SEISMOLOGY AND GEOLOGY ›› 2022, Vol. 44 ›› Issue (4): 831-844.DOI: 10.3969/j.issn.0253-4967.2022.04.001
• Research paper • Next Articles
ZHOU Bing-rui1,2)(), PAN Bo1,2),*(), YUN Sung-hyo3), CHANG Cheol-woo3), YAN Li-li1,2)
Received:
2021-11-30
Revised:
2022-01-25
Online:
2022-08-20
Published:
2022-09-23
Contact:
PAN Bo
周秉锐1,2)(), 潘波1,2),*(), 尹成孝3), 张哲宇3), 颜丽丽1,2)
通讯作者:
潘波
作者简介:
周秉锐, 男, 1996年生, 2022年于中国地震局地质研究所获矿物学、 岩石学、 矿床学专业硕士学位, 主要研究方向为岩石地球化学, 电话: 15003407231, E-mail: zhoubingrui19@mails.ucas.ac.cn。
基金资助:
CLC Number:
ZHOU Bing-rui, PAN Bo, YUN Sung-hyo, CHANG Cheol-woo, YAN Li-li. NEW UNDERSTANDING OF THE MAGMA EVOLUTION OF CHANGBAISHAN-TIANCHI VOLCANO BASED ON MELTS SIMULATION[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 831-844.
周秉锐, 潘波, 尹成孝, 张哲宇, 颜丽丽. 基于MELTS模型的长白山天池火山岩浆演化过程的新认识[J]. 地震地质, 2022, 44(4): 831-844.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.04.001
样号 | 1 | 2 | 3 | 4 | 5 | 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HSOB | TN-1* | HTS1 | HSKB | SYYT | NMET | WRDT | TWFP | SMEB | HAN3 | WMG3 | GPG1 | |
SiO2 | 47.24 | 45.36 | 49.78 | 50.15 | 64.67 | 66.2 | 70.22 | 69.1 | 56.03 | 57.44 | 67.22 | 75.87 |
TiO2 | 2.182 | 2.44 | 3.155 | 3.139 | 0.47 | 0.36 | 0.347 | 0.31 | 1.88 | 1.67 | 0.355 | 0.08 |
Al2O3 | 12.77 | 14.01 | 15.91 | 16.07 | 14.96 | 14.62 | 11.53 | 11.1 | 16.97 | 17.11 | 13.52 | 13.4 |
FeOT | 11.69 | 11.45 | 13.47 | 10.76 | 6.72 | 4.96 | 6.04 | 5.52 | 8.02 | 7.04 | 5.49 | 0.77 |
MnO | 0.456 | 0.16 | 0.164 | 0.137 | 0.429 | 0.122 | 0.126 | 0.112 | 0.123 | 0.1 | 0.121 | 0.017 |
MgO | 12.5 | 10.24 | 3.76 | 4.76 | 0.15 | 0.13 | 0.05 | 0.02 | 3 | 2.71 | 0.05 | 0.1 |
CaO | 7.55 | 7.16 | 6.68 | 8.29 | 1.63 | 1 | 0.55 | 0.44 | 5.76 | 5.84 | 0.64 | 0.89 |
Na2O | 2.81 | 3 | 3.69 | 3.69 | 5.412 | 5.718 | 5.3 | 5.665 | 4.505 | 4.5 | 5.75 | 3.759 |
K2O | 1.64 | 2.58 | 2.49 | 2.05 | 5.41 | 5.3 | 4.56 | 4.55 | 3.43 | 3.27 | 5.06 | 4.92 |
P2O5 | 0.5 | 0.32 | 0.74 | 0.7 | 0.098 | 0.043 | 0.03 | 0.016 | 0.356 | 0.32 | 0.02 | 0.015 |
LOI | 1.25 | 0.36 | -0.58 | 0.05 | 1.94 | 0.21 | 2.71 | -0.2 | 0.22 | 0.24 | ||
总量 | 100.3 | 99.46 | 100.2 | 99.16 | 99.97 | 100.39 | 98.95 | 99.53 | 99.88 | 100 | 98.44 | 100.1 |
Sc | 17 | 7.78 | 16 | 17 | 15.8 | 2.3 | 1 | 1.1 | 10.9 | 10 | 1 | 0.35 |
V | 193 | 149.7 | 208 | 192 | 2.02 | 2.34 | 5 | 1.62 | 90.4 | 85 | 5 | 6.08 |
Co | 55 | 43.79 | 37 | 32 | 0.31 | 0.92 | 1 | 0.18 | 19.6 | 18 | 1 | 0.55 |
Ni | 440 | 211.9 | 20 | 30 | 0.61 | 1.32 | 20 | 0.23 | 27.8 | 40 | 20 | 0.67 |
Cu | 30 | 38.4 | 20 | 20 | 3.26 | 8.76 | 10 | 9.09 | 19.9 | 10 | 10 | 1.17 |
Zn | 120 | 211.3 | 150 | 100 | 142.9 | 146.56 | 210 | 285 | 106 | 90 | 180 | 15.4 |
Rb | 38 | 44 | 31 | 128.2 | 180.66 | 201 | 319 | 61.1 | 55 | 226 | 143 | |
Sr | 1039 | 930.5 | 669 | 801 | 10.41 | 11.11 | 2 | 0.95 | 549 | 595 | 5 | 179 |
Y | 24.9 | 14.58 | 32 | 23 | 48.45 | 67.92 | 61.7 | 134 | 26.1 | 21.7 | 48.2 | 11.3 |
Zr | 299 | 217.2 | 298 | 246 | 900.7 | 1038 | 1453 | 2482 | 328 | 273 | 1142 | 227 |
Nb | 38 | 35.64 | 45.3 | 35.1 | 83.08 | 120.7 | 138 | 264 | 44.6 | 35 | 93.7 | 6.1 |
Cs | 0.7 | 0.4 | 0.1 | 0.66 | 2.48 | 0.7 | 4.72 | 0.66 | 0.5 | 6.2 | 0.62 | |
Ba | 437 | 355.6 | 781 | 684 | 56.24 | 32.62 | 5 | 1.33 | 521 | 862 | 13 | 402 |
La | 31.5 | 32.18 | 45 | 33.5 | 89.43 | 130.9 | 143 | 224 | 47.2 | 37.1 | 49 | 12.3 |
Ce | 65.1 | 67.79 | 89.6 | 67.3 | 165.7 | 245.2 | 189 | 420 | 88.9 | 74.6 | 92.5 | 17.4 |
Pr | 7.89 | 7.8 | 10.6 | 8.08 | 18.65 | 26.04 | 29.3 | 46.8 | 10.1 | 8.45 | 9.91 | 1.56 |
Nd | 33.3 | 30.7 | 43.9 | 35.5 | 72.41 | 95.75 | 105 | 164 | 40.9 | 33.2 | 35.8 | 5.23 |
Sm | 6.91 | 5.78 | 9.16 | 8.02 | 12.98 | 18.16 | 20.2 | 32.9 | 8.77 | 6.9 | 8.13 | 0.83 |
Eu | 2.11 | 2.01 | 2.81 | 2.56 | 1.21 | 0.29 | 0.364 | 0.36 | 1.85 | 2.41 | 0.195 | 0.23 |
Gd | 5.27 | 5.09 | 7.53 | 6.19 | 11.06 | 14.31 | 14.6 | 27.4 | 7.3 | 6.23 | 6.33 | 0.71 |
Tb | 0.75 | 0.43 | 1.13 | 0.89 | 1.66 | 2.17 | 2.39 | 4.48 | 1.08 | 0.86 | 1.2 | 0.11 |
Dy | 4.06 | 3.63 | 6.06 | 4.48 | 9.11 | 12.84 | 12.6 | 26.2 | 5.36 | 4.46 | 7.33 | 0.64 |
Ho | 0.69 | 0.63 | 1.09 | 0.75 | 1.61 | 2.15 | 2.21 | 4.58 | 1.02 | 0.76 | 1.48 | 0.12 |
Er | 1.71 | 1.5 | 2.87 | 1.89 | 4.73 | 6 | 5.94 | 13 | 2.65 | 2.09 | 4.6 | 0.4 |
Tm | 0.23 | 0.13 | 0.386 | 0.247 | 0.68 | 0.84 | 0.851 | 1.91 | 0.33 | 0.273 | 0.757 | 0.073 |
Yb | 1.4 | 1.18 | 2.39 | 1.4 | 4.14 | 5.17 | 5.56 | 10.8 | 2.03 | 1.67 | 5.36 | 0.52 |
Lu | 0.186 | 0.25 | 0.343 | 0.188 | 0.68 | 0.78 | 0.83 | 1.54 | 0.3 | 0.265 | 0.862 | 0.094 |
Hf | 6.8 | 7.2 | 5.7 | 18.77 | 25.23 | 28.3 | 58.9 | 7.91 | 5.9 | 25.6 | 6.76 | |
Ta | 2.39 | 2.63 | 2.08 | 4.74 | 6.74 | 8.91 | 15.4 | 2.58 | 2.1 | 7.18 | 0.39 | |
Pb | 5 | 6 | 5 | 17.22 | 16.97 | 20 | 40.3 | 7.43 | 7 | 31 | 25.2 | |
Th | 3.15 | 7.49 | 4.81 | 3.53 | 13.96 | 19.78 | 26.5 | 43.6 | 5.69 | 5.03 | 22.9 | 6.97 |
U | 0.84 | 1 | 0.43 | 3.09 | 4.17 | 4.39 | 8.67 | 1.22 | 1.12 | 5.22 | 1.04 |
Table 1 Chemical composition of eruptive materials at each stage of Tianchi volcano
样号 | 1 | 2 | 3 | 4 | 5 | 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HSOB | TN-1* | HTS1 | HSKB | SYYT | NMET | WRDT | TWFP | SMEB | HAN3 | WMG3 | GPG1 | |
SiO2 | 47.24 | 45.36 | 49.78 | 50.15 | 64.67 | 66.2 | 70.22 | 69.1 | 56.03 | 57.44 | 67.22 | 75.87 |
TiO2 | 2.182 | 2.44 | 3.155 | 3.139 | 0.47 | 0.36 | 0.347 | 0.31 | 1.88 | 1.67 | 0.355 | 0.08 |
Al2O3 | 12.77 | 14.01 | 15.91 | 16.07 | 14.96 | 14.62 | 11.53 | 11.1 | 16.97 | 17.11 | 13.52 | 13.4 |
FeOT | 11.69 | 11.45 | 13.47 | 10.76 | 6.72 | 4.96 | 6.04 | 5.52 | 8.02 | 7.04 | 5.49 | 0.77 |
MnO | 0.456 | 0.16 | 0.164 | 0.137 | 0.429 | 0.122 | 0.126 | 0.112 | 0.123 | 0.1 | 0.121 | 0.017 |
MgO | 12.5 | 10.24 | 3.76 | 4.76 | 0.15 | 0.13 | 0.05 | 0.02 | 3 | 2.71 | 0.05 | 0.1 |
CaO | 7.55 | 7.16 | 6.68 | 8.29 | 1.63 | 1 | 0.55 | 0.44 | 5.76 | 5.84 | 0.64 | 0.89 |
Na2O | 2.81 | 3 | 3.69 | 3.69 | 5.412 | 5.718 | 5.3 | 5.665 | 4.505 | 4.5 | 5.75 | 3.759 |
K2O | 1.64 | 2.58 | 2.49 | 2.05 | 5.41 | 5.3 | 4.56 | 4.55 | 3.43 | 3.27 | 5.06 | 4.92 |
P2O5 | 0.5 | 0.32 | 0.74 | 0.7 | 0.098 | 0.043 | 0.03 | 0.016 | 0.356 | 0.32 | 0.02 | 0.015 |
LOI | 1.25 | 0.36 | -0.58 | 0.05 | 1.94 | 0.21 | 2.71 | -0.2 | 0.22 | 0.24 | ||
总量 | 100.3 | 99.46 | 100.2 | 99.16 | 99.97 | 100.39 | 98.95 | 99.53 | 99.88 | 100 | 98.44 | 100.1 |
Sc | 17 | 7.78 | 16 | 17 | 15.8 | 2.3 | 1 | 1.1 | 10.9 | 10 | 1 | 0.35 |
V | 193 | 149.7 | 208 | 192 | 2.02 | 2.34 | 5 | 1.62 | 90.4 | 85 | 5 | 6.08 |
Co | 55 | 43.79 | 37 | 32 | 0.31 | 0.92 | 1 | 0.18 | 19.6 | 18 | 1 | 0.55 |
Ni | 440 | 211.9 | 20 | 30 | 0.61 | 1.32 | 20 | 0.23 | 27.8 | 40 | 20 | 0.67 |
Cu | 30 | 38.4 | 20 | 20 | 3.26 | 8.76 | 10 | 9.09 | 19.9 | 10 | 10 | 1.17 |
Zn | 120 | 211.3 | 150 | 100 | 142.9 | 146.56 | 210 | 285 | 106 | 90 | 180 | 15.4 |
Rb | 38 | 44 | 31 | 128.2 | 180.66 | 201 | 319 | 61.1 | 55 | 226 | 143 | |
Sr | 1039 | 930.5 | 669 | 801 | 10.41 | 11.11 | 2 | 0.95 | 549 | 595 | 5 | 179 |
Y | 24.9 | 14.58 | 32 | 23 | 48.45 | 67.92 | 61.7 | 134 | 26.1 | 21.7 | 48.2 | 11.3 |
Zr | 299 | 217.2 | 298 | 246 | 900.7 | 1038 | 1453 | 2482 | 328 | 273 | 1142 | 227 |
Nb | 38 | 35.64 | 45.3 | 35.1 | 83.08 | 120.7 | 138 | 264 | 44.6 | 35 | 93.7 | 6.1 |
Cs | 0.7 | 0.4 | 0.1 | 0.66 | 2.48 | 0.7 | 4.72 | 0.66 | 0.5 | 6.2 | 0.62 | |
Ba | 437 | 355.6 | 781 | 684 | 56.24 | 32.62 | 5 | 1.33 | 521 | 862 | 13 | 402 |
La | 31.5 | 32.18 | 45 | 33.5 | 89.43 | 130.9 | 143 | 224 | 47.2 | 37.1 | 49 | 12.3 |
Ce | 65.1 | 67.79 | 89.6 | 67.3 | 165.7 | 245.2 | 189 | 420 | 88.9 | 74.6 | 92.5 | 17.4 |
Pr | 7.89 | 7.8 | 10.6 | 8.08 | 18.65 | 26.04 | 29.3 | 46.8 | 10.1 | 8.45 | 9.91 | 1.56 |
Nd | 33.3 | 30.7 | 43.9 | 35.5 | 72.41 | 95.75 | 105 | 164 | 40.9 | 33.2 | 35.8 | 5.23 |
Sm | 6.91 | 5.78 | 9.16 | 8.02 | 12.98 | 18.16 | 20.2 | 32.9 | 8.77 | 6.9 | 8.13 | 0.83 |
Eu | 2.11 | 2.01 | 2.81 | 2.56 | 1.21 | 0.29 | 0.364 | 0.36 | 1.85 | 2.41 | 0.195 | 0.23 |
Gd | 5.27 | 5.09 | 7.53 | 6.19 | 11.06 | 14.31 | 14.6 | 27.4 | 7.3 | 6.23 | 6.33 | 0.71 |
Tb | 0.75 | 0.43 | 1.13 | 0.89 | 1.66 | 2.17 | 2.39 | 4.48 | 1.08 | 0.86 | 1.2 | 0.11 |
Dy | 4.06 | 3.63 | 6.06 | 4.48 | 9.11 | 12.84 | 12.6 | 26.2 | 5.36 | 4.46 | 7.33 | 0.64 |
Ho | 0.69 | 0.63 | 1.09 | 0.75 | 1.61 | 2.15 | 2.21 | 4.58 | 1.02 | 0.76 | 1.48 | 0.12 |
Er | 1.71 | 1.5 | 2.87 | 1.89 | 4.73 | 6 | 5.94 | 13 | 2.65 | 2.09 | 4.6 | 0.4 |
Tm | 0.23 | 0.13 | 0.386 | 0.247 | 0.68 | 0.84 | 0.851 | 1.91 | 0.33 | 0.273 | 0.757 | 0.073 |
Yb | 1.4 | 1.18 | 2.39 | 1.4 | 4.14 | 5.17 | 5.56 | 10.8 | 2.03 | 1.67 | 5.36 | 0.52 |
Lu | 0.186 | 0.25 | 0.343 | 0.188 | 0.68 | 0.78 | 0.83 | 1.54 | 0.3 | 0.265 | 0.862 | 0.094 |
Hf | 6.8 | 7.2 | 5.7 | 18.77 | 25.23 | 28.3 | 58.9 | 7.91 | 5.9 | 25.6 | 6.76 | |
Ta | 2.39 | 2.63 | 2.08 | 4.74 | 6.74 | 8.91 | 15.4 | 2.58 | 2.1 | 7.18 | 0.39 | |
Pb | 5 | 6 | 5 | 17.22 | 16.97 | 20 | 40.3 | 7.43 | 7 | 31 | 25.2 | |
Th | 3.15 | 7.49 | 4.81 | 3.53 | 13.96 | 19.78 | 26.5 | 43.6 | 5.69 | 5.03 | 22.9 | 6.97 |
U | 0.84 | 1 | 0.43 | 3.09 | 4.17 | 4.39 | 8.67 | 1.22 | 1.12 | 5.22 | 1.04 |
Fig. 4 Chondrite normalized REE distribution diagram and primitive mantle normalized spider diagram of Tianchi volcanic rocks(after SUN et al., 1989).
[1] | 崔天日, 钱程, 江斌, 等. 2017. 长白山天池火山CZK07钻所揭示的火山地层层序和火山作用特征[J]. 地质学报, 91(11): 2409-2422. |
CUI Tian-ri, QIAN Cheng, JIANG Bin, et al. 2017. Volcanic stratigraphic sequence and volcanism revealed by CZK07 drill core at Changbaishan Tianchi volcano[J]. Acta Geologica Sinica, 91(11): 2409-2422. (in Chinese) | |
[2] | 樊祺诚, 隋建立, 孙谦, 等. 2005. 天池火山千年大喷发的岩浆混合作用与喷发机制初步探讨[J]. 岩石学报, 21(6): 1703-1708. |
FAN Qi-cheng, SUI Jian-li, SUN Qian, et al. 2005. Preliminary research of magma mixing and explosive mechanism of the Millennium eruption of Tianchi volcano[J]. Acta Petrologica Sinica, 21(6): 1703-1708. (in Chinese) | |
[3] | 樊祺诚, 隋建立, 王团华, 等. 2007. 长白山火山活动历史、 岩浆演化与喷发机制探讨[J]. 高校地质学报, 13(2): 175-190. |
FAN Qi-cheng, SUI Jian-li, WANG Tuan-hua, et al. 2007. History of volcanic activity, magma evolution and eruptive mechanisms of the Changbai volcanic province[J]. Geological Journal of China Universities, 13(2): 175-190. (in Chinese) | |
[4] | 郭文峰, 刘嘉麒, 吴才来, 等. 2016. 长白山天池火山粗面岩成因与岩浆房系统演化[J]. 地质论评, 62(3): 617-630. |
GUO Wen-feng, LIU Jia-qi, WU Cai-lai, et al. 2016. Petrogenesis of trachyte and the felsic magma system at Tianchi volcano: Trace elements and isotopic constraints[J]. Geological Review, 62(3): 617-630. (in Chinese) | |
[5] | 郭文峰, 刘嘉麒, 徐文刚, 等. 2015. 长白山天池火山岩浆系统再认识: 岩石热力学模拟[J]. 科学通报, 60(35): 3489-3500. |
GUO Wen-feng, LIU Jia-qi, XU Wen-gang, et al. 2015. Reassessment of the magma system beneath Tianchi volcano, Changbaishan: Phase equilibria constraints[J]. Chinese Science Bulletin, 60(35): 3489-3500. (in Chinese) | |
[6] | 金伯禄, 张希友. 1994. 长白山火山地质研究[M]. 长春: 东北朝鲜民族教育出版社:1-187. |
JIN Bo-lu, ZHANG Xi-you. 1994. Research on Volcanic Geology in Changbaishan Mountains[M]. Education Press of Northeast China Korean Minority, Changchun: 1-187. (in Chinese) | |
[7] | 刘强, 盘晓东, 魏海泉, 等. 2008. 长白山天池火山喷发序列研究[J]. 中国地震, 24(3): 235-246. |
LIU Qiang, PAN Xiao-dong, WEI Hai-quan, et al. 2008. A borehole study on the eruptive sequence from the Tianchi volcano, Changbai Mountains[J]. Earthquake Research in China, 24(3): 235-246. (in Chinese) | |
[8] | 刘若新, 樊祺诚, 郑祥身, 等. 1998. 长白山天池火山的岩浆演化[J]. 中国科学(D辑), 28(3): 226-231. |
LIU Ruo-xin, FAN Qi-cheng, ZHENG Xiang-shen, et al. 1998. Magma evolution of Changbaishan Tianchi volcano[J]. Science in China(Ser D), 28(3): 226-231. (in Chinese) | |
[9] | 潘波, 樊祺诚, 许建东, 等. 2017. 长白山天池火山千年大喷发的岩浆过程[J]. 岩石学报, 33(1): 163-172. |
PAN Bo, FAN Qi-cheng, XU Jian-dong, et al. 2017. Magmatic processes of the Millennium eruption at Changbaishan Tianchi volcano, China/North Korea[J]. Acta Petrologica Sinica, 33(1): 163-172. (in Chinese) | |
[10] | 钱程, 崔天日, 江斌, 等. 2014. 长白山地区晚新生代火山地貌形态研究及其地质应用[J]. 第四纪研究, 34(2): 312-324. |
QIAN Cheng, CUI Tian-ri, JIANG Bin, et al. 2014. A study on the characteristics of Late Cenozoic volcanic terrain in Changbaishan Mountains and its geological application[J]. Quaternary Sciences, 34(2): 312-324. (in Chinese) | |
[11] | 钱程, 崔天日, 唐振, 等. 2016. 长白山天池火山造锥阶段玄武质火山活动期次划分及成因探讨[J]. 中国地质, 43(6): 1963-1976. |
QIAN Cheng, CUI Tian-ri, TANG Zhen, et al. 2016. Stage division and genesis discussion of basaltic volcanism during the cone-forming stage of Tianchi volcano in Changbaishan region[J]. Geology in China, 43(6): 1963-1976. (in Chinese) | |
[12] | 田丰, 汤德平. 1989. 吉林省长白山地区新生代火山岩的特点及其成因[J]. 岩石学报, 5(2): 49-64. |
TIAN Feng, TANG De-ping. 1989. Petrogenesis of the Cenozoic vlocanic rocks in the Changbaishan region[J]. Acta Petrologica Sinica, 5(2): 49-64. (in Chinese) | |
[13] | 王团华, 樊祺诚, 孙谦, 等. 2006. 长白山区图们江流域新生代火山岩的岩石化学研究[J]. 岩石学报, 22(6): 1481-1490. |
WANG Tuan-hua, FAN Qi-cheng, SUN Qian, et al. 2006. Petrochemistry of Cenozoic volcanic rocks in the Tumen river field, Changbai mountain region[J]. Acta Petrologica Sinica, 22(6): 1481-1490. (in Chinese) | |
[14] | 吴建平, 明跃红, 张恒荣, 等. 2007. 长白山天池火山区的震群活动研究[J]. 地球物理学报, 50(4): 1089-1096. |
WU Jian-ping, MING Yue-hong, ZHANG Heng-rong, et al. 2007. Earthquake swarm activity in Changbaishan Tianchi volcano[J]. Chinese Journal of Geophysics, 50(4): 1089-1096. (in Chinese)
DOI URL |
|
[15] | 解广轰, 王俊文, Basu A R, 等. 1988. 长白山地区新生代火山岩的岩石化学及Sr、 Nd、 Pb同位素地球化学研究[J]. 岩石学报, 4(4): 1-13. |
XIE Guang-hong, WANG Jun-wen, Basu A R, et al. 1988. Petrochemistry and Sr, Nd, Pb-isotopic geochemistry of Cenozoic volcanic rocks, Changbaishan area, Northeast China[J]. Acta Petrologica Sinica, 4(4): 1-13. (in Chinese) | |
[16] |
Andreeva O A, Yarmolyuk V V, Andreeva I A, et al. 2018. Magmatic evolution of Changbaishan Tianchi volcano, China-North Korea: Evidence from mineral-hosted melt and fluid inclusions[J]. Petrology, 26(5): 515-545.
DOI URL |
[17] |
Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 19(3): 463-513.
DOI URL |
[18] |
Ghiorso M S, Carmichael I S E, Rivers M L, et al. 1983. The Gibbs free energy of mixing of natural silicate liquids: An expanded regular solution approximation for the calculation of magmatic intensive variables[J]. Contributions to Mineralogy and Petrology, 84(2-3): 107-145.
DOI URL |
[19] |
Ghiorso M S, Sack R O. 1995. Chemical mass transfer in magmatic processes Ⅳ: A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures[J]. Contributions to Mineralogy and Petrology, 119(2-3): 197-212.
DOI URL |
[20] |
Gualda G A R, Ghiorso M S, Lemons R V, et al. 2012. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems[J]. Journal of Petrology, 53(5): 875-890.
DOI URL |
[21] |
Le Bas M J, Le Maitre R W, Streckeisen A, et al. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 27(3): 745-750.
DOI URL |
[22] | Liu J Q, Chen S S, Guo Z F, et al. 2015. Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China-Korea border[J]. Lithos, 236-237: 46-73. |
[23] | Pan B, de Silva S L, Xu J D, et al. 2020. Late Pleistocene to present day eruptive history of the Changbaishan-Tianchi Volcano, China/DPRK: New field, geochronological and chemical constraints[J]. Journal of Volcanology and Geothermal Research, 399: 1-18. |
[24] | Rudnick R L, Gao S. 2003. Composition of the Continental Crust[M]// //Holland H D, Turekian K K(eds), Treatise on Geochemistry(1st Edition). Elsevier, Amsterdam: 1-64. |
[25] | Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [G]//Saunders A D, Norry M J(eds), Magmatism in the Ocean Basins. Geological Society, Special Publications, London: 313-345. |
[26] |
Yi J, Wang P J, Shan X L, et al. 2021. Modeling the multi-level plumbing system of the Changbaishan caldera from geochemical, mineralogical, Sr-Nd isotopic and integrated geophysical data[J]. Geoscience Frontiers, 12(5): 1-20.
DOI URL |
[27] | Zou H B, Fan Q C, Zhang H F, et al. 2014. U-series zircon age constraints on the plumbing system and magma residence times of the Changbai volcano, China/North Korea border[J]. Lithos, 200-201: 169-180. |
[1] | LI Ying, FANG Zhen, ZHANG Chen-lei, LI Ji-ye, BAO Zhi-cheng, ZHANG Xiang, LIU Zhao-fei, ZHOU Xiao-cheng, CHEN Zhi, DU Jian-guo. RESEARCH PROGRESS AND PROSPECT OF SEISMIC FLUID GEOCHEMISTRY IN SHORT-IMMINENT EARTHQUAKE PREDICTION [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(3): 593-621. |
[2] | SHEN Hua-liang, YANG Yao, ZHOU Zhi-hua, RUI Xue-lian, LIAO Xiao-feng, ZHAO De-yang, LIANG Ming-jian, CHEN Meng-die, GUAN Zhi-jun, REN Hong-wei. GENESIS AND DEEP GEOTHERMAL PROCESS OF MAOYA HOT SPRINGS IN LITANG, WESTERN SICHUAN [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(3): 689-709. |
[3] | ZHANG Wen-liang, LI Ying, LIU Zhao-fei, HU Le, LU Chang, CHEN Zhi, HAN Xiao-kun. SPATIAL DISTRIBUTION CHARACTERISTICS OF SOIL GAS HE CONCENTRATION IN THE EASTERN LIUPANSHAN FAULT ZONE AND ITS RELATIONSHIP WITH TECTONIC ACTIVITY [J]. SEISMOLOGY AND GEOLOGY, 2023, 45(3): 753-771. |
[4] | ZHU Cheng-ying, YAN Wei, MA Rong, LI Zhi-hai, WANG Cheng-guo, HUANG Jian-ming, ZHOU Xiao-cheng. GEOCHEMICAL CHARACTERIZATION OF FAULT GAS IN MACRO-SEISMIC INTENSITY AND AFTERSHOCK DISTRIBUTION OF JINGHE MS6.6 EARTHQUAKE ON AUGUST 9, 2017 [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(5): 1225-1239. |
[5] | LU Chang, ZHOU Xiao-cheng, LI Ying, LIU Lei, YAN Yu-cong, XU Yue-ren. HYDROGEOCHEMICAL CHARACTERISTICS OF GROUND-WATER IN THE SURFACE RUPTURE ZONE OF MADOI MS7.4 EARTHQUAKE AND HOT SPRINGS IN THE EAST KUNLUN FAULT [J]. SEISMOLOGY AND EGOLOGY, 2021, 43(5): 1101-1126. |
[6] | GAO Xiao-qi, LIANG Hui, WANG Hai-tao, ZHENG Li-ming, LI Jie, ZHAO Chun-qing, XIANG Yang, ZHANG Tao. origin of the mud volcano in northern tianshan constrained by geochemical investigation [J]. SEISMOLOGY AND GEOLOGY, 2015, 37(4): 1215-1224. |
[7] | YU Hong-mei, ZHAO Bo, WEI Fei-xiang, XU Jian-dong, WANG Qing-min. petrological and geochemical characteristics of quarternary volcanic rocks in haixing area, eastern north china [J]. SEISMOLOGY AND GEOLOGY, 2015, 37(4): 1070-1083. |
[8] | LI Xin, LIU Jia-qi, SUN Chun-qing, DU De-dao, Wang Shi. THE MAGMA SOURCE PROPERTIES AND EVOLUTION OF HOLOCENE VOLCANOES IN TENGCHONG, YUNNAN PROVINCE, SW CHINA [J]. SEISMOLOGY AND GEOLOGY, 2014, 36(4): 991-1008. |
[9] | ZHOU Xiao-cheng, WANG Chuan-yuan, CHAI Chi-zhang, SI Xue-yun, LEI Qi-yun, LI Ying, XIE Chao, LIU Sheng-chang. THE GEOCHEMICAL CHARACTERISTICS OF SOIL GAS IN THE SOUTHEASTERN PART OF HAIYUAN FAULT [J]. SEISMOLOGY AND GEOLOGY, 2011, 33(1): 123-132. |
[10] | HU Ya-xuan, WANG Qing-liang, CUI Du-xin, WANG Wen-ping, LI Ke, CHEN Hong-wei. APPLICATION OF MOGI MODEL AT CHANGBAISHAN TIANCHI VOLCANO [J]. SEISMOLOGY AND EGOLOGY, 2007, 29(1): 144-151. |
[11] | LÜ Jin-bo, CHE Yong-tai, WANG Ji-ming, LIU Zhen-feng, LIU Cheng-long, ZHENG Gui-sen. HYDROGEOCHEMICAL CHARACTERISTICS OF THERMAL WATER AND GENETIC MODEL OF GEOTHERMAL SYSTEM IN NORTH BEIJING [J]. SEISMOLOGY AND GEOLOGY, 2006, 28(3): 419-429. |
[12] | WANG Tuan-hua, FAN Qi-cheng, SUN Qian, LI-Ni. PRIMARY STUDY ON Sr,Nd ISOTOPIC GEOCHEMISTRY OF CENOZOIC VOLCANIC ROCKS IN TUMEN RIVER VALLEY, CHANGBAI MOUNTAIN AREA [J]. SEISMOLOGY AND GEOLOGY, 2006, 28(3): 367-380. |
[13] | GAO Ling, SHANGGUAO Zhi-guan, WEI Hai-quan, WU Cheng-zhi. RECENT GEOCHEMICAL CHANGES OF HOT-SPRING GASES FROM TIANCHI VOLCANO AREA, CHANGBAI MOUNTAINS, NORTHEAST CHINA [J]. SEISMOLOGY AND GEOLOGY, 2006, 28(3): 358-366. |
[14] | SHANG Guan-Zhi-Guan, GAO Qing-Wu, LIU Wei, HU Jiu-Chang. GEOCHEMICAL CHARACTERISTICS OF SUBSURFACE FLUIDS AND VOLCANIC HAZARD ASSESSMENT IN NORTHERN HAINAN VOLCANIC REGION [J]. SEISMOLOGY AND GEOLOGY, 2003, 25(s1): 43-50. |
[15] | WANG Guang-cai, ZHANG Zuo-chen, WANG Min, WANG Ji-hua, LIU Wu-zhou, YI Li-xin, SUN Ming-liang. GEOCHEMISTRY OF GEOTHERMAL WATER AND NOBLE GASES IN YANHUAI BASIN, CHINA [J]. SEISMOLOGY AND GEOLOGY, 2003, 25(3): 421-429. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||