SEISMOLOGY AND GEOLOGY ›› 2020, Vol. 42 ›› Issue (5): 1091-1108.DOI: 10.3969/j.issn.0253-4967.2020.05.005

• Research paper • Previous Articles     Next Articles

THE STATIC COULOMB STRESS INFLUENCE OF THE MAINLING M6.9 EARTHQUAKE IN TIBET ON NOVEMBER 18, 2017 TO THE SUBSEQUENT EARTHQUAKES

LI Zhen-yue3), WAN Yong-ge1,2), JIN Zhi-tong1,2), YANG Fan4), HU Xiao-hui3), LI Ze-xiao1)   

  1. 1)Institute of Disaster Prevention, Sanhe, Hebei 065201, China;
    2)Hebei Key Laboratory of Earthquake Dynamics, Sanhe, Hebei 065201, China;
    3)University of Science and Technology of China, Hefei 230026, China;
    4)Yunnan Earthquake Agency, Kunming 650224, China
  • Received:2020-01-11 Revised:2020-04-19 Online:2020-10-20 Published:2021-01-06

2017年11月18日西藏米林M6.9地震对后续地震的静态库伦应力的影响

李振月3), 万永革1,2),*, 靳志同1,2), 杨帆4), 胡晓辉3), 李泽潇1)   

  1. 1)防灾科技学院, 三河 065201;
    2)河北省地震动力学重点实验室, 三河 065201;
    3)中国科学技术大学, 合肥 230026;
    4)云南省地震局, 昆明 650224
  • 通讯作者: *万永革, 男, 1967年生, 研究员, 主要从事构造应力场、 地震应力触发等方面研究工作, E-mail: wanyg217217@vip.sina.com.cn。
  • 作者简介:李振月, 男, 1994年生, 2020年于中国地震局地球物理研究所获地球探测与信息技术专业硕士学位, 现为中国科学技术大学地球物理学专业在读博士生, 主要从事构造应力场、 应力触发方面的研究工作, E-mail: 952934956@qq.com。
  • 基金资助:
    河北省地震科技星火计划项目(DZ20190415002)、 国家自然科学基金(41674055, 41704053)和防灾科技学院黄大年教学团队支持项目共同资助

Abstract: Based on the rupture model of Mainling M6.9 earthquake in Tibet on November 18, 2017, the spatial distribution of static Coulomb failure stress change at different depths are calculated respectively according to two different receiving fault selection schemes. The one scheme is that we set the parameters of receiving fault at different position to be consistent with the main shock; The other scheme is on the assumption that fault's orientation is randomly distributed under the ground, and we select the receiving fault which is most prone to slide under the influence of coseismic stress field produced by main shock. Therefore, the geometrical orientation of receiving fault will vary with space. According to the above two results of static Coulomb failure stress change, we discussed the static Coulomb stress influence produced by the main shock to short-term aftershocks and the Medog M6.3 earthquake in Tibet on April 24, 2019, respectively. The result shows that: 1)When the parameters of receiving fault are same with the main shock, the proportion of aftershocks in the positive zone of static Coulomb failure stress change is small at each depth. The focal mechanisms of aftershocks in the positive zone of static coulomb fracture stress are deemed similar to the main shock. We thought that they are motivated by the continuous rupture of the main shock. 2)Most of the aftershocks are in the negative zone of static Coulomb failure stress change at each depth. We inferred that this phenomenon which may be on account of the focal mechanisms of these aftershocks is quite different with the main shock. From the result of receiving fault to choose the most prone to slide under the coseismic stress field produced by main shock, we can clearly see that all the aftershocks are within the zone of static Coulomb failure stress change greater than the trigger threshold of 0.01MPa at different depths. It indicates that all the aftershocks are likely to be triggered. It was speculated that the aftershocks in the negative zone of static Coulomb failure stress change occurred in the crushed zone caused by violent rupture of the main shock. There are countless cracks in the crushed zone, and the orientation of these cracks is abundant. Perhaps, because most aftershocks occurred on these various cracks, their focal mechanisms are quite different from the main shock. The value of elastic constants will be reduced significantly in the crushed zone. All the results in this paper also indicate that considering the elastic constants difference between in and out of the source region is beneficial to accurately estimate the static Coulomb stress influence between earthquakes in the source region. 3)Different institutes and authors used different data and methods to get several different focal mechanisms of the Medog earthquake. According to these results, we calculated a central focal mechanism solution, which has a minimum difference with these focal mechanisms. On the basis of this central focal mechanism solution, the static Coulomb stress influence of the Mainling earthquake to the Medog earthquake is calculated quantitatively. Result indicates that the magnitude of static Coulomb failure stress change generated by the Mainling earthquake is quite small on both two nodal planes of the central focal mechanism solution of the Medog earthquake, this means that the Medog earthquake is independent of the Mainling earthquake.

Key words: Mainling M6.9 earthquake, rupture model, receiving fault, static Coulomb failure stress change, Medog M6.3 earthquake

摘要: 基于2017年11月18日西藏米林M6.9地震的破裂模型, 分别计算了2种接收断层选择方案下, 不同深度的静态库伦破裂应力变化的空间分布。 一种方案认为接收断层的参数和发震断层一致; 另一种方案假设断层的方位随机分布, 选择在主震同震应力场作用下最容易发生错动的断层面作为接收断层面。 根据以上2种方案下静态库伦破裂应力变化的结果, 讨论主震对震后短期内余震以及2019年4月24日西藏墨脱M6.3地震的静态库伦应力的影响。 结果表明: 1)当接收断层和发震断层一致时, 各深度处于静态库伦破裂应力变化正值区的余震比例较小, 正值区余震的震源机制和主震相似, 分析认为是主震继续破裂所导致。 2)各深度大部分余震处于静态库伦破裂应力变化的负值区, 考虑可能是由于这些余震和主震的震源机制差异较大所致。 通过选择最容易发生错动的断层面作为接收断层面计算静态库伦破裂应力变化的结果可发现, 不同深度的余震均处于静态库伦破裂应力变化大于触发阈值0.01MPa的范围内, 说明所有余震均有被触发的可能性。 推测处于静态库伦破裂应力变化负值区的余震可能发生在主震剧烈破裂导致的破碎带内, 从而导致其震源机制解与主震存在较大差异。 破碎带的存在会显著降低震源区的弹性常数值, 文中的结果也说明考虑震源区内外弹性常数的差异对准确估计震源区内地震之间的静态库伦应力影响是有益的。 3)根据不同机构和作者利用不同资料和方法给出的墨脱地震的震源机制解, 计算得到一个与这些震源机制差别最小的中心震源机制解, 进而据此中心震源机制解定量计算了米林地震对墨脱地震的静态库伦应力影响。 结果显示, 米林地震在墨脱地震中心震源机制解的2个节面上产生的静态库伦破裂应力变化的量值都很小, 说明墨脱地震是一次独立于米林地震的事件。

关键词: 米林M6.9地震, 破裂模型, 接收断层, 静态库伦破裂应力变化, 墨脱M6.3地震

CLC Number: