[1] |
胡书凡, 赵永辉, 吴健生, 等. 2021. 横向非均匀介质多道瑞雷波频散曲线正演[J]. 地球物理学报, 64(5): 1699—1709.
DOI
|
|
HU Shu-fan, ZHAO Yong-hui, WU Jian-sheng, et al. 2021. Forward modeling of multichannel Rayleigh wave dispersion curve in laterally inhomogeneous media[J]. Chinese Journal of Geophysics, 64(5): 1699—1709 (in Chinese).
|
[2] |
蔺玉曌, 李振春, 张凯, 等. 2020. 相位空间内的解缠绕相位反演[J]. 地球物理学报, 63(7): 2710—2721.
DOI
|
|
LIN Yu-zhao, LI Zhen-chun, ZHANG Kai, et al. 2020. Full unwrapped phase inversion in the phase space[J]. Chinese Journal of Geophysics, 63(7): 2710—2721 (in Chinese).
|
[3] |
刘辉, 李静, 迟本鑫. 2022. 基于应变率的分布式光纤声波传感全波形反演研究[J]. 地球物理学报, 65(9): 3584—3598.
|
|
LIU Hui, LI Jing, CHI Ben-xin. 2022. Study of distributed acoustic sensing data waveform inversion based on strain rate[J]. Chinese Journal of Geophysics, 65(9): 3584—3598 (in Chinese).
|
[4] |
Bohlen T. 2002. Parallel 3-D viscoelastic finite difference seismic modelling[J]. Computers & Geosciences, 28(8): 887—899.
DOI
URL
|
[5] |
Bozdağ E, Trampert J, Tromp J. 2011. Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements[J]. Geophysical Journal International, 185(2): 845—870.
DOI
URL
|
[6] |
Fichtner A, Kennett B L, Igel H, et al. 2008. Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain[J]. Geophysical Journal International, 175(2): 665—685.
DOI
URL
|
[7] |
Forbriger T, Groos L, Schäfer M. 2014. Line-source simulation for shallow-seismic data. Part 1: Theoretical background[J]. Geophysical Journal International, 198(3): 1387—1404.
DOI
URL
|
[8] |
Groos L, Schäfer M, Forbriger T, et al. 2017. Application of a complete workflow for 2D elastic full-waveform inversion to recorded shallow-seismic Rayleigh waves[J]. Geophysics, 82(2): R109—R117.
DOI
URL
|
[9] |
Karagoz O, Chimoto K, Citak S, et al. 2015. Estimation of shallow S-wave velocity structure and site response characteristics by microtremor array measurements in Tekirdag region NW Turkey[J]. Earth, Planets and Space, 67(176): 1—17.
DOI
URL
|
[10] |
Köhn D, Wilken D, De Nil D, et al. 2019. Comparison of time-domain SH waveform inversion strategies based on sequential low and bandpass filtered data for improved resolution in near-surface prospecting[J]. Journal of Applied Geophysics, 160(1): 69—83.
DOI
URL
|
[11] |
Komatitsch D, Martin R. 2007. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[J]. Geophysics, 72(5): SM155—SM167.
DOI
URL
|
[12] |
Konstantaki L A, Ghose R, Draganov D, et al. 2016. Wet and gassy zones in a municipal landfill from P- and S-wave velocity fields[J]. Geophysics, 81(6): EN75—EN86.
DOI
URL
|
[13] |
Li J, Feng Z, Schuster G. 2017. Wave-equation dispersion inversion[J]. Geophysical Journal International, 208(3): 1567—1578.
DOI
URL
|
[14] |
Liu J, Draganov D, Ghose R. 2018. Seismic interferometry facilitating the imaging of shallow shear-wave reflections hidden beneath surface waves[J]. Near Surface Geophysics, 16(3): 372—382.
DOI
URL
|
[15] |
Liu J, Draganov D, Ghose R. 2022a. Reducing near-surface artifacts from the crossline direction by full-waveform inversion of interferometric surface waves[J]. Geophysics, 87(6): R443—R452.
DOI
URL
|
[16] |
Liu J, Draganov D, Ghose R, et al. 2021. Near-surface diffractor detection at archaeological sites based on an interferometric workflow[J]. Geophysics, 86(3): WA1—WA11.
DOI
URL
|
[17] |
Liu J, Ghose R, Draganov D. 2022b. Characterizing near-surface structures at the Ostia archaeological site based on instantaneous-phase coherency inversion[J]. Geophysics, 87(4): R337—R348.
DOI
URL
|
[18] |
Luo J, Wu R S, Gao F. 2018. Time-domain full waveform inversion using instantaneous phase information with damping[J]. Journal of Geophysics and Engineering, 15(3): 1032—1041.
DOI
URL
|
[19] |
Maurer H, Greenhalgh S A, Manukyan E, et al. 2012. Receiver-coupling effects in seismic waveform inversions[J]. Geophysics, 77(1): R57—R63.
DOI
URL
|
[20] |
Mecking R, Köhn D, Meinecke M, et al. 2021. Cavity detection by SH-wave full-waveform inversion: A reflection-focused approach[J]. Geophysics, 86(3): WA123—WA137.
DOI
URL
|
[21] |
Pan W, Qu L, Innanen K A, et al. 2023. Imaging near-surface S-wave velocity and attenuation models by full-waveform inversion with distributed acoustic sensing-recorded surface waves[J]. Geophysics, 88(1): R65—R78.
DOI
URL
|
[22] |
Pan Y, Gao L, Bohlen T. 2019. High-resolution characterization of near-surface structures by surface-wave inversions: From dispersion curve to full waveform[J]. Surveys in Geophysics, 40(1): 167—195.
DOI
|
[23] |
Pérez Solano C A, Donno D, Chauris H. 2014. Alternative waveform inversion for surface wave analysis in 2-D media[J]. Geophysical Journal International, 198(3): 1359—1372.
DOI
URL
|
[24] |
Schimmel M, Paulssen H. 1997. Noise reduction and detection of weak, coherent signals through phase-weighted stacks[J]. Geophysical Journal International, 130(2): 497—505.
DOI
URL
|
[25] |
Tarantola A. 1984. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 49(8): 1259—1266.
DOI
URL
|
[26] |
Virieux J, Operto S. 2009. An overview of full-waveform inversion in exploration geophysics[J]. Geophysics, 74(6): WCC1—WCC26.
DOI
URL
|
[27] |
Wu R S, Luo J, Wu B. 2014. Seismic envelope inversion and modulation signal model[J]. Geophysics, 79(3): WA13—WA24.
DOI
URL
|
[28] |
Yuan Y O, Bozdağ E, Ciardelli C, et al. 2020. The exponentiated phase measurement, and objective-function hybridization for adjoint waveform tomography[J]. Geophysical Journal International, 221(2): 1145—1164.
DOI
URL
|