[1] 安卫平, 赵晋泉, 闫小兵, 等. 2008. 岷江断裂羌阳桥一带古堰塞湖沉积及构造变形与古地震[J]. 地震地质, 30(4): 980—988. AN Wei-ping, ZHAO Jin-quan, YAN Xiao-bing, et al. 2008. Tectonic deformation of lacustrine sediments in Qiangyang on the Minjiang fault zone and ancient earthquake[J]. Seismology and Geology, 30(4): 980—988(in Chinese). [2] 戴朝成, 郑荣才, 朱如凯, 等. 2009. 四川类前陆盆地须家河组震积岩的发现及其研究意义[J]. 地球科学进展, 24(2): 172—180. DAI Chao-cheng, ZHENG Rong-cai, ZHU Ru-kai, et al. 2009. The discovery and significance of seismites from Xujiahe Formation in Sichuan analogous foreland basin[J]. Advances in Earth Science, 24(2): 172—180(in Chinese). [3] 杜远生, 韩欣. 2000. 论震积作用和震积岩[J]. 地球科学进展, 15(4): 389—394. DU Yuan-sheng, HAN Xin.2000. Seismo-deposition and seismites[J]. Advance in Earth Sciences, 15(4): 389—394(in Chinese). [4] 冯先岳. 1989. 地震振动液化形变的研究[J]. 内陆地震, 3(4): 299—307. FENG Xian-yue.1989. Study on the deformation caused by seismic vibrational liquefaction[J]. Inland Earthquake, 3(4): 299—307(in Chinese). [5] 冯增昭. 2018. Seismites、 地震岩、 震积岩和软沉积物变形构造等术语问题的讨论[J]. 中国科技术语, 20(6): 28—32, 38. FENG Zeng-zhao.2018. Discussions on seismites, “dizhenyan”(地震岩), “zhenjiyan”(震积岩), soft-sediment deformation structures, etc[J]. China Terminology, 20(6): 28—32, 38(in Chinese). [6] 龚正, 李海兵, 孙知明, 等. 2013. 阿尔金断裂带中侏罗世走滑活动及其断裂规模的探讨: 来自软沉积物变形的证据[J]. 岩石学报, 29(6): 2233—2250. GONG Zheng, LI Hai-bing, SUN Zhi-ming, et al. 2013. Middle Jurassic strike-slip movement and fault scale of the Altyn Tagh fault system: Evidence from the soft sediment deformation[J]. Acta Petrologica Sinica, 29(6): 2233—2250(in Chinese). [7] 国家地震局地质研究所, 云南省地震局. 1990. 滇西北地区活动断裂 [M]. 北京: 地震出版社: 321. Institute of Geology, State Seismological Bureau, Seismological Bureau of Yunnan Province. 1990. The Active Faults in Northwest Yunnan [M]. Seismological Press, Beijing: 321(in Chinese). [8] 黄小巾, 吴中海, 黄小龙, 等. 2018. 滇西北程海-宾川断裂带第四纪分段活动性的构造地貌表现与限定[J]. 地球科学, 43(12): 387—406. HUANG Xiao-jin, WU Zhong-hai, HUANG Xiao-long, et al. 2018. Tectonic geomorphology constrains on the Quaternary activity and segmentation along Chenghai-Binchuan fault zone in northwest Yunnan, China[J]. Earth Science, 43(12): 387—406(in Chinese). [9] 李玶, 刘行松, 杨美娥, 等. 1985. 昔格达层构造变形形成因素分析[J]. 中国地震, 1(3): 41—48. LI Ping, LIU Xing-song, YANG Mei-e, et al. 1985. Analysis on the formative factors of the tectonic deformation of the Xigeda Group[J]. Earthquake Research in China, 1(3): 41—48(in Chinese). [10] 李乾坤, 徐则民, 张家明. 2011. 永胜金沙江寨子村古滑坡和古堰塞湖的发现[J]. 山地学报, 29(6): 729—737. LI Qian-kun, XU Ze-min, ZHANG Jia-ming.2011. The ancient landslide and dammed lake found in the Jinsha River near Zhaizicun, Yongsheng, Yunnan, China[J]. Journal of Mountain Science, 29(6): 729—737(in Chinese). [11] 李艳豪. 2015. 岷江上游理县晚更新世湖相沉积的年代学和地震事件初步研究[D]. 北京: 中国地震局地质研究所. LI Yan-hao.2015. A preliminary study of chronology and seismic event for the lacustrine sediments at Lixian in the upper reaches of the Min River during the Late Pleistocene[D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese). [12] 刘慧军, 聂德新. 2004. 昔格达地层研究综述[J]. 地球科学进展, 6(19): 80—82. LIU Hui-jun, NIE De-xin.2004. The overview of the Xigeda strata study[J]. Advances in Earth Science, 6(19): 80—82(in Chinese). [13] 罗运利, 刘东生. 1998. 昔格达组沉积环境演化与旋回地层学研究[J]. 第四纪研究, (4): 373. LUO Yun-li, LIU Dong-sheng.1998. Sedimentary environment evolution and cycle stratigraphy of Xigeda formation[J]. Quaternary Sciences, (4): 373(in Chinese). [14] 乔秀夫, 李海兵. 2008. 枕、 球-枕构造: 地层中的古地震记录[J]. 地质论评, 54(6): 721—730. QIAO Xiu-fu, LI Hai-bing.2008. Pillow, ball-and-pillow structures: Paleo-seismic records within strata[J]. Geological Review, 54(6): 721—730(in Chinese). [15] 苏德辰, 孙爱萍. 2011. 北京永定河谷中元古界雾迷山组软沉积物变形与古地震发生频率[J]. 古地理学报, 13(6): 591—614. SU De-chen, SUN Ai-ping.2011. Soft-sediment deformation and occurrence frequency of palaeoearthquake in the Mesoproterozoic Wumishan Formation, Yongding River Valley, Beijing[J]. Journal of Palaeogeography, 13(6): 591—614(in Chinese). [16] 苏德辰, 孙爱萍, 郑桂森, 等. 2013. 北京西山寒武系滑塌构造的初步研究[J]. 地质学报, 87(8): 1067—1075. SU De-chen, SUN Ai-ping, ZHENG Gui-sen, et al. 2013. A preliminary research on the slump structures in Cambrian System in the Western Hills of Beijing[J]. Acta Geologica Sinica, 87(8): 1067—1075(in Chinese). [17] 田洪水, Van Loon A J, 王华林, 等. 2016. 大盛群中的震积岩: 郯庐断裂带强构造与地震活动新证据[J]. 中国科学(D辑), 46(1): 79—96. TIAN Hong-shui, Van Loon A J, WANG Hua-lin, et al. 2016. Seismites in the Dasheng Group: New evidences of strong tectonic and earthquake activities of the Tanlu fault zone[J]. Science in China(Ser D), 46(1): 79—96(in Chinese). [18] 王萍, 邱维理, 张斌. 2009. 川西杂谷脑 “冰碛物”中软沉积物变形构造的成因[J]. 第四纪研究, 29(3): 484—493. WANG Ping, QIU Wei-li, ZHANG Bin.2009. Origin of deformational structures of soft sediments in moraines of the Zagunao area, western Sichuan[J]. Quaternary Sciences, 29(3): 484—493(in Chinese). [19] 许述礼. 1990. 昔格达层变形特征及其成因[J]. 四川地震, (3): 63—64. XU Shu-li.1990. Deformation characteristics and genesis of Xigeda Layer[J]. Earthquake Research in Sichuan, (3): 63—64(in Chinese). [20] 徐锡伟, 闻学泽, 郑荣章, 等. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑), 33(S1): 151—162. XU Xi-wei, WEN Xue-ze, ZHENG Rong-zhang, et al. 2003. A new tectonic style for active blocks of Sichuan-Yunnan region and its power source[J]. Science in China(Ser D), 33(Sl): 151—162(in Chinese). [21] 徐则民, 刘文连. 2011. 昔格达组地层研究中需要注意的若干关键问题[J]. 地学前缘, 18(5): 256—270. XU Ze-min, LIU Wen-lian.2011. Some problems in the study of the genesis of Xigeda Formation[J]. Earth Science Frontiers, 18(5): 256—270(in Chinese). [22] 杨文涛, 王敏. 2017. 河南南召盆地上三叠统太山庙组软沉积物变形构造及其古地理意义[J]. 古地理学报, 19(1): 117—128. YANG Wen-tao, WANG Min.2017. Soft-sediment deformation structures from the Upper Triassic Taishanmiao Formation of the Nanzhao Basin in Henan Province and their palaeogeographic significances[J]. Journal of Palaeogeography, 19(1): 117—128(in Chinese). [23] 袁复礼. 1958. 中国西南区第四纪地质的一些资料[J]. 第四纪研究, 1(2): 130—140. YUAN Fu-li.1958. Some information on Quaternary geology in Southwest China[J]. Quaternary Sciences, 1(2): 130—140(in Chinese). [24] 张斌, 王萍, 王建存. 2011. 岷江上游堰塞湖沉积中软沉积物变形构造成因讨论[J]. 地震研究, 34(1): 67—74. ZHANG Bin, WANG Ping, WANG Jian-cun.2011. Discussion of the origin of the soft-sediment deformation structures in paleo-dammed lake sediments in the upper reaches of the Minjiang River[J]. Journal of Seismological Research, 34(1): 67—74(in Chinese). [25] 钟建华,宋冠先, 倪良田, 等. 2019. 黄河下游与黄河三角洲现代非地震变形层的研究[J]. 沉积学报, 37(2):239—253. ZHONG Jian-hua, SONG guan-xian, NI Liang-tian, ,et al..2019. Modern non-seismically induced deformation bedding in the lower reaches of the Yellow River and Yellow River delta[J]. Acta Sedimentologica Sinica, 37(2):239—253(in Chinese). [26] 钟宁. 2017. 岷江上游晚更新世湖相沉积的古地震及物源分析[D]. 北京: 中国地震局地质研究所. ZHONG Ning.2017. Earthquake and provenance analysis of the lacustrine sediments in the upper reaches of the Min River during the Late Pleistocene[D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese). [27] 朱正峰, 苏怀, 董铭, 等. 2018. 金沙江寨子村古堰塞湖沉积年代研究[J]. 第四纪研究, 38(1): 145—150. ZHU Zheng-feng, SU Huai, DONG Ming, et al. 2018. The age of Zhaizicun ancient dammed lake sediments in Jinsha River[J]. Quaternary Sciences, 38(1): 145—150(in Chinese). [28] Berra F, Felletti F.2011. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures(continental Lower Permian sediments, southern Alps, northern Italy): Stratigraphic significance[J]. Sedimentary Geology, 235(3-4): 249—263. [29] Bhattacharya H N, Bandyopadhyay S.1998. Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India[J]. Sedimentary Geology, 119(3): 239—252. [30] Du Y, Shi G R, Gong Y.2005. Earthquake-controlled event deposits and its tectonic significance from the Middle Permian Wandrawandian siltstone in the Sydney Basin, Australia[J]. Science in China, 48(9): 1337—1346. [31] Gan W, Zhang P, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 112(B8): B08416. [32] Garcia-Tortosa F J, Alfaro P, Gibert L, et al. 2011. Seismically induced slump on an extremely gentle slope(<1)of the Pleistocene Tecopa paleolake(California)[J]. Geology, 39(11): 1055—1058. [33] Gibert L, Alfaro P, García-Tortosa F J, et al. 2011. Superposed deformed beds produced by single earthquakes(Tecopa Basin, California): Insights into paleoseismology[J]. Sedimentary Geology, 235(3-4): 148—159. [34] Jiang H, Mao X, Xu H, et al. 2014. Provenance and earthquake signature of the last deglacial Xinmocun lacustrine sediments at Diexi, East Tibet[J]. Geomorphology, 204(1): 518—531. [35] Jiang H, Zhong N, Li Y, et al. 2016. Soft sediment deformation structures in the Lixian lacustrine sediments, eastern Tibetan plateau and implications for postglacial seismic activity[J]. Sedimentary Geology, 344:123—134. [36] Jones A P, Omoto K.2000. Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: A case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan[J]. Sedimentology, 47(6): 1211—1226. [37] Małgorzata P J, Szymon B, Andreas B, et al. 2018. Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass(Rügen Island, SW Baltic Sea)[J]. Tectonophysics, 745(1): 338—348. [38] McLaughlin P I, Brett C E.2004. Eustatic and tectonic control on the distribution of marine seismites: Examples from the Upper Ordovician of Kentucky, USA[J]. Sedimentary Geology, 168(3-4): 165—192. [39] Montenat C, Barrier P, Ott d'Estevou P, et al. 2007. Seismites: An attempt at critical analysis and classification[J]. Sedimentary Geology, 196(1-4): 5—30. [40] Moretti M.2000. Soft-sediment deformation structures interpreted as seismites in middle-late Pleistocene aeolian deposits(Apulian foreland, southern Italy)[J]. Sedimentary Geology, 135(1-4): 167—179. [41] Moretti M, Sabato L.2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant?Arcangelo Basin(Southern Italy): Seismic shock vs. overloading[J]. Sedimentary Geology, 196(1-4): 31—45. [42] Owen G, Moretti M.2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands[J]. Sedimentary Geology, 235(3-4): 141—147. [43] Rana N, Sati S P, Sundriyal Y, et al. 2016. Genesis and implication of soft-sediment deformation structures in high-energy fluvial deposits of the Alaknanda Valley, Garhwal Himalaya, India[J]. Sedimentary Geology, 344:263—276. [44] Rodríguez-Pascua M A, Calvo J P, De Vicente G, et al. 2000. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene[J]. Sedimentary Geology, 135(1): 117—135. [45] Rodríguez-Pascua M A, Vicente G De, Calvo J P, et al. 2003. Similarities between recent seismic activity and paleoseismites during the late Miocene in the external Betic Chain(Spain): Relationship by ‘b’ value and the fractal dimension[J]. Journal of Structural Geology, 25(5): 749—763. [46] Rossetti D F, Bezerra F H R, Góes A M, et al. 2011. Sediment deformation in Miocene and post-Miocene strata, northeastern Brazil: Evidence for paleoseismicity in a passive margin[J]. Sedimentary Geology, 235(3-4): 172—187. [47] Shiki T, Cita M B, Gorsline D S.2000. Sedimentary features of seismites, seismo-turbidites and tsunamiites—an introduction[J]. Sedimentary Geology, 135(1-4): vii—ix. [48] Simms M J.2003. Uniquely extensive seismite from the latest Triassic of the United Kingdom: Evidence for bolide impact?[J]. Geology, 31(6): 557—560. [49] Spalluto L, Moretti M, Festa V, et al. 2007. Seismically-induced slumps in Lower-Maastrichtian peritidal carbonates of the Apulian Platform(southern Italy)[J]. Sedimentary Geology, 196(1-4): 81—98. [50] Tian H S, Zhang B H, Zhang S H, et al. 2014. Neogene seismites and seismic volcanic rocks in the Linqu area, Shandong Province, E China[J]. Geologos, 20(2): 125—137. |