地震地质 ›› 2023, Vol. 45 ›› Issue (1): 208-230.DOI: 10.3969/j.issn.0253-4967.2023.01.012
收稿日期:
2022-05-04
修回日期:
2022-09-18
出版日期:
2023-02-20
发布日期:
2023-03-24
作者简介:
樊文杰, 男, 1990年生, 2016年于中国地震局地壳应力研究所获固体地球物理学硕士学位, 工程师, 研究方向为震源机制与构造应力场, E-mail: fan_095011106@126.com。
基金资助:
Received:
2022-05-04
Revised:
2022-09-18
Online:
2023-02-20
Published:
2023-03-24
摘要:
文中利用CAP方法计算了2021年5月21日漾濞地震序列MS≥4.0地震的震源机制解, 再结合收集到的周边历史地震的震源机制解, 反演计算了漾濞地震及周边区域的构造应力场, 并根据反演得到的应力张量模拟了漾濞地区的相对应力值大小和震源机制解分布情况。研究结果表明: 1)研究区以走滑型地震为主, 其次是正断型地震, 地震集中分布于15km以浅的深度范围, 主要发生在脆性上地壳。2)漾濞震源区的构造应力场属于典型的走滑应力结构, 最大主应力方位为NNW-SSE向, 与区域构造应力场基本一致。研究区的分区反演结果显示, 最大主应力轴和最小主应力轴的方位从东北至西南呈现出顺时针旋转的趋势。区内川滇菱形块体、 腾冲和保山等地块内部的应力方位分布一致性较好, 块体边界带是应力发生偏转的部位, 表现出一定的差异性, 区域构造应力场受到不同块体间相互作用的影响。3)应力形因子R值的分布上大致表现为自西北向东南逐渐增大, 说明物质运移所需的压应力相对变小, 结合研究区的地质构造背景认为, 地块(物质)的运动速度自西北向东南逐渐变缓。4)根据模拟计算的漾濞地震相对剪应力和相对正应力大小推测认为, 漾濞地震是在区域构造应力场作用下沿着最优释放节面滑动破裂而发生的, 更容易发生错动的NW向节面为此次地震的发震断层面。
中图分类号:
樊文杰. 2021年5月21日漾濞MS6.4地震及周边的构造应力场特征和动力学意义[J]. 地震地质, 2023, 45(1): 208-230.
FAN Wen-jie. CHARACTERISTICS OF TECTONIC STRESS FIELD AROUND THE YANGBI MS6.4 EARTHQUAKE AND ITS SURROUNDING AREAS ON MAY 21, 2021 AND ITS GEODYNAMIC IMPLICATION[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 208-230.
图1 漾濞地震震源区及周边的地质构造和震源机制解分布图 子图中的红色方框代表研究区范围, 锯齿状蓝色实线为板块边界带。 大图中震源机制解球的大小随震级增加而增大, 黄色五角星代表漾濞地震的震中, 蓝色实线为活动地块边界(改自张培震等, 2003)。SS 走滑型地震; TF 逆断型地震; NF 正断型地震; UD 不确定型地震。SYRB 川滇菱形块体; TCB 腾冲地块; BSB 保山地块; LSB 兰坪-思茅地块。F1普渡河断裂; F2汤郎-易门断裂; F3元谋-绿汁江断裂; F4楚雄-建水断裂; F5丽江-小金河断裂; F6程海-宾川断裂; F7龙蟠-乔后断裂; F8维西-乔后断裂; F9澜沧江断裂; F10怒江断裂; F11大盈江断裂; F12龙陵-瑞丽断裂; F13南汀河断裂
Fig. 1 Geological structures and focal mechanism solutions in the focal area of the Yangbi earthquake and its surroundings area.
图2 漾濞MS6.4地震的震源机制解反演结果 a 计算使用的一维速度模型; b 漾濞主震反演误差随深度的变化; c 反演最佳深度的理论波形和实际波形拟合, 红色表示理论波形, 黑色表示实际波形, 台站名下方分别为震中距(单位: km)和理论与实际P波初至到时差(单位: s), 波形下方为 理论波形相对实际波形的移动时间(单位: s)和二者的相关系数
Fig. 2 Inversion of focal mechanism solutions for the Yangbi MS6.4 mainshock.
序号 | 走向/(°) | 倾角/(°) | 滑动角/(°) | 作者 | 与本文结果的最小空间旋转角/(°) |
---|---|---|---|---|---|
1 | 138 | 81 | -160 | 中国地震台网中心 | 4.43 |
2 | 137 | 76 | -168 | 雷兴林等, | 5.00 |
3 | 135 | 75 | -168 | 龙锋等, | 5.69 |
4 | 136 | 77 | -170 | 段梦乔等, | 6.20 |
5 | 135 | 82 | -165 | USG | 3.65 |
6 | 315 | 86 | 168 | Global CM | 15.62 |
7 | 317 | 89 | -177 | IS | 22.44 |
表1 不同学者和机构给出的漾濞主震的震源机制解和本文结果的差别
Table1 The difference between the results of this article and the focal mechanism solutions of Yangbi’s main shock given by different scholars and institutions
序号 | 走向/(°) | 倾角/(°) | 滑动角/(°) | 作者 | 与本文结果的最小空间旋转角/(°) |
---|---|---|---|---|---|
1 | 138 | 81 | -160 | 中国地震台网中心 | 4.43 |
2 | 137 | 76 | -168 | 雷兴林等, | 5.00 |
3 | 135 | 75 | -168 | 龙锋等, | 5.69 |
4 | 136 | 77 | -170 | 段梦乔等, | 6.20 |
5 | 135 | 82 | -165 | USG | 3.65 |
6 | 315 | 86 | 168 | Global CM | 15.62 |
7 | 317 | 89 | -177 | IS | 22.44 |
序号 | 发震时间 | 震中位置 | 深度 /km | 震级 | 节面Ⅰ | 节面Ⅱ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
日期 | 时间 | 经度 /(°) | 纬度 /(°) | MS | MW | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | ||
1 | 2021-05-18 | 21:39:35 | 99.93 | 25.65 | 6.3 | 4.2 | 4.4 | 310 | 82 | 165 | 42 | 75 | 8 |
2 | 2021-05-19 | 20:05:56 | 99.92 | 25.67 | 4.8 | 4.4 | 4.7 | 319 | 73 | 180 | 49 | 90 | 17 |
3 | 2021-05-21 | 20:56:02 | 99.93 | 25.63 | 4.6 | 4.2 | 4.4 | 20 | 54 | -54 | 149 | 49 | -129 |
4 | 2021-05-21 | 21:21:25 | 99.92 | 25.63 | 5.0 | 5.6 | 5.3 | 210 | 65 | -39 | 319 | 55 | -149 |
5 | 2021-05-21 | 21:48:34 | 99.87 | 25.67 | 6.0 | 6.4 | 6.1 | 44 | 74 | -11 | 137 | 79 | -164 |
6 | 2021-05-21 | 22:31:10 | 99.97 | 25.58 | 7.3 | 5.2 | 5.1 | 149 | 45 | -156 | 42 | 73 | -48 |
7 | 2021-05-21 | 23:23:34 | 99.98 | 25.60 | 4.9 | 4.5 | 4.5 | 220 | 81 | 3 | 129.5 | 87 | 171 |
8 | 2021-05-22 | 00:51:41 | 99.87 | 25.70 | 3.1 | 4.0 | 4.3 | 35 | 79 | -20 | 129 | 70 | -168 |
9 | 2021-05-22 | 09:48:00 | 99.90 | 25.67 | 4.1 | 4.0 | 4.3 | 315 | 81 | -164 | 222 | 74 | -9 |
10 | 2021-05-22 | 20:14:36 | 99.93 | 25.62 | 6.4 | 4.4 | 4.8 | 204 | 66 | -53 | 322 | 43 | -144 |
11 | 2021-05-27 | 19:52:46 | 99.95 | 25.73 | 4.5 | 4.1 | 4.3 | 284 | 71 | -174 | 192 | 84 | -19 |
表2 漾濞 MS6.4 地震序列部分MS≥4.0地震的震源机制解
Table2 Some focal mechanism solutions of MS≥4.0 earthquakes in Yangbi MS6.4 earthquake sequence
序号 | 发震时间 | 震中位置 | 深度 /km | 震级 | 节面Ⅰ | 节面Ⅱ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
日期 | 时间 | 经度 /(°) | 纬度 /(°) | MS | MW | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | ||
1 | 2021-05-18 | 21:39:35 | 99.93 | 25.65 | 6.3 | 4.2 | 4.4 | 310 | 82 | 165 | 42 | 75 | 8 |
2 | 2021-05-19 | 20:05:56 | 99.92 | 25.67 | 4.8 | 4.4 | 4.7 | 319 | 73 | 180 | 49 | 90 | 17 |
3 | 2021-05-21 | 20:56:02 | 99.93 | 25.63 | 4.6 | 4.2 | 4.4 | 20 | 54 | -54 | 149 | 49 | -129 |
4 | 2021-05-21 | 21:21:25 | 99.92 | 25.63 | 5.0 | 5.6 | 5.3 | 210 | 65 | -39 | 319 | 55 | -149 |
5 | 2021-05-21 | 21:48:34 | 99.87 | 25.67 | 6.0 | 6.4 | 6.1 | 44 | 74 | -11 | 137 | 79 | -164 |
6 | 2021-05-21 | 22:31:10 | 99.97 | 25.58 | 7.3 | 5.2 | 5.1 | 149 | 45 | -156 | 42 | 73 | -48 |
7 | 2021-05-21 | 23:23:34 | 99.98 | 25.60 | 4.9 | 4.5 | 4.5 | 220 | 81 | 3 | 129.5 | 87 | 171 |
8 | 2021-05-22 | 00:51:41 | 99.87 | 25.70 | 3.1 | 4.0 | 4.3 | 35 | 79 | -20 | 129 | 70 | -168 |
9 | 2021-05-22 | 09:48:00 | 99.90 | 25.67 | 4.1 | 4.0 | 4.3 | 315 | 81 | -164 | 222 | 74 | -9 |
10 | 2021-05-22 | 20:14:36 | 99.93 | 25.62 | 6.4 | 4.4 | 4.8 | 204 | 66 | -53 | 322 | 43 | -144 |
11 | 2021-05-27 | 19:52:46 | 99.95 | 25.73 | 4.5 | 4.1 | 4.3 | 284 | 71 | -174 | 192 | 84 | -19 |
类型 | P轴倾伏角 | B轴倾伏角 | T轴倾伏角 |
---|---|---|---|
正断型(NF) | ≥52° | ≤35° | |
正走滑型(NS) | 40°≤倾伏角≤52° | ≤20° | |
走滑型(SS) | ≤20° <40° | ≥45° ≥45° | <40° ≤20° |
逆走滑型(TS) | ≤20° | 40°≤倾伏角≤52° | |
逆断型(TF) | ≤35° | ≥52° | |
不确定型(UD) | 上述类型之外的震源机制解 |
表3 震源机制解的类型划分标准
Table3 Classification standard of focal mechanism solutions
类型 | P轴倾伏角 | B轴倾伏角 | T轴倾伏角 |
---|---|---|---|
正断型(NF) | ≥52° | ≤35° | |
正走滑型(NS) | 40°≤倾伏角≤52° | ≤20° | |
走滑型(SS) | ≤20° <40° | ≥45° ≥45° | <40° ≤20° |
逆走滑型(TS) | ≤20° | 40°≤倾伏角≤52° | |
逆断型(TF) | ≤35° | ≥52° | |
不确定型(UD) | 上述类型之外的震源机制解 |
图7 应力场反演结果及误差估计 a 最大主应力(σ1)和最小主应力(σ3)的分布情况, 线段方向代表主应力方位, 线段长度代表主应力轴的倾伏角大小, 线段越长则倾伏角越小, 小方框内的数字代表每个网格参与反演的数据个数, 五角星代表漾濞地震的震中位置, 黑色粗箭头代表块体的运动方向及速度(改自Shen等, 2005)。b 最大主应力方位的不确定度估计, 黑色粗线分别代表95%置信度下基于bootstrap重采样方法反演得到的σ1轴方位不确定范围的上下限, 红色细线代表最大主应力的最优解。c 各网格σ1轴方位的 不确定变化范围统计直方图
Fig. 7 Stress field inversion results and error estimation.
网格中心点坐标 | σ1轴 | σ2轴 | σ3轴 | R值 | ||||
---|---|---|---|---|---|---|---|---|
北纬 /(°)98.5 | 东经 /(°)13.88 5.3~20.9 | 方位角/(°)4.87 -44.9~20.1 | 倾伏角/(°)149.85 -22.2~327.4 | 方位角/(°)83.23 63.1~89.7 | 倾伏角/(°)-76.52 -84~-68.9 | 方位角/(°)4.68 -19.8~26.6 | 倾伏角/(°)0.58 0.32~0.86 | 24.5 |
25.5 | 98.5 | 16.82 11~23.3 | 6.14 -44.4~19.5 | -159.69 -339~20.2 | 83.85 70.4~90.0 | 106.86 100.9~113.2 | 0.37 -9.2~18.3 | 0.36 0.18~0.55 |
24.5 | 99.5 | 7.72 1.7~13.0 | 6 -44.9~23.1 | -157.98 -336.5~19.9 | 83.81 66.4~89.8 | 97.88 91.9~180.0 | 1.52 -5.9~10.1 | 0.30 0.09~0.50 |
25.5 | 99.5 | -179.09 -184.1~-173.1 | 3.21 -24.8~45.0 | -6.1 -185.9~173.7 | 86.77 50.7~90.0 | 90.89 85.8~97.2 | 0.39 -7.4~7.7 | 0.20 0.02~0.40 |
26.5 | 99.5 | 170.97 163.4~179.2 | 8.99 -59~61.2 | 0.55 -179.4~180.4 | 80.89 28.6~89.8 | -98.8 -105.1~-91.3 | 1.49 -7.7~1.0 | 0.21 0.01~0.44 |
24.5 | 100.5 | -7.82 -15.7~15.7 | 1.22 -54~84.9 | 111.26 -68.3~290.4 | 87.5 4.6~90.0 | -97.87 -180~-90.5 | 2.18 -7~11.4 | 0.27 0.01~0.53 |
25.5 | 100.5 | 163.81 155.6~172.1 | 8.81 -19.7~57.3 | 1.43 -178.5~181.3 | 80.76 32.7~89.7 | -105.76 -113.1~-98 | 2.75 -7.1~9.3 | 0.26 0.04~0.51 |
26.5 | 100.5 | 162.48 155.9~170.3 | 10.81 -14.1~44.0 | -16.36 -194.9~162.7 | 79.19 53.8~89.7 | -107.48 -114.5~-99.9 | 0.22 -10.1~19.4 | 0.31 0.09~0.55 |
27.5 | 100.5 | -22.13 -36.7~-5.6 | 9.67 -54.8~67.8 | 136.85 -42.6~316.3 | 79.65 22.1~89.7 | -112.75 -128.1~-97.2 | 3.64 -23.9~31.5 | 0.40 0.04~0.88 |
24.5 | 101.5 | 164.85 155.3~174.1 | 5.43 -10.2~44.7 | 26.54 -152.3~203.2 | 82.75 53.2~89.7 | -104.69 -113.5~-95.1 | 4.79 -25~35.7 | 0.63 0.34~0.94 |
25.5 | 101.5 | 159.28 152.2~166.8 | 6.46 -5.5~44.2 | -61.59 -240.6~118.0 | 81.49 63.1~90.0 | 68.65 61.8~77.0 | 5.52 -19.4~24.4 | 0.64 0.40~0.87 |
26.5 | 101.5 | 154.92 148.4~163.2 | 1.04 -16.3~43.8 | 17.4 -162.6~197.1 | 88.59 72.6~89.8 | -115.07 -121.5~-107.7 | 0.95 -11.4~24.0 | 0.44 0.20~0.64 |
27.5 | 101.5 | 155.56 -14.2~331.5 | 4.21 -85.5~89.8 | 3.69 -176.1~183.1 | 85.22 -4.4~89.7 | -114.27 -127.2~-101.1 | 2.24 -12.4~24.3 | 0.06 0.01~0.47 |
24.5 | 102.5 | 170.48 157.6~183.6 | 1.03 -13.1~45.0 | 68.25 -111.7~248.2 | 85.15 -4.2~89.9 | -99.43 -273.5~-36.7 | 4.74 -84.1~86.9 | 0.73 0.34~0.99 |
25.5 | 102.5 | 160.93 151.2~172.5 | 6.33 -20.2~44.3 | 6.87 -172.7~186.6 | 82.97 56.3~89.8 | -108.73 -118.2~-97.6 | 3.05 -19.1~19.7 | 0.45 0.06~0.81 |
26.5 | 102.5 | 150.1 142.3~159.7 | 13.76 -10.3~42.0 | -8.92 -179.5~169.3 | 75.31 52.1~89.8 | -118.66 -127.1~-109.3 | 5.06 -8.6~27.2 | 0.40 0.15~0.69 |
27.5 | 102.5 | 140.08 -34.1~209.2 | 24.05 -65.7~86.8 | -24.55 -204.2~155.2 | 65.16 -22.1~89.2 | -127.31 -143.8~-108.8 | 5.84 -12.3~33.8 | 0.17 0.01~0.67 |
表4 分网格反演得到的各分区应力场参数
Table4 The stress field parameters of each division obtained by grid inversion
网格中心点坐标 | σ1轴 | σ2轴 | σ3轴 | R值 | ||||
---|---|---|---|---|---|---|---|---|
北纬 /(°)98.5 | 东经 /(°)13.88 5.3~20.9 | 方位角/(°)4.87 -44.9~20.1 | 倾伏角/(°)149.85 -22.2~327.4 | 方位角/(°)83.23 63.1~89.7 | 倾伏角/(°)-76.52 -84~-68.9 | 方位角/(°)4.68 -19.8~26.6 | 倾伏角/(°)0.58 0.32~0.86 | 24.5 |
25.5 | 98.5 | 16.82 11~23.3 | 6.14 -44.4~19.5 | -159.69 -339~20.2 | 83.85 70.4~90.0 | 106.86 100.9~113.2 | 0.37 -9.2~18.3 | 0.36 0.18~0.55 |
24.5 | 99.5 | 7.72 1.7~13.0 | 6 -44.9~23.1 | -157.98 -336.5~19.9 | 83.81 66.4~89.8 | 97.88 91.9~180.0 | 1.52 -5.9~10.1 | 0.30 0.09~0.50 |
25.5 | 99.5 | -179.09 -184.1~-173.1 | 3.21 -24.8~45.0 | -6.1 -185.9~173.7 | 86.77 50.7~90.0 | 90.89 85.8~97.2 | 0.39 -7.4~7.7 | 0.20 0.02~0.40 |
26.5 | 99.5 | 170.97 163.4~179.2 | 8.99 -59~61.2 | 0.55 -179.4~180.4 | 80.89 28.6~89.8 | -98.8 -105.1~-91.3 | 1.49 -7.7~1.0 | 0.21 0.01~0.44 |
24.5 | 100.5 | -7.82 -15.7~15.7 | 1.22 -54~84.9 | 111.26 -68.3~290.4 | 87.5 4.6~90.0 | -97.87 -180~-90.5 | 2.18 -7~11.4 | 0.27 0.01~0.53 |
25.5 | 100.5 | 163.81 155.6~172.1 | 8.81 -19.7~57.3 | 1.43 -178.5~181.3 | 80.76 32.7~89.7 | -105.76 -113.1~-98 | 2.75 -7.1~9.3 | 0.26 0.04~0.51 |
26.5 | 100.5 | 162.48 155.9~170.3 | 10.81 -14.1~44.0 | -16.36 -194.9~162.7 | 79.19 53.8~89.7 | -107.48 -114.5~-99.9 | 0.22 -10.1~19.4 | 0.31 0.09~0.55 |
27.5 | 100.5 | -22.13 -36.7~-5.6 | 9.67 -54.8~67.8 | 136.85 -42.6~316.3 | 79.65 22.1~89.7 | -112.75 -128.1~-97.2 | 3.64 -23.9~31.5 | 0.40 0.04~0.88 |
24.5 | 101.5 | 164.85 155.3~174.1 | 5.43 -10.2~44.7 | 26.54 -152.3~203.2 | 82.75 53.2~89.7 | -104.69 -113.5~-95.1 | 4.79 -25~35.7 | 0.63 0.34~0.94 |
25.5 | 101.5 | 159.28 152.2~166.8 | 6.46 -5.5~44.2 | -61.59 -240.6~118.0 | 81.49 63.1~90.0 | 68.65 61.8~77.0 | 5.52 -19.4~24.4 | 0.64 0.40~0.87 |
26.5 | 101.5 | 154.92 148.4~163.2 | 1.04 -16.3~43.8 | 17.4 -162.6~197.1 | 88.59 72.6~89.8 | -115.07 -121.5~-107.7 | 0.95 -11.4~24.0 | 0.44 0.20~0.64 |
27.5 | 101.5 | 155.56 -14.2~331.5 | 4.21 -85.5~89.8 | 3.69 -176.1~183.1 | 85.22 -4.4~89.7 | -114.27 -127.2~-101.1 | 2.24 -12.4~24.3 | 0.06 0.01~0.47 |
24.5 | 102.5 | 170.48 157.6~183.6 | 1.03 -13.1~45.0 | 68.25 -111.7~248.2 | 85.15 -4.2~89.9 | -99.43 -273.5~-36.7 | 4.74 -84.1~86.9 | 0.73 0.34~0.99 |
25.5 | 102.5 | 160.93 151.2~172.5 | 6.33 -20.2~44.3 | 6.87 -172.7~186.6 | 82.97 56.3~89.8 | -108.73 -118.2~-97.6 | 3.05 -19.1~19.7 | 0.45 0.06~0.81 |
26.5 | 102.5 | 150.1 142.3~159.7 | 13.76 -10.3~42.0 | -8.92 -179.5~169.3 | 75.31 52.1~89.8 | -118.66 -127.1~-109.3 | 5.06 -8.6~27.2 | 0.40 0.15~0.69 |
27.5 | 102.5 | 140.08 -34.1~209.2 | 24.05 -65.7~86.8 | -24.55 -204.2~155.2 | 65.16 -22.1~89.2 | -127.31 -143.8~-108.8 | 5.84 -12.3~33.8 | 0.17 0.01~0.67 |
图8 漾濞地震在区域应力场中的相对剪应力(a)和相对正应力(b)分布 a和b的底色分别代表相对剪应力和相对正应力的大小, 震源机制解的类型如图b下方所示
Fig. 8 The relative shear stress(a)and relative normal stress(b)on the tectonic stress field of the 2021 Yangbi earthquake.
[1] | 常祖峰, 刘昌伟, 李鉴林, 等. 2021. 2021年漾濞 MS6.4 地震震区地裂缝的构造内涵[J]. 地震地磁观测与研究, 42(S1): 183185. |
CHANG Zu-feng, LIU Chang-wei, LI Jian-lin, et al. 2021. The tectonic implication of ground fissures in the earthquake area of the 2021 Yangbi MS6.4 earthquake[J]. Seismological and Geomagnetic Observation and Research, 42(S1): 183185. (in Chinese) | |
[2] | 程佳, 徐锡伟, 甘卫军, 等. 2012. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源[J]. 地球物理学报, 55(4): 11981212. |
CHENG Jia, XU Xi-wei, GAN Wei-jun, et al. 2012. Block model and dynamic implication form the earthquake activities and crustal motion in the southeastern margin of Tibetan plateau[J]. Chinese Journal of Geophysics, 55(4): 11981212. (in Chinese) | |
[3] | 崔华伟, 万永革, 黄骥超, 等. 2017. 2015年3月新不列颠 MS7.4 地震震源及邻区构造应力场特征[J]. 地球物理学报, 60(3): 985998. |
CUI Hua-wei, WAN Yong-ge, HUANG Ji-chao, et al. 2017. The tectonic stress field in the source of the New Britain MS7.4 earthquake of March 2015 and adjacent areas[J]. Chinese Journal of Geophysics, 60(3): 985998. (in Chinese) | |
[4] | 崔效锋, 谢富仁, 张红艳. 2006. 川滇地区现代构造应力场分区及动力学意义[J]. 地震学报, 28(5): 451461. |
CUI Xiao-feng, XIE Fu-ren, ZHANG Hong-yan. 2006. Recent tectonic stress field zoning in the Sichuan-Yunnan region and its dynamic interest[J]. Acta Seismologica Sinica, 28(5): 451461. (in Chinese) | |
[5] | 邓起东, 张培震, 冉勇康, 等. 2002. 中国活动构造基本特征[J]. 中国科学(D辑), 32(12): 10201030. |
DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. 2002. The basic features of Chinese active tectonics[J]. Science in China(Ser D), 32(12): 10201030. (in Chinese) | |
[6] | 杜兴信, 邵辉成. 1999. 由震源机制解反演中国大陆现代构造应力场[J]. 地震学报, 21(4): 354360. |
DU Xing-xin, SHAO Hui-cheng. 1999. Inversion of modern tectonic stress field in mainland China from focal mechanism solutions[J]. Acta Seismologica Sinica, 21(4): 354360. (in Chinese) | |
[7] | 段梦乔, 赵翠萍, 周连庆, 等. 2021. 2021年5月21日云南漾濞 MS6.4 地震序列发震构造[J]. 地球物理学报, 64(9): 31113125. |
DUAN Meng-qiao, ZHAO Cui-ping, ZHOU Lian-qing, et al. 2021. Seismogenic structure of 21st May 2021 MS6.4 Yunnan Yangbi earthquake sequence[J]. Chinese Journal of Geophysics, 64(9): 31113125. (in Chinese) | |
[8] | 樊文杰, 崔效锋, 赵小艳. 2022. 滇西北地区现今构造应力状态及其与地震的关系[J]. 地震学报, 44(4): 632643. |
FAN Wen-jie, CUI Xiao-feng, ZHAO Xiao-yan. 2022. Current state of tectonic stress in northwestern Yunnan and its relationship with earthquakes[J]. Acta Seismologica Sinica, 44(4): 632643. (in Chinese) | |
[9] | 高家乙, 李永华, 王志铄, 等. 2022. 青藏高原东南缘地壳速度结构及云南漾濞 MS6.4 地震深部孕震环境[J]. 地球物理学报, 65(2): 604619. |
GAO Jia-yi, LI Yong-hua, WANG Zhi-shuo, et al. 2022. Crustal velocity structure of the southeastern Tibetan plateau and its geological implications for the Yunnan Yangbi MS6.4 earthquake[J]. Chinese Journal of Geophysics, 65(2): 604619. (in Chinese) | |
[10] | 胡景, 赵韬, 白超英, 等. 2021. 2021年5月21日漾濞 MS6.4 地震震源区三维P和S波速度结构与地震重定位研究[J]. 地球物理学报, 64(12): 44884509. |
HU Jing, ZHAO Tao, BAI Chao-ying, et al. 2021. Three-dimensional P and S wave velocity structure and earthquake relocation of the May 21, 2021 Yangbi MS6.4 source region[J]. Chinese Journal of Geophysics, 64(12): 44884509. (in Chinese) | |
[11] | 雷兴林, 王志伟, 马胜利, 等. 2021. 关于2021年5月滇西漾濞 MS6.4 地震序列特征及成因的初步研究[J]. 地震学报, 43(3): 125. |
LEI Xing-lin, WANG Zhi-wei, MA Sheng-li, et al. 2021. A preliminary study on the characteristics and mechanism of the May 2021 MS6.4, Yangbi earthquake sequence, Yunnan, China[J]. Acta Seismologica Sinica, 43(3): 125. (in Chinese) | |
[12] |
李传友, 张金玉, 王伟, 等. 2021. 2021年云南漾濞6.4级地震发震构造分析[J]. 地震地质, 43(3): 706721. doi: 10.3969/j.issn.0253-4967.2021.03.015.
DOI |
LI Chuan-you, ZHANG Jin-yu, WANG Wei, et al. 2021. The seismogenic fault of the 2021 Yunnan Yangbi MS6.4 earthquake[J]. Seismology and Geology, 43(3): 706721. (in Chinese) | |
[13] | 李大虎, 丁志峰, 吴萍萍, 等. 2021. 2021年5月21日云南漾濞 MS6.4 地震震区地壳结构特征和孕震背景[J]. 地球物理学报, 64(9): 30833100. |
LI Da-hu, DING Zhi-feng, WU Ping-ping, et al. 2021. The characteristics of crustal structure and seismogenic background of Yangbi MS6.4 earthquake on May 21, 2021 in Yunnan Province, China[J]. Chinese Journal of Geophysics, 64(9): 30833100. (in Chinese) | |
[14] | 李永华, 吴庆举, 田小波, 等. 2009. 用接收函数方法研究云南及其邻区地壳上地幔结构[J]. 地球物理学报, 52(1): 6780. |
LI Yong-hua, WU Qing-ju, TIAN Xiao-bo, et al. 2009. Crustal structure in the Yunnan region determined by modeling receiver functions[J]. Chinese Journal of Geophysics, 52(1): 6780. (in Chinese) | |
[15] | 李泽潇, 万永革, 崔华伟, 等. 2020. 2018年9月8日墨江地震及周边地区构造应力场特征分析[J]. 地球物理学报, 63(4): 14311443. |
LI Ze-xiao, WAN Yong-ge, CUI Hua-wei, et al. 2020. Characteristics analysis of tectonic stress field around the Mojiang earthquake and its adjacent areas on September 8, 2018[J]. Chinese Journal of Geophysics, 63(4): 14311443. (in Chinese) | |
[16] | 龙锋, 祁玉萍, 易桂喜, 等. 2021. 2021年5月21日云南漾濞 MS6.4 地震序列重新定位与发震构造分析[J]. 地球物理学报, 64(8): 26312646. |
LONG Feng, QI Yu-ping, YI Gui-xi, et al. 2021. Relocation of the MS6.4 Yangbi earthquake sequence on May 21, 2021 in Yunnan Province and its seismogenic structure analysis[J]. Chinese Journal of Geophysics, 64(8): 26312646. (in Chinese) | |
[17] | 骆佳骥, 崔效锋, 胡幸平, 等. 2012. 川滇地区活动块体划分与现代构造应力场分区研究综述[J]. 地震研究, 35(3): 309317. |
LUO Jia-ji, CUI Xiao-feng, HU Xing-ping, et al. 2012. Research review of the division of active blocks and zoning of recent tectonic stress field in Sichuan-Yunnan region[J]. Journal of Seismological Research, 35(3): 309317. (in Chinese) | |
[18] | 罗艳, 赵里, 田建慧. 2020. 2008年8月30日攀枝花 MS6.1 地震序列深度及震源区应力特征[J]. 中国科学(D辑), 50(3): 404417. |
LUO Yan, ZHAO Li, TIAN Jian-hui. 2020. The focal depths of the 2008 Panzhihua earthquake sequence and the stress field in the source region[J]. Science China: Earth Science, 50(3): 404417. (in Chinese)
DOI URL |
|
[19] | 马文涛, 徐锡伟, 曹忠权, 等. 2008. 震源机制解分类与川滇及邻近地区最新变形特征[J]. 地震地质, 30(4): 926934. |
MA Wen-tao, XU Xi-wei, CAO Zhong-quan, et al. 2008. Classification of focal mechanism solutions and characteristics of latest crustal deformation of Sichuan-Yunnan region and its adjacency[J]. Seismology and Geology, 30(4): 926934. (in Chinese) | |
[20] | 孙长青, 雷建设, 李聪, 等. 2013. 云南地区地壳各向异性及其动力学意义[J]. 地球物理学报, 56(12): 40954105. |
SUN Chang-qing, LEI Jian-she, LI Cong, et al. 2013. Crustal anisotropy beneath the Yunnan region and dynamics implications[J]. Chinese Journal of Geophysics, 56(12): 40954105. (in Chinese) | |
[21] |
孙业君, 赵小艳, 黄耘, 等. 2017. 云南地区震源机制及应力场特征[J]. 地震地质, 39(2): 390407. doi: 10.3969/j.issn.0253-4967.2017.02.009.
DOI |
SUN Ye-jun, ZHAO Xiao-yan, HUANG Yun, et al. 2017. Characteristics of focal mechanisms and stress field of Yunnan area[J]. Seismology and Geology, 39(2): 390407. (in Chinese) | |
[22] | 田优平, 唐红亮, 康承旭, 等. 2020. 综合震源机制解法反演湖南地区构造应力场的初步结果[J]. 地球物理学报, 63(11): 40804096. |
TIAN You-ping, TANG Hong-liang, KANG Cheng-xu, et al. 2020. Preliminary results of inversion of tectonic stress field in Hunan region by the composite focal mechanism method[J]. Chinese Journal of Geophysics, 63(11): 40804096. (in Chinese) | |
[23] | 万永革. 2015. 联合采用定性和定量断层资料的应力张量反演方法及在乌鲁木齐地区的应用[J]. 地球物理学报, 58(9): 31443156. |
WAN Yong-ge. 2015. A grid search method for determination of tectonic stress tensor using qualitative and quantitative data of active faults and its application to the Urumqi area[J]. Chinese Journal of Geophysics, 58(9): 31443156. (in Chinese) | |
[24] | 万永革. 2019. 同一地震多个震源机制中心解的确定[J]. 地球物理学报, 62(12): 47184728. |
WAN Yong-ge. 2019. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics, 62(12): 47184728. (in Chinese) | |
[25] | 万永革. 2020. 震源机制和应力体系关系模拟研究[J]. 地球物理学报, 63(6): 22812296. |
WAN Yong-ge. 2020. Simulation on relationship between stress regimes and focal mechanisms of earthquakes[J]. Chinese Journal of Geophysics, 63(6): 22812296. (in Chinese) | |
[26] | 万永革, 盛书中, 许娅儒, 等. 2011. 不同应力状态和摩擦系数对综合P波辐射花样影响的模拟研究[J]. 地球物理学报, 54(4): 9941001. |
WAN Yong-ge, SHENG Shu-zhong, XU Ya-ru, et al. 2011. Effect of stress ration and friction coefficient on composite P wave radiation patterns[J]. Chinese Journal of Geophysics, 54(4): 9941001. (in Chinese) | |
[27] | 王椿镛, Mooney W D, 王溪莉, 等. 2002. 川滇地区地壳上地幔三维速度结构研究[J]. 地震学报, 24(1): 116. |
WANG Chun-yong, Mooney W D, WANG Xi-li, et al. 2002. Study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunnan region, China[J]. Acta Seismologica Sinica, 24(1): 116. (in Chinese) | |
[28] | 王光明, 吴中海, 彭关灵, 等. 2021. 2021年5月21日漾濞 MS6.4 发震断层及其破裂特征: 地震序列的重定位分析结果[J]. 地质力学学报, 27(4): 662678. |
WANG Guang-ming, WU Zhong-hai, PENG Guan-ling, et al. 2021. Seismogenic fault and its rupture characteristics of the 21 May, 2021 Yangbi MS6.4 earthquake: Analysis results from the relocation of the earthquake sequence[J]. Journal of Geomechanics, 27(4): 662678. (in Chinese) | |
[29] | 王月, 胡少乾, 何骁慧, 等. 2021. 2021年5月21日云南漾濞6.4级地震序列重定位及震源机制研究[J]. 地球物理学报, 64(12): 45104525. |
WANG Yue, HU Shao-qian, HE Xiao-hui, et al. 2021. Relocation and focal mechanism solutions of the 21 May 2021 MS6.4 Yunnan Yangbi earthquake sequence[J]. Chinese Journal of Geophysics, 64(12): 45104525. (in Chinese) | |
[30] | 吴建平, 明跃红, 王椿镛. 2004. 云南地区中小地震震源机制及构造应力场研究[J]. 地震学报, 26(5): 457465. |
WU Jian-ping, MING Yue-hong, WANG Chun-yong. 2004. Source mechanism of small-to-moderate earthquakes and tectonic stress field in Yunnan Province[J]. Acta Seismologica Sinica, 26(5): 457465. (in Chinese) | |
[31] | 吴中海, 龙长兴, 范桃园, 等. 2015. 青藏高原东南缘弧形旋钮活动构造体系及其动力学特征与机制[J]. 地质通报, 34(1): 131. |
WU Zhong-hai, LONG Chang-xing, FAN Tao-yuan, et al. 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 34(1): 131. (in Chinese) | |
[32] | 吴中海, 赵希涛, 范桃园, 等, 2012. 泛亚铁路滇西大理至瑞丽沿线主要活动断裂与地震地质特征[J]. 地质通报, 31(2): 191217. |
WU Zhong-hai, ZHAO Xi-tao, FAN Tao-yuan, et al. 2012. Active faults and seismologic characteristics along the Dali-Ruili railway in western Yunnan Province[J]. Geological Bulletin of China, 31(2): 191217. (in Chinese) | |
[33] | 谢富仁, 崔效锋, 赵建涛, 等. 2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 47(4): 654662. |
XIE Fu-ren, CUI Xiao-feng, ZHAO Jian-tao, et al. 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 47(4): 654662. (in Chinese) | |
[34] | 谢富仁, 刘光勋, 梁海庆. 1994. 滇西北及邻区现代构造应力场[J]. 地震地质, 16(4): 329337. |
XIE Fu-ren, LIU Guang-xun, LIANG Hai-qing. 1994. Recent tectonic stress field in northwest Yunnan Province and its adjacent areas[J]. Seismology and Geology, 16(4): 329337. (in Chinese) | |
[35] | 谢富仁, 祝景忠, 梁海庆, 等. 1993. 中国西南地区现代构造应力场基本特征[J]. 地震学报, 15(4): 407417. |
XIE Fu-ren, ZHU Jing-zhong, LIANG Hai-qing, et al. 1993. Basic characteristics of modern tectonic stress field in southwest China[J]. Acta Seismologica Sinica, 15(4): 407417. (in Chinese) | |
[36] |
徐锡伟, 程佳, 许冲, 等. 2014. 青藏高原块体运动模型与地震活动主体地区讨论: 鲁甸和景谷地震的启示[J]. 地震地质, 36(4): 11161134. doi: 10.3969/j.issn.0253-4976.2014.04.015.
DOI |
XU Xi-wei, CHENG Jia, XU Chong, et al. 2014. Discussion on block kinematic model and future themed areas for earthquake occurrence in the Tibetan plateau: inspiration from the Ludian and Jinggu earthquakes[J]. Seismology and Geology, 36(4): 11161134. (in Chinese) | |
[37] | 徐锡伟, 闻学泽, 郑荣章, 等. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑), 33(S1): 151162. |
XU Xi-wei, WEN Xue-ze, ZHENG Rong-zhang, et al. 2003. Pattern of latest tectonic motion and its dynamics of active blocks in Sichuan-Yunnan region, China[J]. Science in China(Ser D), 33(S1): 151162. (in Chinese) | |
[38] | 徐彦. 2013. 云南地区 ML3.0以上中小地震震源机制解汇编[M]. 昆明: 云南科技出版社: 168186. |
XU Yan. 2013. The Compilation of Focal Mechanism Solutions for Small-to-Moderate Earthquakes above ML3.0 in Yunnan Area[M]. Kunming: Yunnan Science and Technology Press: 168186. (in Chinese) | |
[39] | 徐志国, 梁珊珊, 张广伟, 等. 2021. 2021年5月22日青海玛多 MS7.4 地震发震构造分析[J]. 地球物理学报, 64(8): 26572670. |
XU Zhi-guo, LIANG Shan-shan, ZHANG Guang-wei, et al. 2021. Analysis of seismogenic structure of Madoi, Qinghai MS7.4 earthquake on May 22, 2021[J]. Chinese Journal of Geophysics, 64(8): 26572670. (in Chinese) | |
[40] | 许忠淮. 1985. 用滑动方向拟合法反演唐山余震区的平均应力场[J]. 地震学报, 7(4): 349362. |
XU Zhong-huai. 1985. Mean stress field in Tangshan aftershock area obtained from focal mechanism data by fitting slip directions[J]. Acta Seismologica Sinica, 7(4): 349362. (in Chinese) | |
[41] | 许忠淮, 戈澍谟. 1984. 用滑动方向拟合法反演富蕴地震断裂带应力场[J]. 地震学报, 6(4): 395404. |
XU Zhong-huai, GE Shu-mo. 1984. Stress field in the Fuyun, Xinjiang earthquake fracture zone determined by fitting fault slip vector data[J]. Acta Seismologica Sinica, 6(4): 395404. (in Chinese) | |
[42] | 许忠淮, 汪素云, 黄雨蕊, 等. 1987. 由多个小震推断的青甘和川滇地区地壳应力场的方向特征[J]. 地球物理学报, 30(5): 476486. |
XU Zhong-huai, WANG Su-yun, HUANG Yu-rui, et al. 1987. Directions of mean stress axes in southwestern China deduced from microearthquake data[J]. Chinese Journal of Geophysics, 30(5): 476486. (in Chinese) | |
[43] | 杨军, 苏有锦, 李孝宾, 等. 2015. 2013年洱源 MS5.5 地震序列ML≥3.4地震的震源机制解研究[J]. 地震研究, 38(2): 196202. |
YANG Jun, SUN You-jin, LI Xiao-bin, et al. 2015. Research on focal mechanism solutions of ML≥3.4 earthquakes of Eryuan MS5.5 earthquake sequence in 2013[J]. Journal of Seismological Research, 38(2): 196202. (in Chinese) | |
[44] | 叶涛, 陈小斌, 黄清华, 等. 2021. 2021年5月21日云南漾濞地震(MS6.4)震源区三维电性结构及发震机制讨论[J]. 地球物理学报, 64(7): 22672277. |
YE Tao, CHEN Xiao-bin, HUANG Qing-hua, et al. 2021. Three-dimensional electrical resistivity structure in focal area of the 2021 Yangbi MS6.4 earthquake and its implication for the seismogenic mechanism[J]. Chinese Journal of Geophysics, 64(7): 22672277. (in Chinese) | |
[45] | 查小惠, 雷建设. 2013. 云南地区地壳厚度和泊松比研究[J]. 中国科学(D辑), 43(3): 446456. |
ZHA Xiao-hui, LEI Jian-she. 2013. Crustal thickness and Posisson’s ratio beneath the Yunnan region[J]. Science China: Earth Science, 43(3): 446456. (in Chinese) | |
[46] | 张培震, 邓起东, 张国民, 等. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 1220. |
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China(Ser D), 33(S1): 1220. (in Chinese) | |
[47] | 张天继, 金明培. 2021. 利用远震P波接收函数研究漾濞地震孕震环境[J]. 地球物理学报, 64(12): 44624474. |
ZHANG Tian-ji, JIN Ming-pei. 2021. The study of seismogenic environment in Yangbi MS6.4 earthquake region by teleseismic P-wave receiver function[J]. Chinese Journal of Geophysics, 64(12): 44624474. (in Chinese) | |
[48] | 赵博, 高原, 马延路. 2022. 2021年5月21日云南漾濞 MS6.4 地震序列重新定位、 震源机制及应力场反演[J]. 地球物理学报, 65(3): 10061020. |
ZHAO Bo, GAO Yuan, MA Yan-lu. 2022. Relocation, focal mechanisms and stress inversion of the May 21th 2021 Yangbi MS6.4 earthquake sequence in Yunnan, China[J]. Chinese Journal of Geophysics, 65(3): 10061020. (in Chinese) | |
[49] | 郑建常, 王鹏, 李冬梅, 等. 2013. 使用小震震源机制解研究山东地区背景应力场[J]. 地震学报, 35(6): 773784. |
ZHENG Jian-chang, WANG Peng, LI Dong-mei, et al. 2013. Tectonic stress field in Shandong region inferred from small earthquakes focal mechanism solutions[J]. Acta Seismologica Sinica, 35(6): 773784. (in Chinese) | |
[50] | Angelier J. 1979. Determination of the mean principal directions of stresses for a given fault population[J]. Tectonophysics, 56(3-4): T17T26. |
[51] | Angelier J, Tarantola A, Valette B, et al. 1982. Inversion of field data in fault tectonics to obtain the regional stress, I. Single phase fault populations: A new method of computing the stress tensor[J]. Geophysical Journal of the Royal Astronomical Society, 69(3): 607621. |
[52] |
Bohnhoff M, Grosser H, Dresen G. 2006. Strain partitioning and stress rotation at the North Anatolian fault zone from aftershock focal mechanisms of the 1999 Izmit MW=7.4 earthquake[J]. Geophysical Journal International, 166(1): 373385.
DOI URL |
[53] | Franck A, Romero G, Rendon H, et al. 2005. Quaternary fault kinematics and stress tensors along the southern Caribbean from fault-slip data and focal mechanism solutions[J]. Earth-Science Reviews, 69(3-4): 181233. |
[54] |
Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 112(B8): B08416. doi: 10.1029/2005jb004120.
DOI |
[55] |
Gephart J W, Forsyth D W. 1984. An improve method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence[J]. Journal of Geophysical Research, 89(B11): 93059320.
DOI URL |
[56] | Hardebeck J L, Michael A J. 2006. Damped regional-scale stress inversion: Methodology and examples for southern California and the Coalinga aftershock sequence[J]. Journal of Geophysical Research, 111(B11): B11310. |
[57] |
Hu X P, Zang A, Heidbach O. 2017. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 149: 2028.
DOI URL |
[58] |
Martínez-Garzón P, Kwiatek G, Ickrath M, et al. 2014. MSATSI: a MATLAB package for stress inversion combining solid classic methodology, a new simplified user-handling, and a visualization tool[J]. Seismological Research Letters, 85(4): 896904.
DOI URL |
[59] |
Michael A J. 1984. Determination of stress from slip data: faults and folds[J]. Journal of Geophysical Research, 89(B13): 1151711526.
DOI URL |
[60] |
Michael A J. 1987. Use of focal mechanisms to determine stress: A control study[J]. Journal of Geophysical Research, 92(B1): 357368.
DOI URL |
[61] |
Michael A J. 1991. Spatial variations in stress within the 1987 Whittier Narrows, California, aftershock sequence: New technique and results[J]. Journal of Geophysical Research, 96(B4): 63036319.
DOI URL |
[62] |
Saikia C K. 1994. Modified frequency-wavenumber algorithm for regional seismograms using Filon’s quadrature: modeling of Lg waves in eastern North America[J]. Geophysical Journal International, 118(1): 142158.
DOI URL |
[63] |
Shen Z K, Lü J N, Wang M, et al. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan plateau[J]. Journal of Geophysical Research, 110(B11): B11409. doi: 10.1029/2004jb003421.
DOI |
[64] |
Stein S, Wiens D A. 1986. Depth determination for shallow teleseismic earthquakes: Methods and results[J]. Reviews of Geophysics, 24(4): 806832.
DOI URL |
[65] |
Wan Y G, Shen S Z, Huang J C, et al. 2016. The grid search algorithm of tectonic stress tenser based on focal mechanism data and its application in the boundary zone of China, Vietnam and Laos[J]. Journal of Earth Science, 27(5): 777785.
DOI URL |
[66] | Wessel P, Smith W H F. 1995. New version of the generic mapping tools released[J]. Eos, Transactions American Geophysical Union, 76(33): 329. |
[67] |
Xu Z G, Huang Z C, Wang L S, et al. 2016. Crustal stress field in Yunnan: implication for crust-mantle coupling[J]. Earthquake Science, 29(2): 105115. doi: 10.1007/s11589-016-01463.
DOI URL |
[68] |
Yamakawa N. 1971. Stress field in focal regions[J]. Journal of Physics of the Earth, 19(4): 347353.
DOI URL |
[69] |
Zhang P Z. 2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan plateau[J]. Tectonophysics, 584: 722.
DOI URL |
[70] |
Zhao L, Luo Y, Liu T Y, et al. 2013. Earthquake focal mechanisms in Yunnan and their inference on the region stress field[J]. Bulletin of the Seismological Society of America, 103(4): 24982507.
DOI URL |
[71] | Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 84(1): 91104. |
[72] |
Zoback M L. 1992. First and second order patterns of stress in the lithosphere: the World Stress Map project[J]. Journal of Geophysical Research, 97(B8): 1170311728.
DOI URL |
[73] |
Zhu L, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 86(5): 16341641.
DOI URL |
[1] | 张珂, 王鑫, 杨红樱, 王玥, 徐岩, 李静. 2021年云南漾濞MS6.4地震序列特征及其发震构造分析[J]. 地震地质, 2023, 45(1): 231-251. |
[2] | 苟家宁, 刘子维, 江颖, 张晓彤. 震前重力扰动与背景噪声时空变化特征以玛多MS7.4与漾濞MS6.4地震为例[J]. 地震地质, 2023, 45(1): 252-268. |
[3] | 邓文泽, 刘杰, 杨志高, 孙丽, 张雪梅. 青海玛多MS7.4地震震源破裂过程反演结果的初步分析[J]. 地震地质, 2022, 44(4): 1059-1070. |
[4] | 李宗旭, 贺日政, 冀战波, 李娱兰, 牛潇. 2009年7月24日西藏尼玛MS5.6地震的震源机制及其构造意义[J]. 地震地质, 2022, 44(4): 992-1010. |
[5] | 王晓山, 万永革. 汶川地震前震中周围地壳应力场及应力方向集中的特征[J]. 地震地质, 2022, 44(2): 363-377. |
[6] | 余占洋, 沈旭章, 梁浩, 郑文俊, 刘旭宙. 基于地震活动性和震源机制解研究渭河-运城盆地主要断裂带的特征及应力场分布[J]. 地震地质, 2022, 44(2): 395-413. |
[7] | 张致伟, 龙锋, 赵小艳, 王迪. 川滇地区的震源机制解及应力场特征[J]. 地震地质, 2022, 44(1): 170-187. |
[8] | 张斌, 李小军, 荣棉水, 俞言祥, 王玉石, 王继鑫. 云南漾濞 MS6.4地震强震动特征和震害分析[J]. 地震地质, 2021, 43(5): 1127-1139. |
[9] | 刘东, 郝洪涛, 王青华, 郑秋月, 黄江培. 2021年云南漾濞MS6.4地震前重力变化[J]. 地震地质, 2021, 43(5): 1157-1170. |
[10] | 孙业君, 黄耘, 刘泽民, 郑建常, 江昊琳, 李婷婷, 叶青, 方韬. 郯庐断裂带鲁苏皖段及邻区构造应力场特征及其动力学意义[J]. 地震地质, 2021, 43(5): 1188-1207. |
[11] | 赵韬, 王莹, 马冀, 邵若潼, 徐一斐, 胡景. 2021年青海玛多7.4级地震序列重定位和震源机制特征[J]. 地震地质, 2021, 43(4): 790-805. |
[12] | 梁姗姗, 徐志国, 张广伟, 邹立晔, 刘艳琼, 郭铁龙. 2021年云南漾濞MS6.4地震震源区断层系统的几何复杂性[J]. 地震地质, 2021, 43(4): 827-846. |
[13] | 王莹, 赵韬, 胡景, 刘春. 2021年云南漾濞6.4级地震序列重定位及震源机制解特征分析[J]. 地震地质, 2021, 43(4): 847-863. |
[14] | 王子博, 刘瑞丰, 孙丽, 李赞, 孔韩东. 2021年云南漾濞MS6.4地震辐射能量的快速测定[J]. 地震地质, 2021, 43(4): 908-919. |
[15] | 宋成科, 陈政宇, 周思远, 徐玉健, 陈斌. 2021年漾濞MS6.4地震前后的地磁场变化[J]. 地震地质, 2021, 43(4): 958-971. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||