SEISMOLOGY AND GEOLOGY ›› 2019, Vol. 41 ›› Issue (2): 447-466.DOI: 10.3969/j.issn.0253-4967.2019.02.012
• Research Paper • Previous Articles Next Articles
GE Yu-kui1, ZENG Jing1, ZHANG Jin-yu1, LI Ya-lin2
Received:
2018-12-27
Revised:
2019-01-28
Online:
2019-04-20
Published:
2019-05-21
葛玉魁1, 刘静1, 张金玉1, 李亚林2
作者简介:
葛玉魁,男,1986年生,2016年于中国地质大学(北京)获矿产普查与勘探专业博士学位,现为中国地震局地质研究所博士后,主要研究方向为低温热年代学与沉积盆地分析,电话:010-62009041,E-mail:yukuige@126.com。
基金资助:
CLC Number:
GE Yu-kui, ZENG Jing, ZHANG Jin-yu, LI Ya-lin. BURIAL AND EXHUMATION OF THE XIGAZE FORE-ARC BASIN FROM LOW TEMPERATURE THERMOCHRONOLOGICAL EVIDENCE[J]. SEISMOLOGY AND GEOLOGY, 2019, 41(2): 447-466.
葛玉魁, 刘静, 张金玉, 李亚林. 日喀则弧前盆地的埋藏和剥蚀历史——来自低温热年代学的约束[J]. 地震地质, 2019, 41(2): 447-466.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2019.02.012
柏道远, 贾宝华, 王先辉. 2004. 青藏高原隆升过程的磷灰石裂变径迹分析方法[J]. 沉积与特提斯地质, 24(1):35-40. BAI Dao-yuan, JIA Bao-hua, WANG Xian-hui. 2004. The apatite fission track analysis applied to the exploration of the uplifting of the Qinghai-Xizang Plateau[J]. Sedimentary Geology and Tethyan Geology, 24(1):35-40(in Chinese). 常远, 周祖翼. 2010. 利用低温热年代学数据计算剥露速率的基本方法[J]. 科技导报, 28(21):86-94. CHANG Yuan, ZHOU Zu-yi. 2010. Basic methods to inverse exhumation rates using low-temperature thermochronological data[J]. Science & Technology Review, 28(21):86-94(in Chinese). 陈文, 万渝生, 李华芹, 等. 2011. 同位素地质年龄测定技术及应用[J]. 地质学报, 85(11):1917-1947. CHEN Wen, WAN Yu-sheng, LI Hua-qin, et al. 2011. Isotope geochronology:Technique and application[J]. Acta Geologica Sinica, 85(11):1917-1947(in Chinese). 丁林. 1997. 裂变径迹定年方法的进展及应用[J]. 第四纪研究(3):272——280. DING Lin. 1997. Advance of fission-track analysis method and its application[J]. Quaternary Sciences, (3):272-280(in Chinese). 付明希. 2003. 磷灰石裂变径迹退火动力学模型研究进展综述[J]. 地球物理学进展, 18(4):650-655. FU Ming-xi. 2003. Review on the model of the apatite fission track annealing kinetics[J]. Progress in Geophysics, 18(4):650-655(in Chinese). 郭荣华, 胡修棉, 王建刚. 2012. 日喀则弧前盆地碎屑铬尖晶石地球化学与物源判别[J]. 地学前缘, 19(6):213-220. GUO Rong-hua, HU Xiu-mian, WANG Jian-gang. 2012. Chemical compositions and provenance significance of the detrital Cr-Spinels from the Xigaze forearc basin, southern Tibet[J]. Earth Science Frontiers, 19(6):213-220(in Chinese). 刘宝珺, 余光明, 陈成生. 1990. 西藏日喀则地区第三系大竹卡组砾质扇三角洲:片状颗粒流沉积[J]. 岩相古地理, (1):1-11. LIU Bao-jun, YU Guang-ming, CHEN Cheng-sheng. 1990. Sheet grain-flow-dominated gravel fandeltas of the Tertiary Dagzhuka Formation in the Xigaz area, Xizang(Tibet)[J]. Sedimentary, Facies and Palaeogeography, (1):1-11(in Chinese). 万晓樵, 丁林. 2001. 西藏仲巴地区白垩纪末期-始新世早期海相地层[J]. 地层学杂志, 25(4):267-272. WAN Xiao-qiao, DING Lin. 2001. Latest Cretaceous to early Eocene marine strata in the Zhongba region, Tibet[J]. Journal of Stratigraphy, 25(4):267-272(in Chinese). 王瑜. 2004. 构造热年代学:发展与思考[J]. 地学前缘, 11(4):435-443. WANG Yu. 2004. Some thoughts on tectono-thermochronology[J]. Geoscience Frontiers, 11(4):435-443(in Chinese). 尹集祥, 孙晓兴, 孙亦因, 等. 1988. 西藏南部日喀则地区双磨拉石带磨拉石岩系的地层学研究[G]. 中国科学院地质研究所集刊, 3:158-176. YIN Ji-xiang, SUN Xiao-xing, SUN Yi-yin, et al. 1988. The stratigraphic research of dual molasse belt in Xigaze area, southern Tibet[G]. Serially Published Monograph of Institute of Geology, Chinese Academy of Sciences, 3:158-176(in Chinese). 袁万明, 杜杨松, 杨立强, 等. 2007. 西藏冈底斯带南木林地区构造活动的磷灰石裂变径迹分析[J]. 岩石学报, 23(11):2911-2917. YUAN Wan-ming, DU Yang-song, YANG Li-qiang, et al. 2007. Apatite fission track studies on the tectonics in Nanmulin area of Gangdese terrane, Tibet plateau[J]. Acta Petrologica Sinica, 23(11):2911-2917(in Chinese). Aitchison J C, Davis A M, Ba D, et al. 2003. The Gangdese thrust:Aphantom structure that did not raise Tibet[J]. Terra Nova, 15(3):155-162. An W, Hu X M, Garzanti E, et al. 2014. Xigaze forearc basin revisited(South Tibet):Provenance changes and origin of the Xigaze Ophiolite[J]. Geological Society of America Bulletin, 126(11-12):1595-1613. Braun J. 2016. Strong imprint of past orogenic events on the thermochronological record[J]. Tectonophysics, 683:325-332. Carrapa B, Orme D A, DeCelles P G, et al. 2014. Miocene burial and exhumation of the India-Asia collision zone in southern Tibet:Response to slab dynamics and erosion[J]. Geology, 42(5):443-446. Coleman M, Hodges K. 1995. Evidence for Tibetan Plateau uplift before 14Myr ago from a new minimum age for east-west extension[J]. Nature, 374(6517):49-52. Copeland P, Harrison T M, Yun P, et al. 1995. Thermal evolution of the Gangdese batholith, Southern Tibet:Ahistory of episodic unroofing[J]. Tectonics, 14(2):223-236. Dai J G, Wang C S, Hourigan J, et al. 2013a. Exhumation history of the Gangdese Batholith, southern Tibetan Plateau:Evidence from apatite and zircon(U-Th)/He thermochronology[J]. Journal of Geology, 121(2):155-172. Dai J G, Wang C S, Polat A, et al. 2013b. Rapid forearc spreading between 130 and 120Ma:Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet[J]. Lithos, 172:1-16. Dai J G, Wang C S, Zhu D, et al. 2015. Multi-stage volcanic activities and geodynamic evolution of the Lhasa terrane during the Cretaceous:Insights from the Xigaze forearc basin[J]. Lithos, 218-219:127-140. DeCelles P G, Kapp P, Quade J, et al. 2011. Oligocene-Miocene Kailas Basin, southwestern Tibet:Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone[J]. Geological Society of America Bulletin, 123(7-8):1337-1362. Ding L, Spicer R, Yang J, et al. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 45(3):215-218. Ding L, Xu Q, Yue Y, et al. 2014. The Andean-type Gangdese Mountains:Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 392:250-264. Dürr S B. 1996. Provenance of Xigaze fore-arc basin clastic rocks(Cretaceous, south Tibet)[J]. Geological Society of America Bulletin, 108(6):669-684. Einsele G, Liu B, Durr S, et al. 1994. The Xigaze forearc basin:Evolution and facies architecture(Cretaceous, Tibet)[J]. Sedimentary Geology, 90(1-2):1-32. Evans N J, Byrne J P, Keegan J T, et al. 2005. Determination of uranium and thorium in zircon, apatite, and fluorite:Application to laser (U-Th)/He thermochronology[J]. Journal of Analytical Chemistry, 60(12):1159-1165. Farley K A. 2002. (U-Th)/He dating:Techniques, calibrations, and applications[J]. Reviews in Mineralogy and Geochemistry, 47(1):819-844. Ge Y K, Dai J G, Wang C S, et al. 2017. Cenozoic thermo-tectonic evolution of the Gangdese batholith constrained by low-temperature thermochronology[J]. Gondwana Research, 41:451-462. Ge Y K, Li Y, Wang X, et al. 2018. Oligocene-Miocene burial and exhumation of the southernmost Gangdese Mountains from sedimentary and thermochronological evidence[J]. Tectonophysics, 723:68-80. Gleadow A J W. 1981. Fission-track dating methods:What are the real alternatives?[J]. Nuclear Tracks, 5(1-2):3-14. Gou Z, Zhang Z, Dong X, et al. 2016. Petrogenesis and tectonic implications of the Yadong leucogranites, southern Himalaya[J]. Lithos, 256-257:300-310. Haider V L, Dunkl I, von Eynatten H, et al. 2013. Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the early Paleogene development of peneplains at Nam Co, Tibetan Plateau[J]. Journal of Asian Earth Sciences, 70-71:79-98. Harrison T M, Copeland P, Kidd W S, et al. 1992. Raising Tibet[J]. Science, 255(5052):1663-1670. Hetzel R, Dunkl I, Haider V, et al. 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift[J]. Geology, 39(10):983-986. Hu X M, Garzanti E, Moore T, et al. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian(middle Paleocene, 59±1Ma)[J]. Geology, 43(10):859-862. Huang W, Dupont-Nivet G, Lippert P C, et al. 2015. Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin(southern Tibet)to date the India-Asia collision?[J]. Journal of Geophysical Research:Solid Earth, 120(1):42-66. Ji W Q, Wu F Y, Chung S L, et al. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 262(3-4):229-245. Ketcham R, Donelick R, Carlson W. 1999. Variability of apatite fission-track annealing kinetics Ⅲ:Extrapolation to geological time scales[J]. American Mineralogist, 84:1235-1255. Lee H Y, Chung S L, Lo C H, et al. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J]. Tectonophysics, 477(1-2):20-35. Li G, Kohn B, Sandiford M, et al. 2016. Synorogenic morphotectonic evolution of the Gangdese batholith, south Tibet:Insights from low-temperature thermochronology[J]. Geochemistry Geophysics Geosystems, 17(1):101-112. Li G W, Kohn B, Sandiford M, et al. 2017. India-Asia convergence:Insights from burial and exhumation of the Xigaze fore-arc basin, south Tibet[J]. Journal of Geophysical Research:Solid Earth, 122(5):3430-3449. Li S, Ding L, Xu Q, et al. 2017. The evolution of Yarlung Tsangpo River:Constraints from the age and provenance of the Gangdese conglomerates, southern Tibet[J]. Gondwana Research, 41:249-266. Lu L, Zhen Z, Zhenhan W, et al. 2015. Fission track thermochronology evidence for the Cretaceous and Paleogene tectonic event of Nyainrong Microcontinent, Tibet[J]. Acta Geologica Sinica(English Edition), 89(1):133-144. Najman Y, Jenks D, Godin L, et al. 2017. The Tethyan Himalayan detrital record shows that India-Asia terminal collision occurred by 54Ma in the western Himalaya[J]. Earth and Planetary Science Letters, 459:301-310. Orme D A. 2017. Burial and exhumation history of the Xigaze forearc basin, Yarlung suture zone, Tibet[J]. Geoscience Frontiers, 10(3):895-908. https://doi.org/10.1016/j.gsf.2017.11.011. Orme D A, Carrapa B, Kapp P. 2015. Sedimentology, provenance and geochronology of the upper Cretaceous-lower Eocene western Xigaze forearc basin, southern Tibet[J]. Basin Research, 27(4):387-411. Orme D A, Laskowski A K. 2016. Basin analysis of the Albian-Santonian Xigaze forearc, Lazi region, south-central Tibet[J]. Journal of Sedimentary Research, 86(8):894-913. Pan Y, Copeland P, Roden M K, et al. 1993. Thermal and unroofing history of the Lhasa area, southern Tibet:Evidence from apatite fission-track thermochronology[J]. Nuclear Tracks and Radiation Measurements, 21(4):543-554. Reiners P W, Brandon, M T. 2006. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences, 34:419-466. Rohrmann A, Kapp P, Carrapa B, et al. 2012. Thermochronologic evidence for plateau formation in central Tibet by 45Ma[J]. Geology, 40(2):187-190. Styron R, Taylor M, Sundell K. 2015. Accelerated extension of Tibet linked to the northward underthrusting of Indian crust[J]. Nature Geoscience, 8(2):131-134. Tian Y T, Kohn B P, Gleadow A J W, et al. 2013. Constructing the Longmen Shan eastern Tibetan Plateau margin:Insights from low-temperature thermochronology[J]. Tectonics, 32(3):576-592. Tremblay M M, Fox M, Schmidt J L, et al. 2015. Erosion in southern Tibet shut down at~10Ma due to enhanced rock uplift within the Himalaya[J]. Proceedings of the National Academy of Sciences, 112(39):12030-12035. Wan X Q, Luo W, Wang C S, et al. 1998. Discovery and significance of Cretaceous fossils from the Xigaze forearc basin, Tibet[J]. Journal of Asian Earth Sciences, 16(2-3):217-223. Wang C S, Li X, Liu Z, et al. 2012. Revision of the Cretaceous-Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone[J]. Gondwana Research, 22(2):415-433. Wang C S, Zhao X, Liu Z, et al. 2008. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 105(13):4987-4992. Wang E, Kamp P J J, Xu G, et al. 2015. Flexural bending of southern Tibet in a retro foreland setting[J]. Scientific Reports, 5:12076. Wang E, Kirby E, Furlong K P, et al. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 5(9):640-645. Wang J G, Hu X, Garzanti E, et al. 2017. The birth of the Xigaze forearc basin in southern Tibet[J]. Earth and Planetary Science Letters, 465:38-47. Wang J G, Hu X M, Garzanti E, et al. 2013. Upper Oligocene-lower Miocene Gangrinboche conglomerate in the Xigaze area, southern Tibet:Implications for Himalayan uplift and paleo-Yarlung-Zangbo initiation[J]. Journal of Geology, 121(4):425-444. Wang Y, Zhang X, Sun L, et al. 2007. Cooling history and tectonic exhumation stages of the south-central Tibetan Plateau(China):Constrained by 40Ar/39Ar and apatite fission track thermochronology[J]. Journal of Asian Earth Sciences, 29(2-3):266-282. Willett S D, Brandon M T. 2013. Some analytical methods for converting thermochronometric age to erosion rate[J]. Geochemistry Geophysics Geosystems, 14(1):209-222. Woodruff W H, Horton B K, Kapp P, et al. 2012. Late Cenozoic evolution of the Lunggar extensional basin, Tibet:Implications for basin growth and exhumation in hinterland plateaus[J]. Geological Society of America Bulletin, 125(3-4):343-358. Wu F Y, Ji W Q, Liu C Z, et al. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet[J]. Chemical Geology, 271(1-2):13-25. Xu Q, Ding L, Hetzel R, et al. 2015. Low elevation of the northern Lhasa terrane in the Eocene:Implications for relief development in south Tibet[J]. Terra Nova, 27(6):458-466. Yin A, Harrison T M, Murphy M A, et al. 1999. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 111(11):1644-1664. Yin A, Harrison T M, Ryerson F J, et al. 1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet[J]. Journal of Geophysical Research-Solid Earth, 99(B8):18175-18201. Yuan W M, Deng J, Zheng Q G, et al. 2009. Apatite fission track constraints on the Neogene tectono-thermal history of Nimu area, southern Gangdese terrane, Tibet Plateau[J]. Island Arc, 18(3):488-495. Zhang Z J, Chen Y, Yuan X H, et al. 2013. Normal faulting from simple shear rifting in South Tibet, using evidence from passive seismic profiling across the Yadong-Gulu Rift[J]. Tectonophysics, 66:178-186. |
[1] | YU Shu-yuan, HUANG Xian-liang, ZHENG Hai-gang, LI Ling-li, LUO Jia-ji, DING Juan, FAN Xiao-ran. THE COSEISMIC RUPTURE MODEL AND STRESS CHANGE OF THE 2022 MENYUAN MW6.7 EARTHQUAKE [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 286-303. |
[2] | SONG Ting, SHEN Xu-zhang, MEI Xiu-ping, JIAO Yu-yuan, LI Min-juan, SU Xiao-yun, JI Wan-jing. CONSTRAINING MOHO CHARACTERISTICS IN THE NORTH-EASTERN MARGIN OF TIBET PLATEAU WITH FREQUENCY-DEPENDENCE OF RECEIVER FUNCTION [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(5): 1290-1312. |
[3] | GAI Hai-long, LI Zhi-min, YAO Sheng-hai, LI Xin. PRELIMINARY INVESTIGATION AND RESEARCH ON SURFACE RUPTURE CHARACTERISTICS OF THE 2022 QINGHAI MENYUAN MS6.9 EARTHQUAKE [J]. SEISMOLOGY AND EGOLOGY, 2022, 44(1): 238-255. |
[4] | HE Xiang, DU Xing-xing, LIU Jian, LI Yi-hao, LI Qun. SEDIMENTARY PROCESS AND TECTONIC SIGNIFICANCE OF WUWEI BASIN DURING THE QUATERNARY [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(1): 76-97. |
[5] | ZANG Yang, YU Yan-xiang, MENG Ling-yuan, HAN Yan-yan. STUDY ON ATTENUATION CHARACTERISTICS OF SEISMIC WAVES AND SEISMIC SOURCE PARAMETERS IN THE NORTH-EAST MARGIN OF QINGHAI-TIBET PLATEAU [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(6): 1638-1656. |
[6] | FANG Dong, HU Min-zhang, HAO Hong-tao. MULTI-SCALE ANALYSIS OF THE GRAVITY FIELD IN THE SOUTHEASTERN QINGHAI-TIBET PLATEAU AND ITS TECTONIC IMPLICATIONS [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(5): 1208-1232. |
[7] | LI Zhi-min, LI Wen-qiao, YIN Xiang, HUANG Shuai-tang, ZHANG Jun-long. ANALYSIS OF EVOLUTION OF THE RIYUESHAN FAULT SINCE LATE PLEISTOCENE USING STRUCTURAL GEOMORPHOLOGY [J]. SEISMOLOGY AND GEOLOGY, 2019, 41(5): 1077-1090. |
[8] | LI Kang, WANG Duo, SHAO Qing-feng, XU Xi-wei. HOLOCENE SLIP RATE ALONG THE NE-TRENDING QIXIANG CO FAULT IN THE CENTRAL TIBETAN PLATEAU AND ITS TECTONIC IMPLICATIONS [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(6): 1204-1215. |
[9] | LI Yong-hua, XU Xiao-ming, ZHANG En-hui, GAO Jia-yi. THREE-DIMENSIONAL CRUST STRUCTURE BENEATH SE TIBETAN PLATEAU AND ITS SEISMOTECTONIC IMPLICATIONS FOR THE LUDIAN AND JINGGU EARTHQUAKES [J]. SEISMOLOGY AND GEOLOGY, 2014, 36(4): 1204-1216. |
[10] | WAN Jing-lin, ZHENG De-wen, ZHENG Wen-jun, WANG Wei-tao. MODELING THERMAL HISTORY DURING LOW TEMPERATURE BY K-FELDSPAR MDD AND FISSION TRACK:EXAMPLE FROM MESO-CENOZOIC TECTONIC EVOLUTION IN SAISHITENGSHAN IN THE NORTHERN MARGIN OF QAIDAM BASIN [J]. SEISMOLOGY AND GEOLOGY, 2011, 33(2): 369-382. |
[11] | CHEN Chang-Yun, HE Hong-Lin. CRUST SHORTENING OF DALIANGSHAN TECTONIC ZONE IN CENOZOIC ERA AND ITS IMPLICATION [J]. SEISMOLOGY AND GEOLOGY, 2008, 30(2): 443-453. |
[12] | LI Zhi-min, TIAN Qin-jian, YAO Sheng-hai, LI Wen-qiao, GAO Zhan-wu. A PRELIMINARY STUDY ON DATONG FAULT BELT [J]. SEISMOLOGY AND GEOLOGY, 2007, 29(4): 855-862. |
[13] | WU Zhong-hai, YE Pei-sheng, LIU Qi-sheng, WU Zhen-han, HU Dao-gong, ZHAO Xi-tao, ZHOU Chun-jing. LATE CENEZOIC NORMAL FAULTING ON THE WESTERN SIDE OF WENQUAN GRABEN,CENTRAL QINGHAI-TIBET PLATEAU [J]. SEISMOLOGY AND GEOLOGY, 2004, 26(4): 658-675. |
[14] | DENG Mo-Meng. CENOZOIC VOLCANISM AND TECTONIC EVOLUTION IN THE TIBETAN PLATEAU AND ITS ADJACENT AREAS [J]. SEISMOLOGY AND GEOLOGY, 2003, 25(s1): 51-61. |
[15] | ZHANG Xian-kang, LI Song-lin, WANG Fu-yun, JIA Shi-xu, FANG Sheng-ming. DIFFERENCES OF CRUSTAL STRUCTURES IN NORTHEASTERN EDGE OF TIBET PLATEAU, ORDOS AND TANGSHAN EARTHQUAKE REGION IN NORTH CHINA-RESULTS OF DEEP SEISMIC SOUNDING [J]. SEISMOLOGY AND GEOLOGY, 2003, 25(1): 52-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||