[1] |
蔡永恩, 何涛, 王仁. 1999. 1976年唐山地震震源动力过程的数值模拟[J]. 地震学报, 21(5): 467—477.
|
|
CAI Yong-en, HE Tao, WANG Ren. 1999. Modeling the source dynamic process of the 1976 Tangshan earthquake[J]. Acta Seismologica Sinica, 21(5): 469—477 (in Chinese).
|
[2] |
|
|
DENG Zhi-hui, HU Meng-qian, ZHOU Bin, et al. 2011a. Preliminary study on application of numerical simulation methods to earthquake prediction research(Ⅱ)[J]. Seismology and Geology, 33(3): 670—683 (in Chinese).
|
[3] |
|
|
DENG Zhi-hui, SONG Jian, SUN Jun-xiu, et al. 2011b. Preliminary study on application of numerical simulation methods to earthquake prediction research(Ⅰ)[J]. Seismology and Geology, 33(3): 660—669 (in Chinese).
|
[4] |
董培育, 程惠红, 石耀霖, 等. 2019. 基于Monte Carlo方法数值反演区域初始构造应力场: 以巴颜喀拉块体为例[J]. 地球物理学报, 62(8): 2858—2870.
DOI
|
|
DONG Pei-yu, CHENG Hui-hong, SHI Yao-lin, et al. 2019. Numerical inversion of regional initial tectonic stress based on Monte Carlo method: A case study of Bayan Har block[J]. Chinese Journal of Geophysics, 62(8): 2858—2870 (in Chinese).
|
[5] |
董培育, 石耀霖, 程惠红, 等. 2020. 青藏高原及邻区未来地震活动性趋势数值分析[J]. 地球物理学报, 63(3): 1155—1169.
DOI
|
|
DONG Pei-yu, SHI Yao-lin, CHENG Hui-hong, et al. 2020. Numerical analysis of the future seismic hazards in the Tibetan plateau and its surrounding area[J]. Chinese Journal of Geophysics, 63(3): 1155—1169 (in Chinese).
|
[6] |
李林芳, 石耀霖, 程术. 2022. 长短时记忆神经网络在中期地震预报中的探索: 以川滇地区为例[J]. 地球物理学报, 65(1): 12—25.
DOI
|
|
LI Lin-fang, SHI Yao-lin, CHENG Shu. 2022. Exploration of long short-term memory neural network in intermediate earthquake forecast: A case study in Sichuan-Yunnan region[J]. Chinese Journal of Geophysics, 65(1): 12—25 (in Chinese).
|
[7] |
刘启元, 吴建春. 2003. 论地震数值预测: 关于我国地震预测研究发展战略的思考[J]. 地学前缘, 10(S1): 217—224.
|
|
LIU Qi-yuan, WU Jian-chun. 2003. On numerical forecast of earthquakes: Thinking about the strategy for promoting earthquake prediction[J]. Earth Science Frontiers, 10(S1): 217—224 (in Chinese).
|
[8] |
|
|
LU Ren-qi, XU Xi-wei, CHEN Li-chun, et al. 2018. Seismotectonics of the 8 August 2017 Jiuzhaigou earthquake and the three-dimensional fault models in the seismic region[J]. Seismology and Geology, 40(1): 1—11 (in Chinese).
DOI
|
[9] |
石耀霖. 2012. 地震数值预报: 飘渺的梦, 还是现实的路?[J]. 科学中国人, (11): 18—25.
|
|
SHI Yao-lin. 2012. Earthquake numerical prediction: A dream of drifting, or a realistic way[J]. Scientific Chinese, (11): 18—25 (in Chinese).
|
[10] |
石耀霖, 胡才博. 2021. 王仁先生在地震预报中的开拓性工作[J]. 地球物理学报, 64(10): 3429—3441.
|
|
SHI Yao-lin, HU Cai-bo. 2021. Pioneering works of academician Wang Ren in earthquake prediction[J]. Chinese Journal of Geophysics, 64(10): 3429—3441 (in Chinese).
|
[11] |
石耀霖, 孙云强, 罗纲, 等. 2018. 关于我国地震数值预报路线图的设想; 汶川地震十周年反思[J]. 科学通报, 63(19): 1865—1881.
|
|
SHI Yao-lin, SUN Yun-qiang, LUO Gang, et al. 2018. Roadmap for earthquake numerical forecasting in China: Reflection on the tenth anniversary of Wenchuan earthquake[J]. Chinese Science Bulletin, 63(19): 1865—1881 (in Chinese).
|
[12] |
石耀霖, 张贝, 张斯奇, 等. 2013. 地震数值预报[J]. 物理, 42(4): 237—255.
|
|
SHI Yao-lin, ZHANG Bei, ZHANG Si-qi, et al. 2013. Earthquake numerical prediction[J]. Physics, 42(4): 237—255 (in Chinese).
|
[13] |
孙云强, 罗纲. 2018. 青藏高原东北缘地震时空迁移的有限元数值模拟[J]. 地球物理学报, 61(6): 2246—2264.
DOI
|
|
SUN Yun-qiang, LUO Gang. 2018. Spatial-temporal migration of earthquakes in the northeastern Tibetan plateau: Insights from a finite element model[J]. Chinese Journal of Geophysics, 61(6): 2246—2264 (in Chinese).
|
[14] |
唐荣江, 朱守彪. 2020. 不同摩擦本构关系对断层自发破裂动力学过程的影响[J]. 地球物理学报, 63(10): 3712—3726.
DOI
|
|
TANG Rong-jiang, ZHU Shou-biao. 2020. The effect of different friction laws on dynamic simulations of spontaneous rupture propagation[J]. Chinese Journal of Geophysics, 63(10): 3712—3726 (in Chinese).
|
[15] |
王妙月, 底青云, 张美根, 等. 1999. 地震孕育、 发生、 发展动态过程的三维有限元数值模拟[J]. 地球物理学报, 42(2): 218—227.
|
|
WANG Miao-yue, DI Qing-yun, ZHANG Mei-gen, et al. 1999. Earthquake dynamic state modeling with 3-D finite element method[J]. Chinese Journal of Geophysics, 42(2): 218—227 (in Chinese).
|
[16] |
王仁. 1994. 有限单元等数值方法在我国地球科学中的应用和发展[J]. 地球物理学报, 37(S1): 128—139.
|
|
WANG Ren. 1994. Application and development of finite element and other numerical simulation methods in earth sciences in China[J]. Chinese Journal of Geophysics, 37(S1): 128—139 (in Chinese).
|
[17] |
王仁, 何国琦, 殷有泉, 等. 1980. 华北地区地震迁移规律的数学模拟[J]. 地震学报, 2(1): 32—42.
|
|
WANG Ren, HE Guo-qi, YIN You-quan, et al. 1980. A mathematical simulation for the pattern of seismic transference in North China[J]. Acta Seismologica Sinica, 2(1): 32—42 (in Chinese).
|
[18] |
王仁, 黄杰藩, 孙荀英, 等. 1982a. 华北地震构造应力场的模拟[J]. 中国科学(B辑), 12(4): 337—344.
|
|
WANG Ren, HUANG Jie-fan, SUN Xun-ying, et al. 1982a. Simulation of the seismic tectonic stress field in North China[J]. Science in China(Ser B), 12(4): 337—344 (in Chinese).
|
[19] |
王仁, 孙荀英, 蔡永恩. 1982b. 华北地区近700年地震序列的数学模拟[J]. 中国科学(B辑), 12(8): 745—753.
|
|
WANG Ren, SUN Xun-ying, CAI Yong-en, 1983. A mathematical simulation of earthquake sequence in North China in the last 700 years[J]. Science in China(Ser B), 12(8): 745—753 (in Chinese).
|
[20] |
邢会林, 郭志伟, 王建超, 等. 2022. 断层系统摩擦动力学行为的有限元模拟分析[J]. 地球物理学报, 65(1): 37—50.
DOI
|
|
XING Hui-lin, GUO Zhi-wei, WANG Jian-chao, et al. 2022. Finite element simulation and analysis of frictional dynamic behavior of fault system[J]. Chinese Journal of Geophysics, 65(1): 37—50 (in Chinese).
|
[21] |
徐晶, 邵志刚, 马宏生, 等. 2013. 鲜水河断裂带库仑应力演化与强震间关系[J]. 地球物理学报, 56(4): 1146—1158.
|
|
XU Jing, SHAO Zhi-gang, MA Hong-sheng, et al. 2013. Evolution of Coulomb stress and stress interaction among strong earthquakes along the Xianshuihe fault zone[J]. Chinese Journal of Geophysics, 56(4): 1146—1158 (in Chinese).
|
[22] |
杨宏峰, 姚素丽, 陈翔. 2022. 非均匀断层上的破裂传播及对震级预测的挑战[J]. 科学通报, 67(13): 1390—1403.
|
|
YANG Hong-feng, YAO Su-li, CHEN Xiang. 2022. Rupture propagation on heterogeneous fault: Challenges for predicting earthquake magnitude[J]. Chinese Science Bulletin, 67(13): 1390—1403 (in Chinese).
|
[23] |
姚琪, 王辉, 刘杰, 等. 2023a. 基于数值模拟和地震活动性统计的混合地震预测: 在中国地震科学实验场的应用[J]. 地球物理学报, 66(10): 4162—4175.
|
|
YAO Qi, WANG Hui, LIU Jie, et al. 2023a. A hybrid method of earthquake forecasting based on numerical simulation and seismicity statistics: An application to China Seismic Experimental Site[J]. Chinese Journal of Geophysics, 66(10): 4162—4175 (in Chinese).
|
[24] |
姚琪, 张盛峰, 王子韬, 等. 2023b. 地震数值预测总体设计导论[M]. 北京: 地震出版社:1—18.
|
|
YAO Qi, ZHANG Sheng-feng, WANG Zi-tao, et al. 2023b. Introduction to General Design of Seismic Numerical Prediction[M]. Seismological Press, Beijing: 1—18. (in Chinese).
|
[25] |
尹迪, 董培育, 曹建玲, 等. 2022. 川滇地区地震危险性数值分析[J]. 地球物理学报, 65(5): 1612—1627.
|
|
YIN Di, DONG Pei-yu, CAO Jian-ling, et al. 2022. Numerical analysis of the seismic hazard in Sichuan-Yunnan region[J]. Chinese Journal of Geophysics, 65(5): 1612—1627 (in Chinese).
|
[26] |
袁杰, 崔泽飞, 朱守彪, 等. 2021. 强震孕育, 发生及其复发循环过程的有限单元法模拟[J]. 地球物理学报, 64(2): 537—545.
DOI
|
|
YUAN Jie, CUI Ze-fei, ZHU Shou-biao, et al. 2021. Finite element method simulation of the earthquake preparation, occurrence, and recurrence cycles[J]. Chinese Journal of Geophysics, 64(2): 537—545 (in Chinese).
|
[27] |
张怀, 吴忠良, 张东宁, 等. 2009. 虚拟川滇: 基于千万网格并行有限元计算的区域强震演化过程数值模型设计和构建[J]. 中国科学(D辑), 39(3): 260—270.
|
|
ZHANG Huai, WU Zhong-liang, ZHANG Dong-ning, et al. 2009. Virtual ChuanDian—A parallel numerical modeling of Sichuan-Yunnan regional strong earthquake activities: Model construction and parallel simulation[J]. Science in China(Ser D), 39(3): 260—270 (in Chinese).
|
[28] |
Alarifi A S N, Alarifi N S N, Al-Humidan S. 2012. Earthquakes magnitude prediction using artificial neural network in northern Red Sea area[J]. Journal of King Saud University-Science, 24(4): 301—313.
DOI
URL
|
[29] |
Alves E I. 2006. Earthquake forecasting using neural networks: Results and future work[J]. Nonlinear Dynamics, 44(1-4): 341—349.
DOI
URL
|
[30] |
Avouac J P, Meng L, Wei S, et al. 2015. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake[J]. Nature Geoscience, 8(9): 708—711.
DOI
|
[31] |
Barbot S, Lapusta N, Avouac J P. 2012. Under the hood of the earthquake machine: Toward predictive modeling of the seismic cycle[J]. Science, 336(6082): 707—710.
DOI
PMID
|
[32] |
Ben-Zion Y. 2001. Dynamic ruptures in recent models of earthquake faults[J]. Journal of the Mechanics and Physics of Solids, 49(9): 2209—2244.
DOI
URL
|
[33] |
Burridge R, Knopoff L. 1967. Model and theoretical seismicity[J]. Bulletin of the Seismological Society of America, 57(3): 341—371.
DOI
URL
|
[34] |
Chinnery M A. 1961. The deformation of the ground around surface faults[J]. Bulletin of the Seismological Society of America, 51(3): 355—372.
DOI
URL
|
[35] |
Chuang R Y, Johnson K M. 2011. Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: Consideration of nonsteady mantle flow and lower crustal fault creep[J]. Geology, 39(7): 627—630.
DOI
URL
|
[36] |
Dahm T, Hainzl S. 2022. A Coulomb Stress response model for time-dependent earthquake forecasts[J]. Journal of Geophysical Research: Solid Earth, 127(9): e2022JB024443.
|
[37] |
DeVries P M R, Viégas F, Wattenberg M, et al. 2018. Deep learning of aftershock patterns following large earthquakes[J]. Nature, 560(7720): 632—634.
DOI
|
[38] |
Elliott J R, Jolivet R, González P J, et al. 2016. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake[J]. Nature Geoscience, 9(2): 174—180.
DOI
|
[39] |
Field E H. 2015. Computing elastic-rebound-motivated earthquake probabilities in unsegmented fault models: A new methodology supported by physics-based simulators[J]. Bulletin of the Seismological Society of America, 105(2A): 544—559.
DOI
URL
|
[40] |
Field E H, Arrowsmith R J, Biasi G P, et al. 2014. Uniform California earthquake rupture forecast, version 3(UCERF3): The time-independent model[J]. Bulletin of the Seismological Society of America, 104(3): 1122—1180.
DOI
URL
|
[41] |
Field E H, Biasi G P, Bird P, et al. 2015. Long-term time-dependent probabilities for the third Uniform California Earthquake Rupture Forecast(UCERF3)[J]. Bulletin of the Seismological Society of America, 105(2A): 511—543.
DOI
URL
|
[42] |
Field E H, Milner K R, Hardebeck J L, et al. 2017. A spatiotemporal clustering model for the third Uniform California Earthquake Rupture Forecast(UCERF3-ETAS): Toward an operational earthquake forecast[J]. Bulletin of the Seismological Society of America, 107(3): 1049—1081.
DOI
URL
|
[43] |
Harris R A, Barall M, Aagaard B, et al. 2018. A suite of exercises for verifying dynamic earthquake rupture codes[J]. Seismological Research Letters, 89(3): 1146—1162.
DOI
URL
|
[44] |
Harris R A, Simpson R W. 1992. Changes in static stress on southern California faults after the 1992 Landers earthquake[J]. Nature, 360(6401): 251—254.
DOI
|
[45] |
Harris R A, Simpson R W, Reasenberg P A. 1995. Influence of static stress changes on earthquake locations in southern California[J]. Nature, 375(6528): 221—224.
DOI
|
[46] |
Hauksson E, Yang W, Shearer P M. 2012. Waveform relocated earthquake catalog for southern California(1981 to June 2011)[J]. Bulletin of the Seismological Society of America, 102(5): 2239—2244.
DOI
URL
|
[47] |
Houlding S. 1992. The application of new 3-D computer modeling techniques to mining[G]//Turner A K. Three-Dimensional Modeling with Geoscientific Information Systems. Dordrecht, Springer Netherlands: 303—325.
|
[48] |
Houlding S. 2002. Practical geostatistics: Modeling and spatial analysis[J]. Computers and Geosciences, 28(3): 431—431.
DOI
URL
|
[49] |
Houlding S. 1994. 3D Geoscience Modeling: Computer Techniques for Geological Characterization[M]. Springer-Verlag Berlin, Heidelberg: 113—129.
|
[50] |
Hubbard J, Almeida R, Foster A, et al. 2016. Structural segmentation controlled the 2015 MW7.8 Gorkha earthquake rupture in Nepal[J]. Geology, 44(8): 639—642.
DOI
URL
|
[51] |
Hubbard J, Shaw J H, Dolan J, et al. 2014. Structure and seismic hazard of the Ventura Avenue anticline and Ventura fault, California: Prospect for large, multisegment ruptures in the western Transverse Ranges[J]. Bulletin of the Seismological Society of America, 104(3): 1070—1087.
DOI
URL
|
[52] |
Hubbard J, Shaw J H, Plesch A, et al. 2012. A community fault model(CFM)for the Sichuan Basin and Longmen Shan[C]. In 2012 American Geophysical Union Fall Meeting. San Francisco, California: T51G-08.
|
[53] |
Hulbert C, Rouet-Leduc B, Johnson P A, et al. 2019. Similarity of fast and slow earthquakes illuminated by machine learning[J]. Nature Geoscience, 12(1): 69—74.
DOI
|
[54] |
Ismail-Zadeh A, Kumar A. 2021. Deterministic, probabilistic, and data-enhanced models of seismic hazard assessments with some applications to central Asian regions[J]. Journal of the Geological Society of India, 97: 1508—1513.
DOI
|
[55] |
Ismail-Zadeh A, Le Mouël J-L, Soloviev A. 2012. Extreme seismic events in models of lithospheric block-and-fault dynamics[G]//Sharma S A, Bunde A, Dimri V P, et al.(Eds). Extreme Events and Natural Hazards: The Complexity Perspective. Geophysical Monograph Series 6: 75—98.
|
[56] |
Jiao L, Tapponnier P, Donzé F V, et al. 2023. Discrete element modeling of Southeast Asia’s 3D lithospheric deformation during the Indian collision[J]. Journal of Geophysical Research: Solid Earth, 128(1): e2022JB025578.
|
[57] |
Kanamori H. 2012. Earthquake hazards: Putting seismic research to most effective use[J]. Nature, 483(7388): 147—148.
DOI
|
[58] |
Klinger Y, Okubo K, Vallage A, et al. 2018. Earthquake damage patterns resolve complex rupture processes[J]. Geophysical Research Letters, 45(19): 10279—10287.
|
[59] |
Lapusta N, Rice J R, Ben-Zion Y, et al. 2000. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction[J]. Journal of Geophysical Research: Solid Earth, 105(B10): 23765—23789.
|
[60] |
Laurenti L, Tinti E, Galasso F, et al. 2022. Deep learning for laboratory earthquake prediction and autoregressive forecasting of fault zone stress[J]. Earth and Planetary Science Letters, 598: 117825.
DOI
URL
|
[61] |
Li Q, Liu M, Zhang H. 2009. A 3-D viscoelastoplastic model for simulating long-term slip on non-planar faults[J]. Geophysical Journal International, 176(1): 293—306.
DOI
URL
|
[62] |
Litchfield N J, Van Dissen R, Sutherland R, et al. 2014. A model of active faulting in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 57(1): 32—56.
DOI
URL
|
[63] |
Liu D, Duan B, Luo B. 2020. EQsimu: A 3-D finite element dynamic earthquake simulator for multicycle dynamics of geometrically complex faults governed by rate- and state-dependent friction[J]. Geophysical Journal International, 220(1): 598—609.
DOI
URL
|
[64] |
Liu M, Stein S. 2016. Mid-continental earthquakes: Spatiotemporal occurrences, causes, and hazards[J]. Earth-Science Reviews, 162: 364—386.
DOI
URL
|
[65] |
Liu Y, Wu Z, Wang P, et al. 2023. Trade space for time for inspecting an earthquake cycle by modern seismological observation: The central-southern part of the Sichuan-Yunnan rhombic block[J]. Earthquake Research Advances, 3(4): 100254.
DOI
URL
|
[66] |
Loveless J P, Meade B J. 2011. Stress modulation on the San Andreas Fault by interseismic fault system interactions[J]. Geology, 39(11): 1035—1038.
DOI
URL
|
[67] |
Lu R Q, He D F, Suppe J, et al. 2011. The seismogenic structure of the 2010 Suining MS5.0 earthquake and its geometry, kinematics and dynamics analysis[J]. Acta Geologica Sinica(English Edition), 85(6): 1277—1285.
|
[68] |
Lu R Q, He D F, Xu X W, et al. 2018. Seismotectonics of the 2016 M6.2 Hutubi earthquake: Implications for the 1906 M7.7 Manas earthquake in the northern Tian Shan belt, China[J]. Seismological Research Letters, 89(1): 13—21.
DOI
URL
|
[69] |
Lu R Q, Liu Y W, Xu X W, et al. 2019. Three-dimensional model of the lithospheric structure under the eastern Tibetan plateau: Implications for the active tectonics and seismic hazards[J]. Tectonics, 38(4): 1292—1307.
DOI
URL
|
[70] |
Lu R Q, Wang M M, Li Z G, et al. 2022. Three-dimensional community active faults models of CSES[G]// Li Y G, Zhang Y X, Wu Z L. China Seismic Experimental Site: Theoretical Framework and Ongoing Practice. Springer Nature, Singapore: 91—109.
|
[71] |
Lu R Q, Xu X W, He D F, et al. 2016. Coseismic and blind fault of the 2015 Pishan MW6.5 earthquake: Implications for the sedimentary-tectonic framework of the western Kunlun Mountains, northern Tibetan plateau[J]. Tectonics, 35(4): 956—964.
DOI
URL
|
[72] |
Lu R Q, Xu X W, He D F, et al. 2017. Seismotectonics of the 2013 Lushan MW6.7 earthquake: Inversion tectonics in the eastern margin of the Tibetan plateau[J]. Geophysical Research Letters, 44(16): 8236—8243.
DOI
URL
|
[73] |
Luo G, Liu M. 2012. Multi-timescale mechanical coupling between the San Jacinto Fault and the San Andreas Fault, southern California[J]. Lithosphere, 4(3): 221—229.
DOI
URL
|
[74] |
Mallet J L. 1992a. Discrete smooth interpolation in geometric modelling[J]. Computer-Aided Design, 24(4): 178—191.
DOI
URL
|
[75] |
Mallet J L. 1992b. GOCAD: A computer-aided design program for geological applications[G]// Turner A K. Three-dimensional Modeling with Geoscientific Information Systems. Dordrecht: Springer Netherlands: 123—141.
|
[76] |
Mallet J L. 2002. Geomodeling[M]. New York, Oxford University Press: 456—478.
|
[77] |
Nicol A, Begg J, Saltogianni V, et al. 2023. Uplift and fault slip during the 2016 Kaikōura earthquake and late Quaternary, Kaikōura Peninsula, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 66(2): 263—278.
DOI
URL
|
[78] |
Petersen M D, Cao T, Campbell K W, et al. 2007. Time-independent and time-dependent seismic hazard assessment for the State of California: Uniform California Earthquake Rupture Forecast Model 1.0[J]. Seismological Research Letters, 78(1): 99—109.
DOI
URL
|
[79] |
Plesch A, Shaw J H, Benson C, et al. 2007. Community fault model(CFM)for southern California[J]. Bulletin of the Seismological Society of America, 97(6): 1793—1802.
DOI
URL
|
[80] |
Plesch A, Shaw J H, Ross Z E, et al. 2020. Detailed 3D fault representations for the 2019 Ridgecrest, California, earthquake sequence[J]. Bulletin of the Seismological Society of America, 110(4): 1818—1831.
DOI
URL
|
[81] |
Ramos M D, Thakur P, Huang Y, et al. 2022. Working with dynamic earthquake rupture models: A practical guide[J]. Seismological Research Letters, 93(4): 2096—2110.
DOI
URL
|
[82] |
Rollins J C, Stein R S. 2010. Coulomb stress interactions among M≥5.9 earthquakes in the Gorda deformation zone and on the Mendocino fault zone, Cascadia subduction zone, and northern San Andreas Fault[J]. Journal of Geophysical Research: Solid Earth, 115: B12306.
|
[83] |
Ryan K J, Oglesby D D. 2014. Dynamically modeling fault stepovers using various friction laws[J]. Journal of Geophysical Research: Solid Earth, 119(7): 5814—5829.
DOI
URL
|
[84] |
Schurr B, Asch G, Hainzl S, et al. 2014. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake[J]. Nature, 512(7514): 299—302.
DOI
|
[85] |
Seebeck H, Van Dissen R, Litchfield N, et al. 2023. The New Zealand Community Fault Model-version 1.0: An improved geological foundation for seismic hazard modelling[J]. New Zealand Journal of Geology and Geophysics, 66(4): 1—21.
DOI
URL
|
[86] |
Shaw J H, Plesch A, Tape C, et al. 2015. Unified structural representation of the southern California crust and upper mantle[J]. Earth and Planetary Science Letters, 415: 1—15.
DOI
URL
|
[87] |
Smith B, Sandwell D. 2004. A three-dimensional semianalytic viscoelastic model for time-dependent analyses of the earthquake cycle[J]. Journal of Geophysical Research: Solid Earth, 109: B12401.
|
[88] |
Toda S, Stein R S, Sevilgen V, et al. 2011. Coulomb 3.3 graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching: User guide[R]. US Geological Survey open-file report, 1060: 63.
|
[89] |
Wang L F. 2018. The next M-6 event in parkfield is implied by a physical model linking interseismic, coseismic, and postseismic phase[J]. Journal of Geophysical Research: Solid Earth, 123(10): 8858—8873.
DOI
URL
|
[90] |
Wang M, Hubbard J, Plesch A, et al. 2016. Three-dimensional seismic velocity structure in the Sichuan Basin, China[J]. Journal of Geophysical Research: Solid Earth, 121(2): 1007—1022.
DOI
URL
|
[91] |
Xing H L, Makinouchi A. 2002a. FE modeling of thermo-elasto-plastic finite deformation and its application in sheet warm forming[J]. Engineering Computations, 19(4): 392—410.
DOI
URL
|
[92] |
Xing H L, Makinouchi A. 2002b. Finite-element modeling of multibody contact and its application to active faults[J]. Concurrency and Computation: Practice and Experience, 14(6-7): 431—450.
DOI
URL
|
[93] |
Xing H L, Makinouchi A. 2002c. Finite element analysis of a sandwich friction experiment model of rocks[J]. Pure and Applied Geophysics, 159(9): 1985—2009.
DOI
URL
|
[94] |
Xing H L, Makinouchi A. 2003. Finite element modelling of frictional instability between deformable rocks[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 27(12): 1005—1025.
DOI
URL
|
[95] |
Xing H L, Makinouchi A, Mora P. 2007. Finite element modeling of interacting fault systems[J]. Physics of the Earth and Planetary Interiors, 163(1-4): 106—121.
DOI
URL
|
[96] |
Xing H L, Mora P. 2006. Construction of an intraplate fault system model of South Australia, and simulation tool for the iSERVO institute seed project[J]. Pure and Applied Geophysics, 163: 2297—2316.
DOI
URL
|
[97] |
Xing H L, Xu X W. 2011. M8.0 Wenchuan Earthquake[M]. Springer-Verlag Berlin, Heidelberg: 21—38.
|
[98] |
Yang H F, Yao S L, He B, et al. 2019. Earthquake rupture dependence on hypocentral location along the Nicoya Peninsula subduction megathrust[J]. Earth and Planetary Science Letters, 520: 10—17.
DOI
URL
|
[99] |
Yuan J, Wang J, Zhu S. 2020. Effects of barriers on fault rupture process and strong ground motion based on various friction laws[J]. Applied Sciences, 10(5): 1687.
DOI
URL
|
[100] |
Zhang H M, Chen X F. 2006a. Dynamic rupture on a planar fault in three-dimensional half space-I. Theory[J]. Geophysical Journal International, 164(3): 633—652.
DOI
URL
|
[101] |
Zhang H M, Chen X F. 2006b. Dynamic rupture on a planar fault in three-dimensional half-space-Ⅱ.Validations and numerical experiments[J]. Geophysical Journal International, 167(2): 917—932.
DOI
URL
|
[102] |
Zhang L, Liu Y, Li D, et al. 2022. Geometric control on seismic rupture and earthquake sequence along the Yingxiu-Beichuan Fault with implications for the 2008 Wenchuan earthquake[J]. Journal of Geophysical Research: Solid Earth, 127(12): e2022JB024113.
|