地震地质 ›› 2005, Vol. 27 ›› Issue (1): 98-104.

• 研究论文 • 上一篇    下一篇

利用多分辨率小波网络进行地震资料反演

宋维琪, 赵万金, 吴华, 冯磊   

  1. 石油大学(华东)地球资源与信息学院, 山东, 257061
  • 收稿日期:2003-03-06 修回日期:2004-04-20 出版日期:2005-03-03 发布日期:2009-10-26
  • 作者简介:宋维琪,男,1964年生,2002年在石油大学获得博士学位,副教授,硕士生导师,主要从事综合地球物理资料解释的教学和科研工作,主要研究方向为隐蔽油气藏预测及电法勘探,电话:0546-8391330,E-mail:songwq@hdpu.edu.cn.

INVERSION OF SEISMIC DATA BY USING MULTI-RESOLUTION WAVELET NETWORKS

SONG Wei-qi, ZHAO Wan-jin, WU Hua, FENG Lei   

  1. Earth Resources and Information Institute, China University of Petroleum, Dongying 257061, China
  • Received:2003-03-06 Revised:2004-04-20 Online:2005-03-03 Published:2009-10-26

摘要: 在讨论小波网络理论方法的基础上,研究了利用地震纪录小波多尺度分解属性资料进行虚井声波时差反演的技术方法。分析了利用地震信号进行小波分解和网络学习、训练的理论方法。研究中发现:对于相邻的地震道,较小一段的相似性比整个地震道的相似性要好。据此,利用小波时-频分析技术方法,可以把相邻道的信息外推到其它地震道上。通过以上综合研究及对实际资料进行反演计算、分析,认为小波网络与人工神经网络相比其网络结构要容易选定,并且收敛速度快。同时,利用地震资料分段时-频分析的相似性较好和小波网络学习、训练及记忆能力较强的特点,可以较好地把井旁道的高、低频信息转换到相邻道上。这样在提高分辨率的同时,又增加了反演结果的真实可靠性。

关键词: 小波网络, 小波变换, 分段时-频分析, 地震资料反演

Abstract: In the light of the theoretical technique of wavelet networks,we study the method for inversing the time difference of artificial acoustic wave (Δt) by using multi-scale decompositon of wavelet from seismic records. We analyze also the theoretical method of wavelet decomposition,as well as network learning and training from seismic signals. In these studies,we find that for the adjacent seismic channels,the similarity of a smaller section is better than that of the whole channel. Therefore,the information obtained from the adjacent seismic channel can be extrapolated to the other channel by using time-frequency analysis method of wavelet. The results of the afore-mentioned studies,as well as the inversion and calculation of practical seismic data indicate that the structure of the wavelet network is much easier to be determined than that of the artificial neural network,while the convergence of wavelet network is faster than that of artificial neural network. In addition,the high and low frequency information of the adjacent channel can be transformed to the other seismic channel by taking the advantage of better similarity of subsection time-frequency analysis of seismic data,as well as the capability of learning,training and memorizing of the wavelet network. In this way,we may enhance not only the resolution capability but also the reliability of seismic data inversion.

Key words: wavelet networks, wavelet transfer, subsection time-frequency analysis, seismic data inversion

中图分类号: