SEISMOLOGY AND GEOLOGY ›› 2021, Vol. 43 ›› Issue (1): 20-35.DOI: 10.3969/j.issn.0253-4967.2021.01.003

Previous Articles     Next Articles

AN EXPERIMENTAL STUDY ON THE TRANSIENT CREEP OF GRANITE

NIU Lu1),2), ZHOU Yong-sheng1), YAO Wen-ming1), MA Xi1), HE Chang-rong1)   

  1. 1)State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China;
    2)Hebei Earthquake Agency, Shijiazhuang 050021, China
  • Received:2020-03-12 Revised:2020-09-15 Online:2021-02-20 Published:2021-05-06

花岗岩非稳态流变实验

牛露1),2), 周永胜1),*, 姚文明1), 马玺1), 何昌荣1)   

  1. 1)中国地震局地质研究所, 地震动力学国家重点实验室, 北京 100029;
    2)河北省地震局, 石家庄 050021
  • 通讯作者: *周永胜, 男, 1969年生, 研究员, 主要从事高温高压岩石流变学实验研究, E-mail: zhouysh@ies.ac.cn
  • 作者简介:牛露, 女, 1990年生, 现为中国地震局地质研究所构造物理学专业在读博士研究生, 工程师, 研究方向为高温高压岩石流变学实验研究, 电话: 18503215270, E-mail:niulu1990@126.com。
  • 基金资助:
    国家自然科学基金(41772223); 河北省地震科技星火计划项目(DZ20180321019, DZ20190423065, DZ20160331014, DZ20140714048)共同资助

Abstract: Many of the large earthquakes in the continental crust nucleate at the bottom of the seismogenic zone in depths between 10 and 20km which is related to the broad so-called ‘brittle-to-plastic or brittle-to-ductile’ transition region. From the field studies and seismic data, we could know that the dominant deformation mechanism at the base of seismogenic zone is likely to be semi-brittle flow of fault rocks. The physical and chemical processes acting in the ‘brittle-to-plastic’ transition are of great interest for a better understanding of fault rheology, tectonic deformation of the continental lithosphere and the generation of strong earthquakes. So it’s of great significance to know more about this transition. Despite the importance of semi-brittle flow, only few experimental studies are relevant to semi-brittle flow in natural rocks. In order to study the semi-brittle deformation and rheological characteristics of granite, we performed a series of transient creep experiments on fine-grained granite collected from the representative rock of Pengguan Complex in Wenchuan earthquake fault area using a solid-medium triaxial deformation apparatus(a modified Griggs rig). The conditions of the experiments are under the temperatures of 190~490℃and the confining pressures of 250~750MPa with a strain rate of 5×10-4s-1. The temperature and pressure simulate the in-situ conditions of the Wenchuan earthquake fault zone at the corresponding depths of 10~30km. We observe the microstructures of the experimentally deformed samples under the scanning electron microscope(SEM). The mechanical data, microstructures and deformation mechanism analysis demonstrate that deformation of the samples with experimental conditions could be covered by three regimes: 1)Brittle fracture to semi-brittle flow regime. We could see the strain and stress curves of the samples characterizing with strain hardening behavior and without definite yield point under low temperatures and pressures, which correspond to the depths of 10~15km; 2)Brittle-ductile transition regime. The strain and stress curves of the samples tend to be in a steady state with definite yield point under temperature and pressure at the depths of 15~20km. The main deformation mechanism is cataclasis, and dynamic recrystallization and dislocation creep are activated; and 3)Ductile flow regime which is at depths of 20~30km. The strength of granite increases with depth and reaches to the ultimate at the depth of 15~20km, and then decreases with depth at 20~30km. Based on the analysis of strength of granite, microstructures and deformation mechanism, we conclude that the granitic samples deformed with the characteristics of transient creep, and the strength of Longmenshan fault zone reaches maximum at the depths of 15~20km where it is in the brittle-to-plastic regime. Based on the Mohr circle analysis, the rupture limit at depths of 15~20km is close to the limit of friction, and at the same time, this depth range is also consistent with the focal depth of Wenchuan earthquake. Therefore, it implicates that the deformation and strength of Pengguan complex granitic rocks should control the nucleation and generation of the Wenchuan earthquake.

Key words: granite, transient creep, brittle-to-ductile transition, deformation mechanism, microstructural characteristics

摘要: 脆塑性转化带对于研究岩石圈变形、 断层强度和变形机制以及强震的孕育和发生具有重要意义。 文中采用汶川地震震源区彭灌杂岩中具有代表性的细粒花岗岩样品, 在固体压力介质三轴实验系统上开展了高温高压非稳态流变实验研究。 实验设计模拟了汶川地震区地壳10~30km深度的实际温度和压力, 温度为190~490℃, 压力为250~750MPa, 应变速率为5×10-4s-1, 利用扫描电镜对实验样品进行微观结构观察。 实验力学数据、 微观结构及变形机制分析表明, 在相当于地壳浅部10~15km深处的低温低压条件下, 表现为应变强化, 样品具有脆性破裂-半脆性流动的变形特征; 在相当于地壳15~20km的深度条件下, 随着应变量增加, 应力趋于稳态, 样品具有脆塑性转化特征; 在相当于地壳20~30km的深度条件下, 样品具有塑性流动特征。 当样品处于半脆性域时发生非稳态流变, 主要变形机制为碎裂作用, 同时激活了动态重结晶作用、 位错蠕变等塑性变形机制。 样品强度随着深度不断增大, 在深度为15~20km时达到极大值, 深度为20~30km时强度逐渐减小。 因此, 花岗岩的强度随深度的变化规律与微观结构及变形机制均表明, 在实验温度和压力条件下, 花岗岩具有非稳态流变特征, 在15~20km深处, 龙门山断裂带处于脆塑性转化带, 花岗岩强度达到最大值, 该深度与汶川地震的成核深度一致, 显示出彭灌杂岩的强度和变形对汶川地震的孕育和发生具有控制作用。

关键词: 花岗岩, 非稳态流变, 脆塑性转化, 变形机制, 微观结构

CLC Number: