[1] 陈连旺, 詹自敏. 2011. 华北地区构造应力场年动态变化特征的数值模拟[J]. 大地测量与地球动力学, 31(6): 1—5, 10. CHEN Lian-wang, ZHAN Zi-min. 2011. Numberically modeling of annual change of tectonic stress field in North China[J]. Journal of Geodesy and Geodynamics, 31(6): 1—5, 10(in Chinese). [2] 晁洪太, 李家灵, 赵清玉, 等. 1998. 沂沭断裂带活动褶皱及其与活动断层的关系[J]. 地震研究, 21(3): 59—65. CHAO Hong-tai, LI Jia-ling, ZHAO Qing-yu, et al. 1998. Active folds in the Yishu fault zone and their relations to actice faults[J]. Journal of Seismological Research, 21(3): 59—65(in Chinese). [3] 方仲景, 丁梦林, 计凤桔, 等. 1980. 郯城-庐江断裂带地震活动的地质分析[J]. 地震地质, 2(4): 39—45, 89. FANG Zhong-jing, DING Meng-lin, JI Feng-ju, et al. 1980. Geological analysis of the Tancheng-Lujiang fault zone, East China[J]. Seismology and Geology, 2(4): 39—45, 89(in Chinese). [4] 方仲景, 丁梦林, 向宏发, 等. 1986. 郯庐断裂带的基本特征[J]. 科学通报, 31(1): 52—55. FANG Zhong-jing, DING Meng-lin, XIANG Hong-fa, et al. 1986. Basic characteristics of the Tanlu fault zone[J]. Chinese Science Bulletin, 31(1): 52—55(in Chinese). [5] 丰成君, 张鹏, 戚帮申, 等. 2017. 郯庐断裂带附近地壳浅层现今构造应力场[J]. 现代地质, 31(1): 46—70. FENG Cheng-jun, ZHANG Peng, QI Bang-shen, et al. 2017. Recent tectonic stress field at the shallow earth's crust near the Tan-Lu fault zone[J]. Geoscience, 31(1): 46—70(in Chinese). [6] 国家地震局地质研究所. 1987. 郯庐断裂 [M]. 北京: 地震出版社. Institute of Geology, State Seismological Bureau. 1987. The Tan-Lu Fault Zone [M]. Seismological Press, Beijing(in Chinese). [7] 侯颉, 余大新. 2018. 利用汶川地震断裂带科学钻探3号井(WFSD-3)成像测井资料分析震源区应力场特征[J]. 地球物理学进展, 33(6): 2234—2240. HOU Jie, YU Da-xin. 2018. Analysis of stress field characteristics in source region using the image logging in borehole 3 of Wenchuan earthquake fault zone scientific drilling(WFSD-3)[J]. Progress in Geophysics, 33(6): 2234—2240(in Chinese). [8] 李方全, 孙世宗, 李立球. 1982. 华北及郯庐断裂带地应力测量[J]. 岩石力学与工程学报, 1(1): 73—86. LI Fang-quan, SUN Shi-zong, LI Li-qiu. 1982. In-situ measurements in North China and Tancheng-Lujiang fault zone[J]. Chinese Journal of Rock Mechanics and Engineering, 1(1): 73—86(in Chinese). [9] 李兵, 郭启良, 王建新, 等. 2014. 蒙山断裂地应力特征及其稳定性分析[J]. 岩土力学, 35(S2): 501—507. LI Bing, GUO Qi-liang, WANG Jian-xin, et al. 2014. Characteristics of in-situ stress at Mengshan Fault and its stability analysis[J]. Rock and Soil Mechanics, 35(S2): 501—507(in Chinese). [10] 李朋武, 崔军文, 王连捷, 等. 2005. 中国大陆科学钻探主孔钻孔崩落与现场应力状态的确定[J]. 岩石学报, 21(2): 421—426. LI Peng-wu, CUI Jun-wen, WANG Lian-jie, et al. 2005. The determination of in-situ stress from wellbore breakouts in the main borehole of the Chinese Continental Scientific Drilling[J]. Acta Petrologica Sinica, 21(2): 421—426(in Chinese). [11] 刘阳. 2015. 星村煤矿深部1 200m采区动静载叠加诱冲原理及应用研究 [D]. 北京: 中国矿业大学. LIU Yang. 2015. The mechanism and application of rock burst caused by dynamic and static combined load in 1 200m deep mining area, Xingcun coal mine [D]. China University of Mining and Technology, Beijing(in Chinese). [12] 刘卓岩, 王成虎, 徐鑫, 等. 2017. 基于地应力实测数据分析郯庐断裂带中段滑动趋势[J]. 现代地质, 31(4): 869—876. LIU Zhuo-yan, WANG Cheng-hu, XU Xin, et al. 2017. Slip tendency analysis of the mid-segment of Tan-Lu fault belt based on stress measurements[J]. Geoscience, 31(4): 869—876(in Chinese). [13] 聂昕, 邹长春, 黄兆辉, 等. 2011. 根据声电成像测井及岩心资料推断WFSD-2孔(0~1 360m)的应力方向[C]. 中国地球物理学会第二十七届年会论文集. NIE Xin, ZOU Chang-chun, HUANG Zhao-hui, et al. 2011. Inferring the stress direction of WFSD-2 hole(0~1 360m)based on acoustic imaging log and core data[C]. Proceedings of the 27th Annual Meeting of the Chinese Geophysical Society(in Chinese). [14] 苏道磊, 范建柯, 吴时国, 等. 2016. 山东地区地壳P波三维速度结构及其与地震活动的关系[J]. 地球物理学报, 59(4): 1335—1349. SU Dao-lei, FAN Jian-ke, WU Shi-guo, et al. 2016. 3D P wave velocity structures of crust and their relationship with earthquakes in the Shandong area[J]. Chinese Journal of Geophysics, 59(4): 1335—1349(in Chinese). [15] 谭显江, 张建清, 刘方文, 等. 2012. 高清数字钻孔电视技术研发及其在水电工程中的应用[J]. 长江科学院院报, 29(8): 62—66. TAN Xian-jiang, ZHANG Jian-qing, LIU Fang-wen, et al. 2012. R&D of high-resolution digital borehole TV technology and its application in hydropower project[J]. Journal of Yangtze River Scientific Research Institute, 29(8): 62—66(in Chinese). [16] 王成虎, 邢博瑞. 2017. 原生裂隙水压致裂原地应力测量的理论与实践新进展[J]. 岩土力学, 38(5): 1289—1297. WANG Cheng-hu, XING Bo-rui. 2017. A new theory and application progress of the modified hydraulic test on pre-existing fracture to determine in-situ stresses[J]. Rock and Soil Mechanics, 38(5): 1289—1297(in Chinese). [17] 王连捷, 崔军文, 张晓卫, 等. 2006. 中国大陆科学钻主孔现今地应力状态[J]. 地球科学(中国地质大学学报), 31(4): 505—512. WANG Lian-jie, CUI Jun-wen, ZHANG Xiao-wei, et al. 2006. In-situ stress state in the main borehole of the Chinese continental scientific drilling[J]. Earth Science(Journal of China University of Geosciences), 31(4): 505—512(in Chinese). [18] 王鹏, 郑建常, 刘希强, 等. 2015. 郯庐断裂带山东段震源参数及应力状态[J]. 地震地质, 37(4): 966—981. doi: 10.3969/j.issn.0253-4967.2015.04.003. WANG Peng, ZHENG Jian-chang, LIU Xi-qiang, et al. 2015. Research of source parameters and stress state in Shandong segment of Tanlu fault zone[J]. Seismology and Geology, 37(4): 966—981(in Chinese). [19] 王志才, 王冬雷, 许洪泰, 等. 2015. 安丘-莒县断裂北段几何结构与最新活动特征[J]. 地震地质, 37(1): 176—191. doi: 10.3969/j.issn.0253-4967.2015.01.014. WANG Zhi-cai, WANG Dong-lei, XU Hong-tai, et al. 2015. Geometric features and latest activities of the north segment of the Anqiu-Juxian Fault[J]. Seismology and Geology, 37(1): 176—191(in Chinese). [20] 魏光兴, 周翠英, 胡政, 等. 1988. 沂沭断裂带现代构造应力场和震源错动性质[J]. 中国地震, 4(3): 96—101. WEI Guang-xing, ZHOU Cui-ying, HU Zheng, et al. 1988. Modern tectonic stress field and source-distortion properties of Yishu fault zone[J]. Earthquake Research in China, 4(3): 96—101(in Chinese). [21] 邢博瑞. 2014. 单孔三维水压致裂原位地应力测量应用研究 [D]. 北京: 中国地质大学. XING Bo-rui. 2014. Study on three-dimensional geostress determining method with hydraulic fracturing technique in single borehole [D]. China University of Geosciences, Beijing(in Chinese). [22] 许汉刚, 范小平, 冉勇康, 等. 2016. 郯庐断裂带宿迁段F5断裂浅层地震勘探新证据[J]. 地震地质, 38(1): 31—43. doi: 10.3969/j.issn.0253-4967.2016.01.003. XU Han-gang, FAN Xiao-ping, RAN Yong-kang, et al. 2016. New evidences of the Holocene fault in Suqian segment of the Tanlu fault zone discovered by shallow seismic exploration method[J]. Seismology and Geology, 38(1): 31—43(in Chinese). [23] 赵仕广, 丁健民. 1984. 郯城庐江断裂带中段的近地表和深部原地应力测量[J]. 地震学刊, (2): 32—36. ZHAO Shi-guang, DING Jian-min. 1984. In situ stress measurement of near-surface and deep structures of the middle segment of Tanlu fault zone[J]. Journal of Seismology, (2): 33—36(in Chinese). [24] 张鹏, 秦向辉, 丰成君, 等. 2013. 郯庐断裂带山东段深孔地应力测量及其现今活动性分析[J]. 岩土力学, (8): 2329—2335. ZHANG Peng, QIN Xiang-hui, FENG Cheng-jun, et al. 2013. In-situ stress measurement of deep borehole in Shandong segment of Tan-Lu fracture belt and analysis of its activity[J]. Rock and Soil Mechanics, (8): 2329—2335(in Chinese). [25] 张鹏, 张媛媛, 李丽梅, 等. 2019. 郯庐断裂带安丘-莒县断裂江苏段全新世活动的新证据[J]. 地震地质, 41(3): 576—586. doi: 10.3969/j.issn.0253-4967.2019.03.003. ZHANG Peng, ZHANG Yuan-yuan, LI Li-mei, et al. 2019. New evidences of Holocene activity in the Jiangsu segment of Anqiu-Juxian Fault of the Tanlu fault zone[J]. Seismology and Geology, 41(3): 576—586(in Chinese). [26] 郑红霞, 张训华, 赵铁虎, 等. 2015. 渤海海峡地应力场研究及地质条件评价[J]. 中国海洋大学学报(自然科学版), 45(11): 81—91. ZHENG Hong-xia, ZHANG Xun-hua, ZHAO Tie-hu, et al. 2015. In-situ stress field and geological analysis of Bohai Strait[J]. Periodical of Ocean University of China, 45(11): 81—91(in Chinese). [27] Bell J S, Gough D I. 1979. Northeast-southwest compressive stress in Alberta: Evidence from oil wells[J]. Earth and Planetary Science Letters, 45(2): 475—482. [28] Davatzes N C, Hickman S H. 2005. Fault rock mineralogy and fluid flow in the Coso Geothermal Field, CA[C]//American Geophysical Union Fall Meeting Abstracts. [29] Davatzes N C, Hickman S H, Pöppelreiter M, et al. 2010. Stress, fracture, and fluid-flow analysis using acoustic and electrical image logs in hot fractured granites of the Coso geothermal field, California, USA, in dipmeter and borehole image log technology[C]. Proceedings World Geothermal Congress 2010. [30] Gough D I, Bell J S. 1982. Stress orientations from borehole wall fractures with examples from Colorado, east Texas, and northern Canada[J]. Canadian Journal of Earth Sciences, 19(7): 1358—1370. [31] Haimson B C, Lee M Y, Song I. 2003. Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indicators of regional stress[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7): 1243—1256. [32] Hayashi K, Haimson B C. 1991. Characteristics of shut-in curves in hydraulic fracturing stress measurements and determination of in situ minimum compressive stress[J]. Journal of Geophysical Research: Solid Earth, 96(B11): 18311—18321. [33] Hickman S H, Healy J H, Zoback M D. 1985. In situ stress, natural fracture distribution, and borehole elongation in the Auburn Geothermal Well, Auburn, New York[J]. Journal of Geophysical Research: Solid Earth, 90(B7): 5497—5512. [34] Kim H, Xie L, Min K B, et al. 2017. Integrated in situ stress estimation by hydraulic fracturing, borehole observations and numerical analysis at the EXP -1 borehole in Pohang, Korea[J]. Rock Mechanics and Rock Engineering, 50(12): 3141—3155. [35] Lee M Y, Haimson B C. 1989. Statistical evaluation of hydraulic fracturing stress measurement parameters[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(6): 447—456. [36] Li Y, Schmitt D R. 1998. Drilling-induced core fractures and in situ stress[J]. Journal of Geophysical Research: Solid Earth, 103(B3): 5225—5239. [37] Moos D, Zoback M D. 1990. Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses: Application to continental, Deep Sea Drilling Project, and Ocean Drilling Program boreholes[J]. Journal of Geophysical Research: Solid Earth, 95(B6): 9305—9325. [38] Michael A J. 1987. Use of focal mechanisms to determine stress: A controlstudy[J]. Journal of Geophysical Research: Solid Earth, 92(B1): 357—368. [39] Patlan E, Wilson T J, Millan C. 2012. Drilling induced fracture(DIF)characterization and stress pattern analysis of the Southern McMurdo Sound(SMS)Core, Victoria Land Basin, Antarctica[C]. AGU Fall Meeting Abstracts. [40] Vernik L, Nur A. 1992. Petrophysical analysis of the Cajon Pass Scientific Well: Implications for fluid flow and seismic studies in the continental crust[J]. Journal of Geophysical Research: Solid Earth, 97(B4): 5121—5134. [41] Warpinski N R, Branagan P T, Peterson R E, et al. 1997. Microseismic and deformation imaging of hydraulic fracture growth and geometry in the C sand interval, GRI/DOEM-Site project[C]. SPE Annual Technical Conference and Exhibition. [42] Wu H Y, Ma K F, Zoback M, et al. 2007. Stress orientations of Taiwan Chelungpu-Fault Drilling Project(TCDP)hole-A as observed from geophysical logs[J]. Translated World Seismology, 34(1): 223—234. [43] Zang A, Stephansson O. 2010. Stress Field of the Earth's Crust[M]. Springer, Netherlands. [44] Zhang L, Claire A C, Douglas R S. 2010. Drilling induced core fractures and crustal stress[C]. AAPG Search and Discovery Article, GeoCanada 2010: Working with the Earth 1. [45] Zoback M D, Barton C A, Brudy M, et al. 2003. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7): 1049—1076. |