[1] |
刘世民, 张雷, 何昌荣. 2023. 高压流体条件下叶蛇纹石摩擦特性及其对俯冲带慢滑移事件的启示[J]. 地球物理学报, 66(4): 1334—1347.
|
|
LIU Shi-min, ZHANG Lei, HE Chang-rong. 2023. Frictional properties of antigorite under high pore-fluid pressure and implications for slow-slip events in subduction zones[J]. Chinese Journal of Geophysics, 66(4): 1334—1347(in Chinese).
|
[2] |
张雷, 何昌荣. 2014. 黏土矿物的摩擦滑动特性及对断层力学性质的影响[J]. 地球物理学进展, 29(2): 620—629.
|
|
ZHANG Lei, HE Chang-rong. 2014. Frictional properties of clay minerals and their effect on fault behavior[J]. Progress in Geophysics, 29(2): 620—629(in Chinese).
|
[3] |
Abers G A, Nakajima J, van Keken P E, et al. 2013. Thermal-petrological controls on the location of earthquakes within subducting plates[J]. Earth and Planetary Science Letters, 369-370: 178—187.
|
[4] |
Bezacier L, Reynard B, Bass J D, et al. 2010. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones[J]. Earth and Planetary Science Letters, 289(1-2): 198—208.
|
[5] |
Bose K, Navrotsky A. 1998. Thermochemistry and phase equilibria of hydrous phases in the system MgO-SiO2-H2O: Implications for volatile transport to the mantle[J]. Journal of Geophysical Research: Solid Earth, 103(B5): 9713—9719.
|
[6] |
Boudier F, Baronnet A, Mainprice D. 2010. Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite[J]. Journal of Petrology, 51(1-2): 495—512.
|
[7] |
Bromiley G D, Pawley A R. 2003. The stability of antigorite in the systems MgO-SiO2-H2O(MSH) and MgO-Al2O3-SiO2-H2O(MASH): The effects of Al3+ substitution on high-pressure stability[J]. American Mineralogist, 88(1): 99—108.
|
[8] |
Brownlee S J, Hacker B R, Harlow G E, et al. 2013. Seismic signatures of a hydrated mantle wedge from antigorite crystal-preferred orientation(CPO)[J]. Earth and Planetary Science Letters, 375(1): 395—407.
|
[9] |
Candela P A, Crummett C D, Earnest D J, et al. 2007. Low-pressure decomposition of chrysotile as a function of time and temperature[J]. American Mineralogist, 92(10): 1704—1713.
|
[10] |
Carlson, Miller R L. 2003. Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites[J]. Geophysical Research Letters, 30(5): 1250—1253.
|
[11] |
Caruso L J, Chernosky J V. 1979. The stability of lizardite[J]. The Canadian Mineralogist, 17(4): 757—769.
|
[12] |
Chernak L J, Hirth G. 2010. Deformation of antigorite serpentinite at high temperature and pressure[J]. Earth and Planetary Science Letters, 296(1-2): 23—33.
|
[13] |
Chollet M, Daniel I, Koga K T. 2011. Kinetics and mechanism of antigorite dehydration: Implications for subduction zone seismicity[J]. Journal of Geophysical Research: Solid Earth, 116(B4): B04203.
|
[14] |
Christensen N I. 2004. Serpentinites, peridotites, and seismology[J]. International Geology Review, 46(9): 795—816.
|
[15] |
Coleman R G. 1971. Petrologic and geophysical nature of serpentinites[J]. Geological Society of America Bulletin, 82(4): 897—918.
|
[16] |
Deer W A, Howie R A, Zussman J. 1997. Rock-Forming Minerals. 1A Orthosilicates[M]. Geological Society of London, London.
|
[17] |
Dengo C A, Logan J M. 1981. Implications of the mechanical and frictional behavior of serpentinite to seismogenic faulting[J]. Journal of Geophysical Research: Solid Earth, 86(B11): 10771—10782.
|
[18] |
Dieterich J H. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations[J]. Journal of Geophysical Research, 84: 2161—2168.
|
[19] |
Dieterich J H, Linker M L. 1992. Fault stability under conditions of variable normal stress[J]. Geophysical Research Letters, 19(16): 1691—1694.
|
[20] |
Dietz R S. 1963. Alpine serpentines as oceanic rind fragments[J]. Geology Society of America Bulletin, 74(7): 947—952.
|
[21] |
Eggler D H, Ehmann A N. 2010. Rate of antigorite dehydration at 2GPa applied to subduction zones[J]. American Mineralogist, 95(5-6): 761—769.
|
[22] |
Escartin J, Hirth G, Evans B. 1997. Nondilatant brittle deformation of serpentinites: Implications for Mohr-Coulomb theory and the strength of faults[J]. Journal of Geophysical Research: Solid Earth, 102(B2): 2897—2913.
|
[23] |
Evans B W. 2004. The serpentinite multisystem revisited: Chrysotile is metastable[J]. International Geology Review, 46(6): 479—506.
|
[24] |
Evans B W, Johannes W, Oterdoom H, et al. 1976. Stability of chrysotile and antigorite in the serpentinite multisystem[J]. Schweizerische Mineralogische und Petrographische Mitteilungen, 56(1): 79—93.
|
[25] |
Frank M R, Candela P A, Earnest D J, et al. 2005. Experimental study of the thermal decomposition of lizardite up to 973K[J]. Geology Society America Abstrat With Programs, 37(7): 271.
|
[26] |
Hacker B R, Peacock S M, Abers G A, et al. 2003. Subduction factory -2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?[J]. Journal of Geophysical Research, 108(B1): 2030.
|
[27] |
Hilairet N, Daniel I, Reynard B. 2006. Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones[J]. Geophysical Research Letters, 33(2): L02302.
|
[28] |
Hilairet N, Reynard B, Wang Y, et al. 2007. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction[J]. Science, 318(5858): 1910—1913.
PMID
|
[29] |
Horen H, Zamora M, Dubuisson G. 1996. Seismic waves velocities and anisotropy in serpentinized peridotites from xigaze ophiolite: Abundance of serpentine in slow spreading ridge[J]. Geophysical Research Letters, 23(1): 9—12.
|
[30] |
Hyndman R D, Peacock S M. 2003. Serpentinization of the forearc mantle[J]. Earth and Planetary Science Letters, 212(3-4): 417—432.
|
[31] |
Hyndman R D, Yamano M, Oleskevich D A. 1997. The seismogenic zone of subduction thrust faults[J]. Island Arc, 6(3): 244—260.
|
[32] |
Inoue T, Yoshimi I, Yamada A, et al. 2009. Time-resolved Xray diffraction analysis of the experimental dehydration of serpentine at high pressure[J]. Journal of Mineralogical and Petrological Sciences, 104(2): 105—109.
|
[33] |
Jung H. 2011. Seismic anisotropy produced by serpentine inmantle wedge[J]. Earth and Planetary Science Letters, 307(3-4): 535—543.
|
[34] |
Jung H, Fei Y, Silver P G, et al. 2009. Frictional sliding in serpentine at very high pressure[J]. Earth and Planetary Science Letters, 277(1-2): 273—279.
|
[35] |
Katayama I, Hirauchi K I, Michibayashi K, et al. 2009. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge[J]. Nature, 461(7267): 1114—1117.
|
[36] |
Kawakatsu H, Watada S. 2007. Seismic evidence for deep-water transportation in the mantle[J]. Science, 316(5830): 1468—1471.
PMID
|
[37] |
Komabayashi T, Hirose K, Funakoshi K, et al. 2005. Stability of phase A in antigorite(serpentine)composition determined by in situ X-ray pressure observations[J]. Physics of The Earth and Planetary Interious, 151(3-4): 276—289.
|
[38] |
Mookherjee M, Capitani G C. 2011. Trench parallel anisotropy and large delay times: Elasticity and anisotropy of antigorite at high pressures[J]. Geophysical Research Letters, 38(9): L09315.
|
[39] |
Moore D E, Lockner D A. 2007a. Comparative deformation behavior of minerals in serpentinized ultramafic rock: Application to the slab-mantle interface in subduction zones[J]. International Geology Review, 49(5): 401—415.
|
[40] |
Moore D E, Lockner D A. 2008. Talc friction in the temperature range 25℃-400℃: Relevance for fault-zone weakening[J]. Tectonophysics, 449(1-4): 120—132.
|
[41] |
Moore D E, Lockner D A, Ma S, et al. 1997. Strengths of serpentinite gouges at elevated temperatures[J]. Journal of Geophysical Research: Solid Earth, 102(B7): 14787—14801.
|
[42] |
Moore D E, Lockner D A, Tanaka H, et al. 2004. Coefficient of friction of chrysotile gouge at seismogenic depths[J]. International Geology Review, 46(5): 385—398.
|
[43] |
Moore D E, Rymer M J. 2007b. Talc bearing serpentinite and the creeping section of the San Andreas Fault[J]. Nature, 448(7155): 795—797.
|
[44] |
Morrow C A, Moore D E, Lockner D A. 2000. The effect of mineral bond strength and adsorbed water on fault gouge frictional strength[J]. Geophysical Research Letters, 27(6): 815—818.
|
[45] |
Nishii A, Wallis S R, Mizukami T, et al. 2011. Subduction related antigorite CPO patterns from forearc mantle in the Sanbagawa belt, southwest Japan[J]. Journal of Structural Geology, 33(10): 1436—1445.
|
[46] |
Obara K. 2002. Nonvolcanic deep tremor associated with subduction in southwest Japan[J]. Science, 296(5573): 1679—1681.
PMID
|
[47] |
O’Hanley D S. 1996. Serpentinites: Records of Tectonic and Petrological History[M]. Oxford University Press, New York.
|
[48] |
O’Hanley D S, Chernosky J V, Wicks J F. 1989. The stability of lizardite and chrysotile[J]. Canadian Mineralogist, 27(3): 483—494.
|
[49] |
Okazaki K, Katayama I. 2015. Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes[J]. Geophysical Research Letters, 42(4): 1099—1104.
|
[50] |
Okazaki K, Katayama I, Noda H. 2013. Shear-induced permeability anisotropy of simulated serpentinite gouge produced by triaxial deformation experiments[J]. Geophysical Research Letters, 40(7): 1290—1294.
|
[51] |
Peacock S M. 1990. Fluid processes in subduction zones[J]. Science, 248(4953): 329—337.
DOI
PMID
|
[52] |
Peacock S M. 1993. Large-scale hydration of the lithosphere above subducting slabs[J]. Chemical Geology, 108(1-4): 49—59.
|
[53] |
Peacock S M. 2001. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle?[J]. Geology, 29(4): 299—302.
|
[54] |
Perrillat J P, Daniel I, Koga K T, et al. 2005. Kinetics of antigorite dehydration: A real-time X-ray diffraction study[J]. Earth and Planetary Science Letters, 236(3-4): 899—913.
|
[55] |
Raleigh C B, Paterson M S. 1965. Experimental deformation of serpentinite and its tectonic implications[J]. Journal of Geophysical Research, 70(16): 3965—3985.
|
[56] |
Reinen L A, Weeks J D, Tullis T E. 1994. The frictional behavior of lizardite and antigorite serpentinites: Experiments, constitutive models, and implications for natural faults[J]. Pure and Applied Geophysics, 143(1-3): 317—358.
|
[57] |
Reinen L A, Weeks J D, Tullis T E. 1991. The frictional behavior of serpentinite: Implications for aseismic creep on shallow crustal faults[J]. Geophysical Research Letters, 18(10): 1921—1924.
|
[58] |
Renard F, Ortoleva P. 1997. Water films at grain-grain contacts: Debye-Hückel, osmotic model of stress, salinity, and mineralogy dependence[J]. Geochimica Et Cosmochimica Acta, 61(10): 1963—1970.
|
[59] |
Reynard B. 2013. Serpentine in active subduction zones[J]. Lithos, 178(15): 171—185.
|
[60] |
Ruina A. 1983. Slip instability and state variable friction laws[J]. Journal of Geophysical Research: Solid Earth, 88(B12): 10359—10370.
|
[61] |
Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation[J]. Earth and Planetary Science Letters, 163(1-4): 361—379.
|
[62] |
Schwartz S, Guillot S, Reynard B, et al. 2013. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites[J]. Lithos, 178(15): 197—210.
|
[63] |
Seno T, Zhao D, Kobayashi Y, et al. 2001. Dehydration in serpentinized slab mantle: Seismic evidence from southwest Japan[J]. Earth Planets Space, 53(9): 861—871.
|
[64] |
Shelly D R, Beroza G C, Ide S, et al. 2006. Low-frequency earthquakes in Shikoku, Japan and their relationship to episodic tremor and slip[J]. Nature, 442(7099): 188—191.
|
[65] |
Shibazaki B, Iio Y. 2003. On the physical mechanism of silent slip events along the deeper part of the seismogenic zone[J]. Geophysical Research Letters, 30(9): 1489—1492.
|
[66] |
Takahashi M, Uehara S I, Mizoguchi K, et al. 2011. On the transient response of serpentine(antigorite)gouge to stepwise changes in slip velocity under high-temperature conditions[J]. Journal of Geophysical Research, 116(B10): B10405.
|
[67] |
Tse S T, Rice J R. 1986. Crustal earthquake instability in relationship to the depth variation of frictional slip properties[J]. Journal of Geophysical Research, 91(B9): 9452—9472.
|
[68] |
Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism[J]. Science, 268(5212): 858—861.
PMID
|
[69] |
Wada I, Wang K, He J, et al. 2008. Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization[J]. Journal of Geophysical Research, 113(B4): B04402.
|
[70] |
Wenner D B, Taylor H P. 1971. Temperatures of serpentinization of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite[J]. Contributions to Mineralogy and Petrology, 32(3): 165—185.
|
[71] |
Wicks F J, Whittaker E J. 1977. Serpentine textures and serpentinization[J]. The Canadian Mineralogist, 15(4): 459—488.
|
[72] |
Wunder B, Schreyer W. 1997. Antigorite: High-pressure stability in the system MgO-SiO2-H2O(MSH)[J]. Lithos, 41(1-3): 213—227.
|