地震地质 ›› 2023, Vol. 45 ›› Issue (1): 92-110.DOI: 10.3969/j.issn.0253-4967.2023.01.005
白其乐格尔1),3)(), 沈军1),2),*(), 肖淳1), 戴训也1),2)
收稿日期:
2022-05-04
修回日期:
2022-06-28
出版日期:
2023-02-20
发布日期:
2023-03-24
通讯作者:
* 沈军, 男, 1966年生, 博士, 研究员, 主要从事地震地质和综合减灾研究, E-mail: shenjuneq@qq.com。
作者简介:
白其乐格尔, 女, 1992年生, 现为防灾科技学院资源与环境专业在读硕士研究生, 助理工程师, 主要从事地震地质研究, E-mail: 2068866421@qq.com。
基金资助:
BAI Qilegeer1),3)(), SHEN Jun1),2),*(), XIAO Chun1), DAI Xun-ye1),2)
Received:
2022-05-04
Revised:
2022-06-28
Online:
2023-02-20
Published:
2023-03-24
摘要:
西藏地区地壳活动强烈, 活动断层发育, 存在很大的地震灾害风险, 因此查清活动断层的分布是一项重要工作。遥感解译是查明活动断层最有效的手段, 其核心技术是正确把握活动断层的典型遥感影像特征。文中结合 1︰100万全国地震构造图(西藏区)编制工作, 利用高分辨率卫星遥感影像对西藏地区改则幅(I45)全新世活动断层的典型遥感影像特征进行了研究, 确定了区内全新世活动断裂玛尔盖茶卡断裂、 日干配错断裂、 依布茶卡地堑、 青蛙湖断裂、 东查断裂、 其香错断裂中段的空间展布。结合前人的研究成果及区域对比分析, 讨论了区内全新世断裂的最新活动时代、 活动性质和活动强度, 以及区内活动断裂的整体构造运动特征和发震能力。研究区北部的玛尔盖茶卡断裂和南部的日干配错断裂、 其香错断裂为较大规模的NEE向左旋走滑断裂, 具备发生约7.5级地震的能力。 中部还发育了NEE向依布茶卡地堑、 青蛙湖断裂和NW向东查断裂这3条规模相对较小的全新世断层, 具备发生约7级地震的能力。上述断裂反映了该区受到SN向挤压, 形成“V”字形共轭系统, 总体运动特征表现为块体向E挤出的动力环境。
中图分类号:
白其乐格尔, 沈军, 肖淳, 戴训也. 西藏中北部改则幅(I45)全新世断层典型遥感影像[J]. 地震地质, 2023, 45(1): 92-110.
BAI Qilegeer, SHEN Jun, XIAO Chun, DAI Xun-ye. TYPICAL REMOTE SENSING IMAGES OF HOLOCENE FAULTS IN GAIZE PAN(I45)IN TIBET[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 92-110.
图1 西藏地区改则幅(I45)活动断层分布图 MCF 玛尔盖茶卡断裂; QF 青蛙湖断裂; DF 东查断裂; YCF 依布茶卡地堑; RPF 日干配错断裂; QCF 其香错断裂
Fig. 1 Distribution map of active faults in Gaize unit(I45)of Tibet region.
图2 玛尔盖茶卡断裂及其典型影像 a 玛尔盖茶卡断裂的空间展布; b 线性影像(洪积扇、 山脊错断); c 线性影像(断层陡坎、 张裂缝); d 呈串珠状分布的断陷塘; e 盆山之间的界限、 断层三角面; f 水系同步扭曲; g 控制现代湖泊发育
Fig. 2 MargaiCaka fault and its typical images.
图3 日干配错断裂和依布茶卡地堑及其典型影像 a 日干配错断裂和依布茶卡地堑的空间展布; b 日干配错断裂导致的冲沟同步扭曲; c、 d 日干配错断裂错断洪积扇;e 日干配错断裂的拉分盆地; f 依布茶卡地堑阶梯状分布的陡坎; g 依布茶卡地堑的连续线性陡坎
Fig. 3 RiganPeico fault and YibuCaka graben and their typical images.
[1] | 邓起东, 闻学泽. 2008. 活动构造研究: 历史、 进展与建议[J]. 地震地质, 30(1): 130. |
DENG Qi-dong, WEN Xue-ze. 2008. A review on the research of active tectonics: History, progress and suggestions[J]. Seismology and Geology, 30(1): 130. (in Chinese) | |
[2] | 付碧宏, 时丕龙, 张之武. 2008. 四川汶川 MS8.0 大地震地表破裂带的遥感影像解析[J]. 地质学报, 82(12): 16791687. |
FU Bi-hong, SHI Pi-long, ZHANG Zhi-wu. 2008. Spatial characteristics of the surface rupture produced by the MS8.0 Wenchuan earthquake using high-resolution remote sensing imagery[J]. Acta Geologica Sinica, 82(12): 16791687. (in Chinese) | |
[3] | 付碧宏, 张松林, 谢小平, 等. 2006. 阿尔金断裂系西段康西瓦断裂的晚第四纪构造地貌特征研究[J]. 第四纪研究, 26(2): 228235. |
FU Bi-hong, ZHANG Song-lin, XIE Xiao-ping, et al. 2006. Late Quaternary tectonic-geomorphic features along the Kangxiwar fault, Altyn Tagh fault system, northern Tibet[J]. Quaternary Sciences, 26(2): 228235. (in Chinese) | |
[4] | 高翔, 邓起东. 2013. 巴颜喀喇断块边界断裂强震活动分析[J]. 地质学报, 87(1): 919. |
GAO Xiang, DENG Qi-dong. 2013. Analysis of large earthquake in boundary faults around Bayankala fault-block[J]. Acta Geologica Sinica, 87(1): 919. (in Chinese) | |
[5] | 冀宗童, 张永志, 王思佳. 2021. 2020年西藏尼玛 MS6.6 地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学进展, 36(6): 23122319. |
JI Zong-tong, ZHANG Yong-zhi, WANG Si-jia. 2021. Coseismic deformation field and fault slip distribution inversion of the MS6.6 Nima, Xizang earthquake by Sentinel-1A InSAR data[J]. Progress in Geophysics, 36(6): 23122319. (in Chinese) | |
[6] | 李承涛, 李琦, 谭凯, 等. 2021. 2020年西藏尼玛 MW6.3 地震InSAR同震形变特征与破裂滑动分布[J]. 地球物理学报, 64(7): 22972310. |
LI Cheng-tao, LI Qi, TAN Kai, et al. 2021. Coseismic deformation characteristics of the 2020 Nima, Xizang MW6.3 earthquake from Sentinel-1A/B InSAR data and rupture slip distribution[J]. Chinese Journal of Geophysics, 64(7): 22972310. (in Chinese) | |
[7] | 李建华. 1998. 利用卫星图像研究西藏羌塘及邻区的断裂活动性[J]. 地震地质, 20(3): 201207. |
LI Jian-hua. 1998. A study on fault activity of Qiangtang and its neighboring areas in Xizang(Tibet)by using Landsat images[J]. Seismology and Geology, 20(3): 201207. (in Chinese) | |
[8] | 李康, 王躲, 邵庆丰, 等. 2018. 青藏高原中部NE向其香错断裂全新世左旋走滑速率及其构造意义[J]. 地震地质, 40(6): 12041215. |
LI Kang, WANG Duo, SHAO Qing-feng, et al. 2018. Holocene slip rate along the NE-trending Qixiang Co fault in the central Tibetan plateau and its tectonic implications[J]. Seismology and Geology, 40(6): 12041215. (in Chinese) | |
[9] | 梁世川, 瞿伟, 陈海禄, 等. 2022. 2020-07-23西藏尼玛 MW6.3 地震震源参数InSAR反演与发震构造研究[J]. 大地测量与地球动力学, 42(1): 7176. |
LIANG Shi-chuan, QU Wei, CHEN Hai-lu, et al. 2022. Source parameter inversion and seismogenic tectonics of the Nyima MW6.3 earthquake in Tibet on July 23, 2020 based on InSAR[J]. Journal of Geodesy and Geodynamics, 42(1): 7176. (in Chinese) | |
[10] | 刘富财, 潘家伟, 李海兵, 等. 2022. 青藏高原中部日干配错断裂第四纪活动特征及2020年7月23日西藏尼玛 MW6.4 地震发震构造分析[J]. 地球学报, 43(2): 173188. |
LIU Fu-cai, PAN Jia-wei, LI Hai-bing, et al. 2022. Characteristics of Quaternary activities along the Riganpei Co Fault and seismogenic structure of the July 23, 2020 MW6.4 Nima earthquake, Central Tibet[J]. Acta Geoscientia Sinica, 43(2): 173188. (in Chinese) | |
[11] | 马瑾, 单新建. 2000. 利用遥感技术研究断层现今活动的探索: 以玛尼地震前后断层相互作用为例[J]. 地震地质, 22(3): 210215. |
MA Jin, SHAN Xin-jian. 2000. An attempt to study fault activity using remote sensing technology: a case of the Mani earthquake[J]. Seismology and Geology, 22(3): 210215. (in Chinese) | |
[12] | 邱江涛, 季灵运, 刘雷, 等. 2021. 2020年西藏尼玛 MW6.3 地震的InSAR同震形变与构造意义[J]. 地震地质, 43(6): 15861599. |
QIU Jiang-tao, JI Ling-yun, LIU lei, et al. 2021. InSAR coseismic deformation and tectonic implications for the 2020 MW6.3 Nima earthquake in Xizang[J]. Seismology and Geology, 43(6): 15861599. (in Chinese) | |
[13] | 单新建, 李建华, 张桂芳. 2006. 1997年玛尼7.9级地震的构造环境和地表破裂带特征[J]. 地球物理学报, 49(3): 831837. |
SHAN Xin-jian, LI Jian-hua, ZHANG Gui-fang. 2006. The tectonic condition and the feature of surface rupture zone of the Mani earthquake(MS7.9)in 1997[J]. Chinese Journal of Geophysics, 49(3): 831837. (in Chinese) | |
[14] | 单新建, 马瑾, 王长林, 等. 2002. 利用差分干涉雷达测量技术(D-InSAR)提取同震形变场[J]. 地震学报, 24(4): 413420. |
SHAN Xin-jian, MA Jin, WANG Chang-lin, et al. 2002. Extracting coseismic deformation of the 1997 Mani earthquake with differential interferometric SAR[J]. Acta Seismologica Sinica, 24(4): 413420. (in Chinese) | |
[15] | 沈军, 焦轩凯, 戴训也. 2020. 新编地震地质学简明教程[M]. 北京: 地震出版社. |
SHEN Jun, JIAO Xuan-kai, DAI Xun-ye. 2020. New Concise Course of Seismic Geology[M]. Seismological Press, Beijing. (in Chinese) | |
[16] | 孙鑫喆. 2016. 玛尼地震与玉树地震发震断层的破裂特征与复发模型[D]. 北京: 中国地震局地质研究所. |
SUN Xin-zhe. 2016. Rupture characteristics and recurrence model of seismogenic faults in Mani and Yushu earthquakes[D]. Institute of Geology, China Earthquake Administration, Beijing. (in Chinese) | |
[17] | 王躲. 2018. 青藏高原中部格仁错断裂带构造地貌研究[D]. 北京: 中国地震局地质研究所. |
WANG Duo. 2018. Tectonic geomorphology along the Gyaring Co Fault in central Tibet[D]. Institute of Geology, China Earthquake Administration, Beijing. (in Chinese) | |
[18] | 王月, 解孟雨, 姜祥华, 等. 2020. 2020年西藏改则3次5级以上地震总结[J]. 地震地磁观测与研究, 41(3): 174183. |
WANG Yue, XIE Meng-yu, JIANG Xiang-hua, et al. 2020. About three Gaize MS≥5.0 earthquakes in Xizang during Feb. 21 to Mar. 12, 2020[J]. Seismological and Geomagnetic Observation and Research, 41(3): 174183. (in Chinese) | |
[19] | 谢小平, 白毛伟, 陈芝聪, 等. 2019. 龙门山断裂带北东段活动断裂的遥感影像解译及构造活动性分析[J]. 国土资源遥感, 31(1): 237246. |
XIE Xiao-ping, BAI Mao-wei, CHEN Zhi-cong, et al. 2019. Remote sensing image interpretation and tectonic activity study of the active faults along the northeastern segment of the Longmenshan fault[J]. Remote Sensing for Land & Resources, 31(1): 237246. (in Chinese) | |
[20] | 徐锡伟. 2000. 藏北玛尼地震科学考察[M]. 北京: 地震出版社. |
XU Xi-wei. 2000. A Scientific Investigation of the Mani Earthquake in Northern Tibet[M]. Seismological Press, Beijing. (in Chinese) | |
[21] | 张世富. 2013. 基于Google Earth的高分辨率影像获取方法探讨[J]. 电子技术, 42(12): 1618. |
ZHANG Shi-fu. 2013. Discussion on high-resolution image acquisition method based on Google Earth[J]. Electronic Technology, 42(12): 1618. (in Chinese) | |
[22] | 张乙, 王俊, 陈寒万平, 等. 2019. 91卫图助手在建筑结构震害预测工作中的应用[J]. 山西建筑, 45(20): 197198. |
ZHANG Yi, WANG Jun, CHEN Han-wanping, et al. 2019. Application of 91 satellite maps in earthquake damage prediction of building structure[J]. Shanxi Architecture, 45(20): 197198. (in Chinese) | |
[23] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2018. 中华人民共和国国家标准: 活动断层探测[S]. 北京: 中国标准出版社. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. 2018. National Standard of the People’s Republic of China: Active Fault Detection[S]. China Standard Press, Beijing. (in Chinese) | |
[24] | Chen Q, Freymueller J T, Wang Q, et al. 2004. A deforming block model for the present-day tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 109(B1): B01403. |
[25] |
Elliott J R, Walters R J, England P C, et al. 2010. Extension on the Tibetan plateau: Recent normal faulting measured by InSAR and body wave seismology[J]. Geophysical Journal International, 183(2): 503535.
DOI URL |
[26] |
Han S, Li H B, Pan J W, et al. 2019. Co-seismic surface ruptures in Qiangtang Terrane: Insight into Late Cenozoic deformation of central Tibet[J]. Tectonophysics, 750: 359378.
DOI URL |
[27] | Li H, Chevalier M L, Tapponnier P, et al. 2021. Block tectonics across Western Tibet and multi-millennial recurrence of great earthquakes on the Karakax Fault[J]. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB022033. |
[28] |
Li Y, Tian Y, Yu C, et al. 2020. Present-day interseismic deformation characteristics of the Beng Co-Dongqiao conjugate fault system in central Tibet: implications from InSAR observations[J]. Geophysical Journal International, 221(1): 492503.
DOI URL |
[29] |
Molnar P, Lyon-Caent H. 1989. Fault plane solutions of earthquakes and active tectonics of the Tibetan plateau and its margins[J]. Geophysical Journal International, 99(1): 123153.
DOI URL |
[30] |
Ratschbacher L, Krumrei I, Blumenwitz M, et al. 2011. Rifting and strike-slip shear in central Tibet and the geometry, age and kinematics of upper crustal extension in Tibet[J]. Geological Society, London, Special Publications, 353(1): 127163.
DOI URL |
[31] |
Ren Z K, Zhang Z Q. 2019. Structural analysis of the 1997 MW7.5 Manyi earthquake and the kinematics of the Manyi fault, central Tibetan plateau[J]. Journal of Asian Earth Sciences, 179: 149164.
DOI URL |
[32] |
Rothery D A, Drury S A. 1984. The neotectonics of the Tibetan plateau[J]. Tectonics, 3(1): 1926.
DOI URL |
[33] | Taylor M, Peltzer G. 2006. Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 111(B12): B12402. |
[34] |
Taylor M, Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 5(3): 199214.
DOI URL |
[35] | Taylor M, Yin A, Ryerson F J, et al. 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan plateau[J]. Tectonics, 22(4): 567591. |
[36] | Velasco A A, Ammon C J, Beck S L. 2000. Broadband source modeling of the November 8, 1997, Tibet(MW=7.5)earthquake and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 105(B12): 2806528080. |
[37] | Wang H, Xu C, Ge L. 2007. Coseismic deformation and slip distribution of the 1997 MW7.5 Manyi, Tibet, earthquake from InSAR measurements[J]. Journal of Geodynamics, 44(3-5): 200212. |
[38] | Yin A. 2000. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 105(B9): 2174521759. |
[39] |
Yin A, Kapp P A, Murphy M A, et al. 1999. Significant late Neogene east-west extension in northern Tibet[J]. Geology, 27(9): 787790.
DOI URL |
[40] | Yin A, Taylor M H. 2011. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of America Bulletin, 123(9-10): 17981821. |
[41] | Zuza A V, Yin A. 2016. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet[J]. Tectonophysics, 677-678: 227240. |
[1] | 李海鸥, 徐锡伟, 姜枚, 马文涛. 青藏高原西部班公-怒江缝合带下方地壳结构与地块拼合模式[J]. 地震地质, 2010, 32(2): 213-221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||