 718 | Ca·Na·Mg-HCO3·SO4 |
MDW13 | 10 | 100.310 | 34.441 | 8.1 | 694.5 | 472.0 | 24.8 | 1.7 | 37.7 | 100.7 | 8.7 | 1.1 | 74.6 | 47.0 | 440.0 | 2.45 | 0.715 374 | Ca·Na·Mg-HCO3 |
MDW14 | 4.5 | 100.556 | 34.357 | 8.2 | 349.8 | 113.2 | 5.5 | 1.6 | 13.6 | 65.7 | 0.5 | 4.8 | 6.6 | — | 300.0 | 2.03 | 0.712 455 | Ca·Na-HCO3 |
MDW15 | 6.5 | 101.132 | 34.242 | 7.9 | 464.3 | 187.4 | 7.4 | 1.2 | 20.2 | 100.9 | 0.4 | 2.4 | 14.3 | — | 508.0 | -0.56 | 0.718 426 | Ca·Na-HCO3 |
MDW16 | 9.5 | 101.488 | 34.182 | 7.8 | 470 | 165.0 | 6.5 | 1.5 | 9.8 | 124.3 | 2.2 | 8.6 | 5.2 | — | 497.0 | 1.01 | 0.707 998 | Ca·Na-HCO3 |
MDW17 | 9 | 102.266 | 34.015 | 8.0 | 460.2 | 141.2 | 5.2 | 0.8 | 19.9 | 95.5 | 0.5 | 4.0 | 4.8 | — | 406.0 | 3.97 | 0.708 728 | Ca·Na·Mg-HCO3 |
MDW18 | 4.5 | 102.389 | 34.024 | 7.9 | 509.4 | 140.3 | 9.4 | 1.3 | 26.8 | 100.9 | 1.1 | — | 0.9 | — | 574.0 | -0.41 | 0.715 199 | Ca·Na·Mg-HCO3 |
MDW19 | 12 | 102.458 | 34.019 | 8.0 | 445.9 | 142.5 | 3.5 | 0.8 | 21.4 | 76.3 | 0.4 | 0.6 | 10.0 | 23.0 | 397.0 | -0.72 | 0.708 887 | Ca·Na·Mg-HCO3 |
MDW20 | 28 | 102.680 | 34.035 | 8.0 | 441.2 | 149.3 | 4.0 | 1.4 | 17.9 | 86.7 | 0.3 | 0.7 | 10.0 | 24.0 | 432.0 | -1.91 | 0.711 761 | Ca·Na-HCO3 |
MDW21 | 49 | 102.783 | 34.203 | 7.6 | 1201 | 1264.6 | 44.6 | 7.0 | 66.5 | 226.4 | 1.5 | 0.4 | 229.7 | — | 1083.0 | -0.75 | 0.708 718 | Ca·Na·Mg-HCO3 |
样品编号 | SiO2 | Al2O3 | Fe203 | MgO | CaO | Na2O | K2O | MnO | TiO2 | P2O5 | 烧失量 | FeO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MDN01 | 82.38 | 6.00 | 2.05 | 0.645 | 2.750 | 1.39 | 0.982 | 0.030 | 0.340 | 0.065 | 3.36 | 1.06 |
MDN02 | 61.71 | 10.96 | 5.24 | 1.210 | 4.730 | 1.56 | 1.930 | 0.102 | 0.526 | 0.117 | 11.90 | 4.52 |
MDN03 | 88.28 | 5.35 | 1.77 | 0.514 | 0.410 | 1.31 | 0.798 | 0.011 | 0.217 | 0.042 | 1.29 | 1.20 |
MDN04 | 87.20 | 5.76 | 1.80 | 0.519 | 0.607 | 1.43 | 0.839 | 0.015 | 0.254 | 0.048 | 1.51 | 1.09 |
Table2 Percentage of oxides in sand particles(wt%)
样品编号 | SiO2 | Al2O3 | Fe203 | MgO | CaO | Na2O | K2O | MnO | TiO2 | P2O5 | 烧失量 | FeO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MDN01 | 82.38 | 6.00 | 2.05 | 0.645 | 2.750 | 1.39 | 0.982 | 0.030 | 0.340 | 0.065 | 3.36 | 1.06 |
MDN02 | 61.71 | 10.96 | 5.24 | 1.210 | 4.730 | 1.56 | 1.930 | 0.102 | 0.526 | 0.117 | 11.90 | 4.52 |
MDN03 | 88.28 | 5.35 | 1.77 | 0.514 | 0.410 | 1.31 | 0.798 | 0.011 | 0.217 | 0.042 | 1.29 | 1.20 |
MDN04 | 87.20 | 5.76 | 1.80 | 0.519 | 0.607 | 1.43 | 0.839 | 0.015 | 0.254 | 0.048 | 1.51 | 1.09 |
样品编号 | Ca /μg·L-1 | Mg /μg·L-1 | Ag /μg·L-1 | Al /μg·L-1 | Ba /μg·L-1 | Be /μg·L-1 | Cd /μg·L-1 | Co /μg·L-1 | Cr /μg·L-1 | Cu /μg·L-1 | Fe /μg·L-1 | Li /μg·L-1 | Mn /μg·L-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDW1 | 123.0 | 25.1 | 0.017 | 2284.0 | 202.0 | 0.634 | 0.258 | 7.460 | 5.740 | 102.0 | 6.180 | 21.90 | 1 322.0 |
MDW2 | 27.4 | 10.4 | 0.022 | 82.8 | 176.0 | 0.097 | 0.082 | 0.226 | 2.300 | 86.5 | 0.232 | 6.56 | 14.8 |
MDW3 | 111.0 | 39.7 | 0.020 | 672.0 | 215.0 | 0.180 | 0.075 | 2.250 | 2.880 | 89.5 | 1.980 | 35.60 | 499.0 |
MDW4 | 53.0 | 24.8 | 0.007 | 40.8 | 29.7 | 0.072 | 0.030 | 0.275 | 1.320 | 79.9 | 0.128 | 21.00 | 14.1 |
MDW5 | 58.1 | 21.1 | 0.011 | 571.0 | 64.4 | 0.200 | 0.063 | 1.150 | 2.350 | 75.5 | 0.871 | 22.50 | 43.3 |
MDW6 | 110.0 | 30.3 | 0.020 | 1930.0 | 177.0 | 0.456 | 0.200 | 6.080 | 5.860 | 92.2 | 8.120 | 26.70 | 582.0 |
MDW7 | 68.7 | 14.3 | 0.009 | 191.0 | 209.0 | 0.106 | 0.086 | 0.753 | 1.700 | 83.1 | 2.000 | 15.30 | 255.0 |
MDW8 | 54.4 | 48.7 | 0.015 | 189.0 | 416.0 | 0.036 | 0.053 | 1.440 | 2.730 | 89.8 | 2.960 | 43.00 | 211.0 |
MDW9 | 51.0 | 30.9 | 0.006 | 216.0 | 100.0 | 0.092 | 0.037 | 0.389 | 1.810 | 77.4 | 0.492 | 27.20 | 39.5 |
MDW10 | 36.8 | 20.0 | 0.007 | 229.0 | 179.0 | 0.086 | 0.061 | 0.405 | 3.320 | 107.0 | 0.652 | 10.90 | 15.9 |
MDW11 | 60.9 | 20.7 | 0.003 | 342.0 | 95.3 | 0.143 | 0.030 | 1.060 | 2.010 | 76.4 | 1.710 | 16.90 | 87.7 |
MDW12 | 75.8 | 15.2 | 0.003 | 14.6 | 96.8 | 3.620 | 0.014 | 0.300 | 1.040 | 17.5 | 0.014 | 1 145.00 | 9.7 |
MDW13 | 64.2 | 6.1 | <0.002 | 6.5 | 66.0 | 1.540 | <0.002 | 0.295 | 0.867 | 21.1 | 0.062 | 1 324.00 | 117.0 |
MDW14 | 35.7 | 4.6 | 0.003 | 42.3 | 50.5 | 23.700 | 0.029 | 0.353 | 1.480 | 23.5 | 0.051 | 795.00 | 137.0 |
MDW15 | 12.7 | 1.0 | <0.002 | 13.1 | 8.3 | 0.131 | 0.018 | 0.057 | 0.442 | 13.7 | 0.045 | 232.00 | 9.8 |
MDW16 | 37.7 | 3.4 | <0.002 | 5.7 | 51.3 | 0.929 | 0.033 | 0.142 | 0.532 | 15.8 | 0.045 | 1 172.00 | 32.0 |
MDW17 | 443.0 | 56.5 | 0.005 | 36.9 | 33.2 | 0.725 | 0.038 | 1.520 | 0.635 | 18.9 | 0.039 | 200.00 | 32.4 |
MDW18 | 47.0 | 7.0 | 0.004 | 6.1 | 85.5 | 1.180 | 0.066 | 0.223 | 0.716 | 15.4 | 0.012 | 573.00 | 488.0 |
MDW19 | 53.9 | 8.4 | 0.003 | 10.9 | 107.0 | 6.220 | 0.041 | 0.231 | 1.220 | 18.8 | 0.137 | 1 631.00 | 75.5 |
MDW20 | 67.5 | 8.0 | 0.002 | 6.1 | 53.2 | 0.886 | 0.008 | 0.412 | 3.570 | 19.7 | 0.027 | 2 047.00 | 34.1 |
MDW21 | 336.0 | 30.7 | 0.003 | 2.0 | 29.9 | 0.683 | 0.049 | 1.600 | 1.650 | 25.8 | 0.023 | 217.00 | 139.0 |
样品编号 | Mo /μg·L-1 | Ni /μg·L-1 | Pb /μg·L-1 | Sb /μg·L-1 | Sn /μg·L-1 | Sr /μg·L-1 | Th /μg·L-1 | Ti /μg·L-1 | Tl /μg·L-1 | U /μg·L-1 | V /μg·L-1 | Zn /μg·L-1 | B /μg·L-1 |
MDW1 | 0.334 | 23.20 | 24.000 | 0.269 | 1.610 | 705 | 0.536 | 44.50 | 0.063 | 3.830 | 8.230 | 344.0 | 61.1 |
MDW2 | 0.308 | 4.05 | 1.740 | 0.203 | 1.390 | 249 | 0.013 | 1.64 | 0.007 | 1.230 | 0.556 | 334.0 | 42.2 |
MDW3 | 1.530 | 19.90 | 6.280 | 1.270 | 1.310 | 1043 | 0.207 | 12.90 | 0.017 | 14.300 | 3.970 | 346.0 | 219.0 |
MDW4 | 1.550 | 4.89 | 1.090 | 0.097 | 1.110 | 560 | 0.004 | 1.98 | 0.007 | 4.640 | 0.689 | 275.0 | 194.0 |
MDW5 | 0.506 | 6.48 | 3.760 | 0.194 | 1.160 | 568 | 0.066 | 7.83 | 0.013 | 3.270 | 1.640 | 302.0 | 165.0 |
MDW6 | 0.291 | 23.30 | 18.400 | 0.434 | 1.630 | 717 | 0.448 | 29.30 | 0.032 | 5.530 | 9.340 | 341.0 | 142.0 |
MDW7 | 1.000 | 7.34 | 2.510 | 0.425 | 1.470 | 438 | 0.065 | 5.30 | 0.005 | 2.190 | 1.210 | 306.0 | 63.1 |
MDW8 | 1.450 | 10.10 | 3.470 | 0.834 | 1.750 | 830 | 0.065 | 7.75 | 0.009 | 1.660 | 2.970 | 305.0 | 74.6 |
MDW9 | 0.806 | 8.63 | 2.800 | 0.230 | 1.350 | 488 | 0.014 | 3.96 | 0.009 | 2.180 | 2.080 | 279.0 | 203.0 |
MDW10 | 0.644 | 4.38 | 3.340 | 0.121 | 1.400 | 500 | 0.039 | 5.05 | 0.013 | 2.020 | 0.876 | 345.0 | 25.9 |
MDW11 | 0.463 | 5.79 | 4.410 | 0.173 | 1.230 | 489 | 0.072 | 5.77 | 0.007 | 3.670 | 2.170 | 288.0 | 114.0 |
MDW12 | 1.130 | 5.85 | 0.147 | 14.100 | 0.369 | 988 | <0.002 | 10.50 | 1.210 | 6.740 | 6.350 | 80.2 | 2 029.0 |
MDW13 | 0.255 | 6.49 | 0.797 | 12.200 | 0.525 | 975 | <0.002 | 8.19 | 0.201 | 0.139 | 0.554 | 136.0 | 1 483.0 |
MDW14 | 5.240 | 5.01 | 0.169 | 6.040 | 0.426 | 2396 | 0.003 | 9.58 | 0.271 | 0.259 | 1.040 | 83.9 | 4.2 |
MDW15 | 1.740 | 1.31 | 0.131 | 0.861 | 0.425 | 127 | <0.002 | 6.02 | 0.010 | 0.529 | 0.402 | 50.0 | 215.0 |
MDW16 | 15.000 | 4.28 | 1.060 | 2.530 | 0.588 | 881 | <0.002 | 11.40 | 0.525 | 0.078 | 0.605 | 62.9 | 852.0 |
MDW17 | 1.660 | 33.20 | 0.150 | 19.700 | 0.356 | 12534 | 0.002 | 4.87 | 0.053 | 0.386 | 0.288 | 106.0 | 8.7 |
MDW18 | 0.168 | 4.08 | 0.147 | 0.241 | 0.495 | 254 | <0.002 | 12.00 | 0.030 | 0.159 | 0.725 | 79.7 | 70.7 |
MDW19 | 0.538 | 4.68 | 0.160 | 4.840 | 0.536 | 1364 | 0.009 | 11.80 | 1.060 | 0.203 | 0.970 | 75.1 | 2 385.0 |
MDW20 | 0.226 | 8.06 | 0.221 | 51.900 | 0.556 | 2754 | <0.002 | 6.29 | 0.010 | 0.139 | 1.980 | 74.2 | 18 330.0 |
MDW21 | 1.040 | 23.50 | 0.117 | 0.464 | 0.434 | 9662 | <0.002 | 3.77 | 0.087 | 0.405 | 10.500 | 218.0 | 64.0 |
Table3 Trace elements of spring water samples
样品编号 | Ca /μg·L-1 | Mg /μg·L-1 | Ag /μg·L-1 | Al /μg·L-1 | Ba /μg·L-1 | Be /μg·L-1 | Cd /μg·L-1 | Co /μg·L-1 | Cr /μg·L-1 | Cu /μg·L-1 | Fe /μg·L-1 | Li /μg·L-1 | Mn /μg·L-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MDW1 | 123.0 | 25.1 | 0.017 | 2284.0 | 202.0 | 0.634 | 0.258 | 7.460 | 5.740 | 102.0 | 6.180 | 21.90 | 1 322.0 |
MDW2 | 27.4 | 10.4 | 0.022 | 82.8 | 176.0 | 0.097 | 0.082 | 0.226 | 2.300 | 86.5 | 0.232 | 6.56 | 14.8 |
MDW3 | 111.0 | 39.7 | 0.020 | 672.0 | 215.0 | 0.180 | 0.075 | 2.250 | 2.880 | 89.5 | 1.980 | 35.60 | 499.0 |
MDW4 | 53.0 | 24.8 | 0.007 | 40.8 | 29.7 | 0.072 | 0.030 | 0.275 | 1.320 | 79.9 | 0.128 | 21.00 | 14.1 |
MDW5 | 58.1 | 21.1 | 0.011 | 571.0 | 64.4 | 0.200 | 0.063 | 1.150 | 2.350 | 75.5 | 0.871 | 22.50 | 43.3 |
MDW6 | 110.0 | 30.3 | 0.020 | 1930.0 | 177.0 | 0.456 | 0.200 | 6.080 | 5.860 | 92.2 | 8.120 | 26.70 | 582.0 |
MDW7 | 68.7 | 14.3 | 0.009 | 191.0 | 209.0 | 0.106 | 0.086 | 0.753 | 1.700 | 83.1 | 2.000 | 15.30 | 255.0 |
MDW8 | 54.4 | 48.7 | 0.015 | 189.0 | 416.0 | 0.036 | 0.053 | 1.440 | 2.730 | 89.8 | 2.960 | 43.00 | 211.0 |
MDW9 | 51.0 | 30.9 | 0.006 | 216.0 | 100.0 | 0.092 | 0.037 | 0.389 | 1.810 | 77.4 | 0.492 | 27.20 | 39.5 |
MDW10 | 36.8 | 20.0 | 0.007 | 229.0 | 179.0 | 0.086 | 0.061 | 0.405 | 3.320 | 107.0 | 0.652 | 10.90 | 15.9 |
MDW11 | 60.9 | 20.7 | 0.003 | 342.0 | 95.3 | 0.143 | 0.030 | 1.060 | 2.010 | 76.4 | 1.710 | 16.90 | 87.7 |
MDW12 | 75.8 | 15.2 | 0.003 | 14.6 | 96.8 | 3.620 | 0.014 | 0.300 | 1.040 | 17.5 | 0.014 | 1 145.00 | 9.7 |
MDW13 | 64.2 | 6.1 | <0.002 | 6.5 | 66.0 | 1.540 | <0.002 | 0.295 | 0.867 | 21.1 | 0.062 | 1 324.00 | 117.0 |
MDW14 | 35.7 | 4.6 | 0.003 | 42.3 | 50.5 | 23.700 | 0.029 | 0.353 | 1.480 | 23.5 | 0.051 | 795.00 | 137.0 |
MDW15 | 12.7 | 1.0 | <0.002 | 13.1 | 8.3 | 0.131 | 0.018 | 0.057 | 0.442 | 13.7 | 0.045 | 232.00 | 9.8 |
MDW16 | 37.7 | 3.4 | <0.002 | 5.7 | 51.3 | 0.929 | 0.033 | 0.142 | 0.532 | 15.8 | 0.045 | 1 172.00 | 32.0 |
MDW17 | 443.0 | 56.5 | 0.005 | 36.9 | 33.2 | 0.725 | 0.038 | 1.520 | 0.635 | 18.9 | 0.039 | 200.00 | 32.4 |
MDW18 | 47.0 | 7.0 | 0.004 | 6.1 | 85.5 | 1.180 | 0.066 | 0.223 | 0.716 | 15.4 | 0.012 | 573.00 | 488.0 |
MDW19 | 53.9 | 8.4 | 0.003 | 10.9 | 107.0 | 6.220 | 0.041 | 0.231 | 1.220 | 18.8 | 0.137 | 1 631.00 | 75.5 |
MDW20 | 67.5 | 8.0 | 0.002 | 6.1 | 53.2 | 0.886 | 0.008 | 0.412 | 3.570 | 19.7 | 0.027 | 2 047.00 | 34.1 |
MDW21 | 336.0 | 30.7 | 0.003 | 2.0 | 29.9 | 0.683 | 0.049 | 1.600 | 1.650 | 25.8 | 0.023 | 217.00 | 139.0 |
样品编号 | Mo /μg·L-1 | Ni /μg·L-1 | Pb /μg·L-1 | Sb /μg·L-1 | Sn /μg·L-1 | Sr /μg·L-1 | Th /μg·L-1 | Ti /μg·L-1 | Tl /μg·L-1 | U /μg·L-1 | V /μg·L-1 | Zn /μg·L-1 | B /μg·L-1 |
MDW1 | 0.334 | 23.20 | 24.000 | 0.269 | 1.610 | 705 | 0.536 | 44.50 | 0.063 | 3.830 | 8.230 | 344.0 | 61.1 |
MDW2 | 0.308 | 4.05 | 1.740 | 0.203 | 1.390 | 249 | 0.013 | 1.64 | 0.007 | 1.230 | 0.556 | 334.0 | 42.2 |
MDW3 | 1.530 | 19.90 | 6.280 | 1.270 | 1.310 | 1043 | 0.207 | 12.90 | 0.017 | 14.300 | 3.970 | 346.0 | 219.0 |
MDW4 | 1.550 | 4.89 | 1.090 | 0.097 | 1.110 | 560 | 0.004 | 1.98 | 0.007 | 4.640 | 0.689 | 275.0 | 194.0 |
MDW5 | 0.506 | 6.48 | 3.760 | 0.194 | 1.160 | 568 | 0.066 | 7.83 | 0.013 | 3.270 | 1.640 | 302.0 | 165.0 |
MDW6 | 0.291 | 23.30 | 18.400 | 0.434 | 1.630 | 717 | 0.448 | 29.30 | 0.032 | 5.530 | 9.340 | 341.0 | 142.0 |
MDW7 | 1.000 | 7.34 | 2.510 | 0.425 | 1.470 | 438 | 0.065 | 5.30 | 0.005 | 2.190 | 1.210 | 306.0 | 63.1 |
MDW8 | 1.450 | 10.10 | 3.470 | 0.834 | 1.750 | 830 | 0.065 | 7.75 | 0.009 | 1.660 | 2.970 | 305.0 | 74.6 |
MDW9 | 0.806 | 8.63 | 2.800 | 0.230 | 1.350 | 488 | 0.014 | 3.96 | 0.009 | 2.180 | 2.080 | 279.0 | 203.0 |
MDW10 | 0.644 | 4.38 | 3.340 | 0.121 | 1.400 | 500 | 0.039 | 5.05 | 0.013 | 2.020 | 0.876 | 345.0 | 25.9 |
MDW11 | 0.463 | 5.79 | 4.410 | 0.173 | 1.230 | 489 | 0.072 | 5.77 | 0.007 | 3.670 | 2.170 | 288.0 | 114.0 |
MDW12 | 1.130 | 5.85 | 0.147 | 14.100 | 0.369 | 988 | <0.002 | 10.50 | 1.210 | 6.740 | 6.350 | 80.2 | 2 029.0 |
MDW13 | 0.255 | 6.49 | 0.797 | 12.200 | 0.525 | 975 | <0.002 | 8.19 | 0.201 | 0.139 | 0.554 | 136.0 | 1 483.0 |
MDW14 | 5.240 | 5.01 | 0.169 | 6.040 | 0.426 | 2396 | 0.003 | 9.58 | 0.271 | 0.259 | 1.040 | 83.9 | 4.2 |
MDW15 | 1.740 | 1.31 | 0.131 | 0.861 | 0.425 | 127 | <0.002 | 6.02 | 0.010 | 0.529 | 0.402 | 50.0 | 215.0 |
MDW16 | 15.000 | 4.28 | 1.060 | 2.530 | 0.588 | 881 | <0.002 | 11.40 | 0.525 | 0.078 | 0.605 | 62.9 | 852.0 |
MDW17 | 1.660 | 33.20 | 0.150 | 19.700 | 0.356 | 12534 | 0.002 | 4.87 | 0.053 | 0.386 | 0.288 | 106.0 | 8.7 |
MDW18 | 0.168 | 4.08 | 0.147 | 0.241 | 0.495 | 254 | <0.002 | 12.00 | 0.030 | 0.159 | 0.725 | 79.7 | 70.7 |
MDW19 | 0.538 | 4.68 | 0.160 | 4.840 | 0.536 | 1364 | 0.009 | 11.80 | 1.060 | 0.203 | 0.970 | 75.1 | 2 385.0 |
MDW20 | 0.226 | 8.06 | 0.221 | 51.900 | 0.556 | 2754 | <0.002 | 6.29 | 0.010 | 0.139 | 1.980 | 74.2 | 18 330.0 |
MDW21 | 1.040 | 23.50 | 0.117 | 0.464 | 0.434 | 9662 | <0.002 | 3.77 | 0.087 | 0.405 | 10.500 | 218.0 | 64.0 |
位置 | 样品编号 | δD/‰ | δ18O/‰ | 式(2) | 式(3) | 式(4) | 平均值/km |
---|---|---|---|---|---|---|---|
地表破裂带 | MDW1 | -90.3 | -12.6 | 2.1 | 2.3 | 2.1 | 2.2 |
MDW2 | -75.1 | -19.0 | 1.6 | 1.7 | 4.1 | 2.5 | |
MDW3 | -79.1 | -10.2 | 1.7 | 1.9 | 1.3 | 1.6 | |
MDW4 | -87.4 | -11.8 | 2.0 | 2.2 | 1.8 | 2.0 | |
MDW5 | -89.4 | -12.0. | 2.1 | 2.3 | 1.9 | 2.1 | |
MDW6 | -90.5 | -12.3 | 2.1 | 2.3 | 2.0 | 2.1 | |
MDW7 | -87.0 | -12.0 | 2.0 | 2.2 | 1.9 | 2.0 | |
MDW8 | -84.6 | -10.1 | 1.9 | 2.1 | 1.3 | 1.8 | |
MDW9 | -59.0 | -7.3 | 1.1 | 1.1 | 0.4 | 0.8 | |
MDW10 | -98.4 | -13.0 | 2.4 | 2.6 | 2.2 | 2.4 | |
MDW11 | -91.9 | -12.6 | 2.2 | 2.4 | 2.1 | 2.2 | |
东昆仑断裂带 | MDW12 | -88.2 | -12.1 | 2.0 | 2.2 | 1.9 | 2.1 |
MDW13 | -82.1 | -10.9 | 1.8 | 2.0 | 1.5 | 1.8 | |
MDW14 | -87.0 | -10.8 | 2.0 | 2.2 | 1.5 | 1.9 | |
MDW15 | -79.7 | -10.5 | 1.8 | 1.9 | 1.4 | 1.7 | |
MDW16 | -87.0 | -11.5 | 2.0 | 2.2 | 1.7 | 2.0 | |
MDW17 | -96.6 | -12.4 | 2.3 | 2.6 | 2.0 | 2.3 | |
MDW18 | -106.2 | -13.7 | 2.6 | 2.9 | 2.4 | 2.7 | |
MDW19 | -104.7 | -13.7 | 2.6 | 2.9 | 2.4 | 2.6 | |
MDW20 | -99.6 | -13.0 | 2.4 | 2.7 | 2.2 | 2.4 | |
MDW21 | -107.3 | -14.4 | 2.7 | 3.0 | 2.6 | 2.8 |
Table4 H and O isotopes and supply elevation.
位置 | 样品编号 | δD/‰ | δ18O/‰ | 式(2) | 式(3) | 式(4) | 平均值/km |
---|---|---|---|---|---|---|---|
地表破裂带 | MDW1 | -90.3 | -12.6 | 2.1 | 2.3 | 2.1 | 2.2 |
MDW2 | -75.1 | -19.0 | 1.6 | 1.7 | 4.1 | 2.5 | |
MDW3 | -79.1 | -10.2 | 1.7 | 1.9 | 1.3 | 1.6 | |
MDW4 | -87.4 | -11.8 | 2.0 | 2.2 | 1.8 | 2.0 | |
MDW5 | -89.4 | -12.0. | 2.1 | 2.3 | 1.9 | 2.1 | |
MDW6 | -90.5 | -12.3 | 2.1 | 2.3 | 2.0 | 2.1 | |
MDW7 | -87.0 | -12.0 | 2.0 | 2.2 | 1.9 | 2.0 | |
MDW8 | -84.6 | -10.1 | 1.9 | 2.1 | 1.3 | 1.8 | |
MDW9 | -59.0 | -7.3 | 1.1 | 1.1 | 0.4 | 0.8 | |
MDW10 | -98.4 | -13.0 | 2.4 | 2.6 | 2.2 | 2.4 | |
MDW11 | -91.9 | -12.6 | 2.2 | 2.4 | 2.1 | 2.2 | |
东昆仑断裂带 | MDW12 | -88.2 | -12.1 | 2.0 | 2.2 | 1.9 | 2.1 |
MDW13 | -82.1 | -10.9 | 1.8 | 2.0 | 1.5 | 1.8 | |
MDW14 | -87.0 | -10.8 | 2.0 | 2.2 | 1.5 | 1.9 | |
MDW15 | -79.7 | -10.5 | 1.8 | 1.9 | 1.4 | 1.7 | |
MDW16 | -87.0 | -11.5 | 2.0 | 2.2 | 1.7 | 2.0 | |
MDW17 | -96.6 | -12.4 | 2.3 | 2.6 | 2.0 | 2.3 | |
MDW18 | -106.2 | -13.7 | 2.6 | 2.9 | 2.4 | 2.7 | |
MDW19 | -104.7 | -13.7 | 2.6 | 2.9 | 2.4 | 2.6 | |
MDW20 | -99.6 | -13.0 | 2.4 | 2.7 | 2.2 | 2.4 | |
MDW21 | -107.3 | -14.4 | 2.7 | 3.0 | 2.6 | 2.8 |
地表破裂带附近泉水 | 东昆仑断裂带附近泉水 | ||
---|---|---|---|
样品编号 | 震中距/km | 样品编号 | 震中距/km |
MDW1 | 25.1 | MDW12 | 97.2 |
MDW2 | 21.4 | MDW13 | 181.3 |
MDW3 | 8.6 | MDW14 | 204.8 |
MDW4 | 31.6 | MDW15 | 259.1 |
MDW5 | 32.7 | MDW16 | 292.4 |
MDW6 | 40.0 | MDW17 | 366.2 |
MDW7 | 67.8 | MDW18 | 377.1 |
MDW8 | 45.2 | MDW19 | 383.5 |
MDW9 | 18.0 | MDW20 | 403.3 |
MDW10 | 8.6 | MDW21 | 409.9 |
MDW11 | 11.5 |
Table5 Distance between sampling points and epicenter
地表破裂带附近泉水 | 东昆仑断裂带附近泉水 | ||
---|---|---|---|
样品编号 | 震中距/km | 样品编号 | 震中距/km |
MDW1 | 25.1 | MDW12 | 97.2 |
MDW2 | 21.4 | MDW13 | 181.3 |
MDW3 | 8.6 | MDW14 | 204.8 |
MDW4 | 31.6 | MDW15 | 259.1 |
MDW5 | 32.7 | MDW16 | 292.4 |
MDW6 | 40.0 | MDW17 | 366.2 |
MDW7 | 67.8 | MDW18 | 377.1 |
MDW8 | 45.2 | MDW19 | 383.5 |
MDW9 | 18.0 | MDW20 | 403.3 |
MDW10 | 8.6 | MDW21 | 409.9 |
MDW11 | 11.5 |
[1] | 苌有全, 张富强, 李广军, 等. 2011. 青海省玛多县九龙滩矿泉水形成机制初探[J]. 青海科技, 18(2): 69-70. |
CHANG You-quan, ZHANG Fu-qiang, LI Guang-jun, et al. 2011. Formation mechanism of Jiulongtan mineral water in Maduo County, Qinghai Province[J]. Qinghai Science and Technology, 18(2): 69-70. (in Chinese) | |
[2] | 陈有炘, 裴先治, 李佐臣, 等. 2015. 东昆仑东段巴隆花岗质片麻岩年代学、 地球化学特征及地质意义[J]. 岩石学报, 31(8): 2230-2244. |
CHEN You-xin, PEI Xian-zhi, LI Zuo-chen, et al. 2015. Geochronology, geochemical features and geological significance of the granitic gneiss in Balong area, east section of East Kunlun[J]. Acta Petrologica Sinica, 31(8): 2230-2244. (in Chinese) | |
[3] | 邓起东, 高翔, 陈桂华, 等. 2010. 青藏高原昆仑-汶川地震系列与巴颜喀喇断块的最新活动[J]. 地学前缘, 17(5): 163-178. |
DENG Qi-dong, GAO Xiang, CHEN Gui-hua, et al. 2010. Recent tectonic activity of Bayankala fault-block and the Kunlun-Wenchuan earthquake series of the Tibetan plateau[J]. Earth Science Frontiers, 17(5): 163-178. (in Chinese) | |
[4] | 邓起东, 张培震, 冉勇康, 等. 2003. 中国活动构造与地震活动[J]. 地学前缘, 10(S1): 66-73. |
DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers, 10(S1): 66-73. (in Chinese) | |
[5] | 丰成友, 王松, 李国臣, 等. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、 地球化学及成矿意义[J]. 岩石学报, 28(2): 665-678. |
FENG Cheng-you, WANG Song, LI Guo-chen, et al. 2012. Middle to Late Triassic granitoids in the Qimantage area, QinghaiProvince, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665-678. (in Chinese) | |
[6] | 高建飞, 丁悌平, 罗续荣, 等. 2011. 黄河水氢、 氧同位素组成的空间变化特征及其环境意义[J]. 地质学报, 85(4): 596-602. |
GAO Jian-fei, DING Ti-ping, LUO Xu-rong, et al. 2011. δD and δ18O variations of water in the Yellow River and its environmental significance[J]. Acta Geologica Sinica, 85(4): 596-602. (in Chinese) | |
[7] | 郭文斌, 嘉世旭, 段永红, 等. 2016. 青藏高原东北缘基底结构研究: 玛多-共和-雅布赖剖面上地壳地震折射探测[J]. 地球物理学报, 59(10): 3627-3636. |
GUO Wen-bin, JIA Shi-xu, DUAN Yong-hong, et al. 2016. A study on the basement tectonic units in the northeast margin of Tibetan plateau: The result of Maduo-Gonghe-Yabrai refraction profile[J]. Chinese Journal of Geophysics, 59(10): 3627-3636. (in Chinese) | |
[8] | 韩建恩, 罗鹏, 余佳, 等. 2020. 黄河源地区晚更新世湖泛事件及其意义[J]. 地质力学学报, 26(2): 232-243. |
HAN Jian-en, LUO Peng, YU Jia, et al. 2020. Pan-lake during the late Pleistocene in the source area of the Yellow River and its significance[J]. Journal of Geomechanics, 26(2): 232-243. (in Chinese) | |
[9] | 嘉世旭, 林吉焱, 郭文斌, 等. 2017. 巴颜喀拉块体地壳结构多样性探测[J]. 地球物理学报, 60(6): 2226-2238. |
JIA Shi-xu, LIN Ji-yan, GUO Wen-bin, et al. 2017. Investigation on diversity of crustal structures beneath the Bayan Har block[J]. Chinese Journal of Geophysics, 60(6): 2226-2238. (in Chinese) | |
[10] | 郎赟超, 刘丛强, 韩贵琳, 等. 2005. 贵阳市区地表/地下水化学与锶同位素研究[J]. 第四纪研究, 25(5): 655-662. |
LANG Yun-chao, LIU Cong-qiang, HAN Gui-lin, et al. 2005. Characterization of water-rock interaction and pollution of karstic hydrological system: A study on water chemistry and Sr isotope of surface/ground water of the Guiyang area[J]. Quaternary Sciences, 25(5): 655-662. (in Chinese) | |
[11] | 李林, 吴素霞, 朱西德, 等. 2008. 21世纪以来黄河源区高原湖泊群对气候变化的响应[J]. 自然资源学报, 23(2): 245-253. |
LI Lin, WU Su-xia, ZHU Xi-de, et al. 2008. Response of plateau lakes to changes of climate and frozen earth environment in the headwaters of the Yellow River since the 21st century[J]. Natural Resources, 23(2): 245-253. (in Chinese) | |
[12] | 李献智. 1998. 对地震前兆异常的一些再思考[J]. 地震, 18(2): 163-170. |
LI Xian-zhi. 1998. Re-thinking about the earthquake precursors[J]. Earthquake, 18(2): 163-170. (in Chinese) | |
[13] |
梁明剑, 杨耀, 杜方, 等. 2020. 青海达日断裂中段晚第四纪活动性与1947年M7¾地震地表破裂带再研究[J]. 地震地质, 42(3): 703-714. doi: 10.3969/j.issn.0253-4967.2020.03.011.
DOI |
LIANG Ming-jian, YANG Yao, DU Fang, et al. 2020. Late Quaternary activity of the central segment of the Dari Fault and restudy of the surface rupture zone of the 1947 M7¾ Dari earthquake, Qinghai Province[J]. Seismology and Geology, 42(3): 703-714. (in Chinese) | |
[14] |
梁明剑, 周荣军, 闫亮, 等. 2014. 青海达日断裂中段构造活动与地貌发育的响应关系探讨[J]. 地震地质, 36(1): 28-38. doi: 10.3969/j.issn.0253-4967.2014.01.003.
DOI |
LIANG Ming-jian, ZHOU Rong-jun, YAN Liang, et al. 2014. The relationships between neotectonicactivity of the middle segment of Dari Fault and its geomorphological response, Qinghai Province, China[J]. Seismology and Geology, 36(1): 28-38. (in Chinese) | |
[15] | 刘磊, 马茹莹, 张朋涛, 等. 2019. 青海省地震地球化学背景场特征研究[J]. 国际地震动态, (8): 50. |
LIU Lei, MA Ru-ying, ZHANG Peng-tao, et al. 2019. Characteristics of seismic geochemical background field in Qinghai Province[J]. Recent Developments in World Seismology, (8): 50. (in Chinese) | |
[16] | 刘庆云, 王永刚, 文雪峰. 2015. 青海都兰-玛多地区金多金属矿成矿特征及潜力分析[J]. 黄金科学技术, 23(3): 38-44. |
LIU Qing-yun, WANG Yong-gang, WEN Xue-feng. 2015. Analysis on the metallogenic characteristics and potential of gold polymetallic at Dulan-Maduoarea in Qinghai Province[J]. Gold Science and Technology, 23(3): 38-44. (in Chinese) | |
[17] | 路畅, 李营, 陈志, 等. 2018. 华北断陷盆地中北部地热水地球化学特征及成因初探[J]. 矿物岩石地球化学通报, 37(4): 663-673. |
LU Chang, LI Ying, CHEN Zhi, et al. 2018. A primary study on geochemical characteristics and genesis of geothermal water in thenorth-central part of the North China downfaulted basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 37(4): 663-673. (in Chinese) | |
[18] | 卢素锦, 周青平, 王永杰, 等. 2007. 三江源鄂陵湖区水环境现状评价[J]. 环境与健康杂志, 24(8): 598-599. |
LU Su-jin, ZHOU Qing-ping, WANG Yong-jie, et al. 2007. Comprehensive evaluation of water environment in the Eling Lake area[J]. Journal of Environment and Health, 24(8): 598-599. (in Chinese) | |
[19] | 罗栋梁, 金会军. 2014. 黄河源区玛多县1953-2012年气温和降水特征及突变分析[J]. 干旱区资源与环境, 28(11): 185-192. |
LUO Dong-liang, JIN Hui-jun. 2014. Variations of air temperature and precipitation from 1953 to 2012 in the Madoi station in the sources areas of the Yellow River[J]. Arid Land Resources and Environment, 28(11): 185-192. (in Chinese) | |
[20] | 吕金波, 车用太, 王继明, 等. 2006. 京北地区热水水文地球化学特征与地热系统的成因模式[J]. 地震地质, 28(3): 419-429. |
LÜ Jin-bo, CHE Yong-tai, WANG Ji-ming, et al. 2006. Hydrogeochemical characteristics of thermal water and genetic model of geothermal system in north Beijing[J]. Seismology and Geology, 28(3): 419-429. (in Chinese) | |
[21] | 吕苑苑, 郑绵平. 2014. 盐湖硼、 锂、 锶、 氯同位素地球化学研究进展[J]. 矿床地质, 33(5): 930-944. |
LÜ Yuan-yuan, ZHENG Mian-ping. 2014. Progress in study of isotopic geochemistry of boron, lithium, strontium and chlorine in salt lakes[J]. Mineral Deposits, 33(5): 930-944. (in Chinese) | |
[22] | 马玉虎, 姚家骏, 王培玲, 等. 2015. 2014年10月青海乌兰MS5.1地震发震构造及其预测意义[J]. 高原地震, 27(3): 1-6. |
MA Yu-hu, YAO Jia-jun, WANG Pei-ling, et al. 2015. The seismogenic structure and its prediction significance of Wulan MS5.1 earthquake in 2014 in Qinghai Province[J]. Plateau Earthquake Research, 27(3): 1-6. (in Chinese) | |
[23] | 钱会, 马致远, 李培月. 2005. 水文地球化学[M]. 北京: 地质出版社. |
QIAN Hui, MA Zhi-yuan, LI Pei-yue. 2005. Hydrogeochemistry[M]. Geological Publishing House, Beijing. (in Chinese) | |
[24] |
邵志刚, 冯蔚, 王芃, 等. 2020. 中国大陆活动地块边界带的地震活动特征研究综述[J]. 地震地质, 42(2): 271-282. doi: 10.3969/j.issn.0253-4967.2020.02.002.
DOI |
SHAO Zhi-gang, FENG Wei, WANG Peng, et al. 2020. A study review on characteristics of seismic activity of active-tectonic block boundaries in mainland China[J]. Seismology and Geology, 42(2): 271-282. (in Chinese) | |
[25] | 石宏宇. 2020. 岷江断裂带温泉流体地球化学特征[D]. 北京: 中国地震局地震预测研究所. |
SHI Hong-yu. 2020. Geochemical characteristics of hot spring fluids in the Minjiang fault zone[D]. Institute of Earthquake Forecasting, China Earthquake Administration, Beijing. (in Chinese) | |
[26] | 宋晚郊, 张绪教, 高万里, 等. 2013. 东昆仑造山带巴颜喀拉山群ASTER岩性信息提取[J]. 现代地质, 27(1): 116-123. |
SONG Wan-jiao, ZHANG Xu-jiao, GAO Wan-li, et al. 2013. Extraction of lithological information from Bayan Har Mountain Group of East Kunlun Orogenic Belt using ASTER image[J]. Geoscience, 27(1): 116-123. (in Chinese) | |
[27] | 孙玉军, 范桃园, 周春景, 等. 2015. 青藏高原巴颜喀拉地块构造形变特征的数值模拟[J]. 地质通报, 34(1): 71-82. |
SUN Yu-jun, FAN Tao-yuan, ZHOU Chun-jing, et al. 2015. Numerical modeling analysis of the tectonic deformation of Bayan Har block in the Tibetan plateau[J]. Geological Bulletin of China, 34(1): 71-82. (in Chinese) | |
[28] | 田军, 张克信, 龚一鸣. 2000. 东昆仑造山带东段下中三叠统研究进展[J]. 地球科学, 25(3): 290-294. |
TIAN Jun, ZHANG Ke-xin, GONG Yi-ming. 2000. Advances in lower and middle Triassic stratigraphicresearch in east of eastern Kunlun Orogenic Belt[J]. Earth Science, 25(3): 290-294. (in Chinese) | |
[29] | 闻学泽, 杜方, 张培震, 等. 2011. 巴颜喀拉块体北和东边界大地震序列的关联性与2008年汶川地震[J]. 地球物理学报, 54(3): 706-716. |
WEN Xue-ze, DU Fang, ZHANG Pei-zhen, et al. 2011. Correlation of major earthquake sequences on the northern and eastern boundaries of the Bayan Har block, and its relation to the 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 54(3): 706-716. (in Chinese) | |
[30] | 肖琼, 沈立成, 袁道先, 等. 2009. 重庆北温泉水化学特征对汶川8.0级地震的响应[J]. 中国岩溶, 28(4): 385-390. |
XIAO Qiong, SHEN Li-cheng, YUAN Dao-xian, et al. 2009. Response of the Beiwenquan hot spring’s hydrochemical features in Chongqing to the Wenchuan earthquake of magnitude 8.0 in Sichuan[J]. Carsologica Sinica, 28(4): 385-390. (in Chinese) | |
[31] | 熊仁伟, 任金卫, 张军龙, 等. 2010. 玛多-甘德断裂甘德段晚第四纪活动特征[J]. 地震, 30(4): 65-73. |
XIONG Ren-wei, REN Jin-wei, ZHANG Jun-long, et al. 2010. Late Quaternary active characteristics of the Gande segment in the Maduo-Gande fault zone[J]. Earthquake, 30(4): 65-73. (in Chinese) | |
[32] | 晏锐, 黄辅琼, 顾瑾平. 2004. 中国大陆7级强震前地下流体前兆时空特征[J]. 地震, 24(1): 126-131. |
YAN Rui, HUANG Fu-qiong, GU Jin-ping. 2004. Spatial temporal characteristics of precursory anomalyof underground fluid before MS7.0 strong earthquakes in China’s continent[J]. Earthquake, 24(1): 126-131. (in Chinese) | |
[33] | 张春山, 张业成, 吴满路. 2003. 南北地震带南段水文地球化学特征及其与地震的关系[J]. 地质力学学报, 9(1): 21-30. |
ZHANG Chun-shan, ZHANG Ye-cheng, WU Man-lu. 2003. Study on relationship between earthquake and hydro-geochemistry of groundwater in southern part of north-south earthquake belt in China[J]. Journal of Geomechanics, 9(1): 21-30. (in Chinese) | |
[34] | 张军龙, 任金卫, 付俊东, 等. 2012. 东昆仑断裂带东部塔藏断裂地震地表破裂特征及其构造意义[J]. 地震, 32(1): 1-16. |
ZHANG Jun-long, REN Jin-wei, FU Jun-dong, et al. 2012. Earthquake rupture features and tectonic significance of the Tazang Fault in the eastern part of the East Kunlun fault zones[J]. Earthquake, 32(1): 1-16. (in Chinese) | |
[35] |
张磊, 刘耀炜, 任宏微, 等. 2016. 氢氧稳定同位素在地下水异常核实中的应用[J]. 地震地质, 38(3): 721-731. doi: 10.3969/j.issn.0253-4967.2016.03.017.
DOI |
ZHANG Lei, LIU Yao-wei, REN Hong-wei, et al. 2016. Application of stable oxygen and hydrogen isotopes to the verification of groundwater anomalies[J]. Seismology and Geology, 38(3): 721-731. (in Chinese) | |
[36] | 张少彤. 2020. 廊坊市地下水化学特征变化研究[J]. 地下水, 42(3): 39-42. |
ZHANG Shao-tong. 2020. Study on chemical characteristics of groundwater in Langfang City[J]. Ground Water, 42(3): 39-42. (in Chinese) | |
[37] | 张耀玲, 胡道功, 石玉若, 等. 2010. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地质通报, 29(11): 1614-1618. |
ZHANG Yao-ling, HU Dao-gong, SHI Yu-ruo, et al. 2010. SHRIMP zircon U-Pb ages and tectonic significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt, China[J]. Geological Bulletin of China, 29(11): 1614-1618. (in Chinese) | |
[38] | 赵永红, 白竣天, 李小凡, 等. 2011, 活动断裂带附近地下水中的氢同位素变化与地震关系研究[J]. 岩石学报, 27(6): 1909-1915. |
ZHAO Yong-hong, BAI Jun-tian, LI Xiao-fan, et al. 2011. Correlation between hydrogen isotope in underground water near active fault and earthquakes[J]. Acta Petrologica Sinica, 27(6): 1909-1915. (in Chinese) | |
[39] | 赵永红, 谢雨晴, 王航, 等. 2017. 地震预测方法Ⅴ: 地下流体方法[J]. 地球物理学进展, 32(4): 1539-1547. |
ZHAO Yong-hong, XIE Yu-qing, WANG Hang, et al. 2017. Earthquake predictionⅤ: Subsurface fluid method[J]. Progress in Geophysics, 32(4): 1539-1547. (in Chinese) | |
[40] | 郑西来, 郭建青. 1996. 二氧化硅地热温标及其相关问题的处理方法[J]. 地下水, 18(2): 85-88. |
ZHENG Xi-lai, GUO Jian-qing. 1996. Silicon dioxide geothermal temperature standard and treatment method of related problems[J]. Ground Water, 18(2): 85-88. (in Chinese) | |
[41] | 周敖日格勒, 戴紧根, 李亚林, 等. 2017. 东昆仑山脉晚志留世-早侏罗世花岗类岩石中锆石微量元素地球化学特征及地质意义[J]. 岩石学报, 33(1): 173-190. |
ZHOU Aorigele, DAI Jin-gen, LI Ya-lin, et al. 2017. Zircon trace element geochemical characteristics of Late Silurian-Early Jurassic granitoids from eastern Kunlun Range and its geological significance[J]. Acta Petrologica Sinica, 33(1): 173-190. (in Chinese) | |
[42] | 周晓成, 王万丽, 李立武, 等. 2020. 金沙江-红河断裂带温泉气体地球化学特征[J]. 岩石学报, 36(7): 2197-2214. |
ZHOU Xiao-chen, WANG Wan-li, LI Li-wu, et al. 2020. Geochemical features of hot spring gases in the Jinshajiang-Red River fault zone, southeast Tibetan plateau[J]. Acta Petrologica Sinica, 36(7): 2197-2214. (in Chinese)
DOI URL |
|
[43] | 周训, 李晓露, 王蒙蒙, 等. 2017. 浅循环泉简析[J]. 水文地质工程地质, 44(5): 1-5. |
ZHOU Xun, LI Xiao-lu, WANG Meng-meng, et al. 2017. A preliminary analysis of the springs of shallow groundwater circulation[J]. Hydrogeology and Engineering Geology, 44(5): 1-5. (in Chinese) | |
[44] |
Armstrong S C, Sturchio N C, Hendry M J, et al. 1998. Strontium isotopic evidence on the chemical evolution of pore waters in the Milk River aquifer, Alberta, Canada[J]. Applied Geochemistry, 13(4): 463-475.
DOI URL |
[45] |
Arnórsson S. 1983. Chemical equilibria in Icelandic geothermal systems: Implications for chemical geothermometry investigations[J]. Geothermics, 12(2-3): 119-128.
DOI URL |
[46] |
Benavente O, Tassi F, Reich M, et al. 2016. Chemical and isotopic features of cold and thermal fluids discharged in the Southern Volcanic Zone between 32.5°S and 36°S: Insights into the physical and chemical processes controlling fluid geochemistry in geothermal systems of Central Chile[J]. Chemical Geology, 420(1): 97-113.
DOI URL |
[47] |
Chen Z, Zhou X, Du J, et al. 2015. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS7.0 earthquake in Sichuan, China[J]. Natural Hazards and Earth System Science, 15(6): 1149-1156.
DOI URL |
[48] |
Colman S M, Yu S, An Z, et al. 2007. Late Cenozoic climate changes in China’s western interior: A review of research on Lake Qinghai and comparison with other records[J]. Quaternary Science Reviews, 26(17-18): 2281-2300.
DOI URL |
[49] |
Craig H. 1961. Isotopic variations in meteoric waters[J]. Science, 133(3465): 1702-1703.
PMID |
[50] | Fournier R O. 1981. Application of water geochemistry to geothermal exploration and reservoir engineering[C]// Ryback L, Muffler L J(eds). Geothermal Systems: Principles and Case Histories. Wiley, New York. 109-143. |
[51] |
Fournier R O, Rowe J J. 1966. The deposition of silica in hot springs[J]. Bulletin Volcanologique, 29(1): 585-587.
DOI URL |
[52] |
Giggenbach W F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 52(12): 2749-2765.
DOI URL |
[53] |
Ingebritsen S E, Manga M. 2014. Earthquakes: Hydrogeochemical precursors[J]. Nature Geoscience, 7(10): 697-698.
DOI URL |
[54] |
Nezhad M T K, Tabatabaii S M, Gholami A. 2015. Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran[J]. Journal of Geochemical Exploration, 152:91-109.
DOI URL |
[55] | Li B, Shi Z M, Wang G C, et al. 2019. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe fault zone, western China[J]. Journal of Hydrology, 579:124-175. |
[56] | Oetting G C, Banner J L, Sharp J M. 1996. Regional controls on the geochemical evolution of saline groundwaters in the Edwards aquifer, central Texas[J]. Hydrology, 181(1-4): 251-283. |
[57] |
Podlesak D W, Torregrossa A M, Ehleringer J R, et al. 2008. Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal[J]. Geochimica et Cosmochimica Acta, 72(1): 19-35.
DOI URL |
[58] | Ren W, Yao T D, Yang X X, et al. 2013. Implications of variations in delta O18 and delta D in precipitation at Madoi in the eastern Tibetan plateau[J]. Quaternary International, 313:56-61. |
[59] |
Scanlon B R. 1989. Physical controls on hydrochemical variability in the inner bluegrass karst region of central Kentucky[J]. Ground Water, 27(5): 639-646.
DOI URL |
[60] | Shakeri A, Ghoreyshinia S, Mehrabi B, et al. 2015. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran[J]. Journal of Volcanology and Geothermal Research, 341:49-61. |
[61] |
Skelton A, Andrén M, Kristmannsdóttir H, et al. 2014. Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J]. Nature Geoscience, 7(10): 752-756.
DOI URL |
[62] |
Song S R, Chen Y L, Liu C M, et al. 2005. Hydrochemical changes in spring waters in Taiwan: Implications for evaluating sites for earthquake precursory monitoring[J]. Terrestrial Atmospheric and Oceanic Sciences, 16(4): 745-762.
DOI URL |
[63] | Steinhorst K J, Hodge V F, Guo C, et al. 2001. Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Neveda, USA[J]. Hydrology, 243(3-4): 254-271. |
[64] |
Tapponnier P, Xu Z, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 294(5547): 1671-1677.
PMID |
[65] | van der Woerd J, Tapponnier P, Ryerson F J, et al. 2002. Uniform postglacial slip-rate along the central 600km of the Kunlun Fault(Tibet), from26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal of the Royal Astronomical Society, 148(3): 356-388. |
[66] | Yu J S, Zhang H B, Yu F J, et al. 1984. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang[J]. Geochemistry, 3(2): 93-101. |
[67] |
Zhang J Y, Ma C Q, Xiong F H, et al. 2012. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calcalkaline granites in the Balong region, eastern Kunlun Orogen, China[J]. Geological Magazine, 149(5): 892-908.
DOI URL |
[68] |
Zhou X C, Liu L, Chen Z, et al. 2017. Gas geochemistry of the hot spring in the Litang fault zone, southeast Tibetan plateau[J]. Applied Geochemistry, 79:17-26.
DOI URL |
[69] |
Zhou X C, Yan Y C, Fang W Y, et al. 2021. Short-term seismic precursor anomalies of hydrogen concentration in Luojishan hot spring bubbling gas, eastern Tibetan plateau[J]. Frontiers in Earth Science, 8:586279.
DOI URL |
[70] |
Zhu L, Ji L, Liu C. 2021. Interseismic slip rate and locking along the Maqin-Maqu segment of the East Kunlun Fault, northern Tibetan plateau, based on Sentinel-1 images[J]. Journal of Asian Earth Sciences, 211:104703.
DOI URL |
[1] | WANG Bo, CUI Feng-zhen, LIU-ZENG Jing, ZHOU Yong-sheng, XU Sheng, SHAO Yan-xiu. FAULT GAS OBSERVATION AND SURFACE RUPTURE FEATURE INTERPRETATION OF THE MS7.4 MADOI EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(3): 772-794. |
[2] | SHEN Hua-liang, YANG Yao, ZHOU Zhi-hua, RUI Xue-lian, LIAO Xiao-feng, ZHAO De-yang, LIANG Ming-jian, CHEN Meng-die, GUAN Zhi-jun, REN Hong-wei. GENESIS AND DEEP GEOTHERMAL PROCESS OF MAOYA HOT SPRINGS IN LITANG, WESTERN SICHUAN [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(3): 689-709. |
[3] | GUO Wei-ying, SHAN Xin-jian, MA Jin. DISCUSSION ON THE ANOMALOUS INCREASE OF GROUND TEMPERATURE ALONG THE SEISMOGENIC FAULT BEFORE THE KUNLUNSHAN MS 8.1 EARTHQUAKE IN 2001 [J]. SEISMOLOGY AND GEOLOGY, 2004, 26(3): 548-556. |
[4] | WANG Qing-liang, WANG Jian-hua, ZHU Gui-zhi, Cui Du-xin, WANG Wen-ping, CHEN Zhong-shi, SONG Zhao-shan. VERTICAL DEFORMATIONS OF THE EASTERN KUNLUN FAULT ZONE AND WEST OF KUNLUN MOUNTAIN PASS MS 8.1 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2004, 26(2): 273-280. |
[5] | Liu Chunguo. HYDRODYNAMIC DISPERSION AND TRANSMISSION CHARACTERISTIC OF HYDROGEOCHEMISTRY PRECURSOR INFORMATION [J]. SEISMOLOGY AND GEOLOGY, 1997, 19(4): 358-362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||