地震地质 ›› 2023, Vol. 45 ›› Issue (1): 190-207.DOI: 10.3969/j.issn.0253-4967.2023.01.011
杨建文1),2)(), 金明培1),2),*(), 茶文剑1),2), 张天继1), 叶泵1),2)
收稿日期:
2022-04-02
修回日期:
2022-06-20
出版日期:
2023-02-20
发布日期:
2023-03-24
通讯作者:
* 金明培, 男, 1969年生, 正研级高级工程师, 硕士生导师, 现主要研究方向为地震监测预报、 接收函数、 震源模型等, E-mail: jmp69@263.net。
作者简介:
杨建文, 男, 1989年生, 2014年于昆明理工大学获测绘工程专业硕士学位, 工程师, 主要从事接收函数、 背景噪声成像等研究工作, E-mail: 928547602@qq.com。
基金资助:
YANG Jian-wen1),2)(), JIN Ming-pei1),2),*(), CHA Wen-jian1),2), ZHANG Tian-ji1), YE Beng1),2)
Received:
2022-04-02
Revised:
2022-06-20
Online:
2023-02-20
Published:
2023-03-24
摘要:
文中基于2011年9月2日2014年1月16日小江断裂带及邻区48个台站的远震三分量波形数据提取径向P波接收函数, 采用两步反演法和Bootstrap重采样技术反演了各台站下方的S波速度结构, 对小江断裂带及邻区的地壳深部结构进行了研究。结果表明: 1)研究区地壳的S波速度在横向和垂向上都存在明显的非均匀特性, 近地表处有2~4km厚的低速沉积层; 中上地壳的S波速度呈高、 低速相间分布; 在20~35km的深度范围内存在明显的低速层, 主要间断分布于小江断裂以西的川滇菱形块体和红河断裂以南的印支块体内部, 另外在师宗-弥勒断裂附近也有局部分布。2)小江断裂带中、 北段壳内低速层较为发育, 以中段最为突出, 最厚约达28km; 南段在15~25km深度范围内存在明显的高速区。3)研究区的泊松比普遍较低(平均为0.24), 呈不均匀分布, 且横向变化剧烈, 小江断裂带的泊松比总体呈北段较高、 南段次之、 中段低的分段特征; 研究区壳内低速分布与泊松比间的对应关系不明显, 大部分低速层似乎缺少发生部分熔融的条件, 其地球物理结果的差异和不一致说明壳内低速层的变形演化机制及物理特性较为复杂。
中图分类号:
杨建文, 金明培, 茶文剑, 张天继, 叶泵. 利用接收函数两步反演法研究小江断裂带及邻区地壳S波速度结构[J]. 地震地质, 2023, 45(1): 190-207.
YANG Jian-wen, JIN Ming-pei, CHA Wen-jian, ZHANG Tian-ji, YE Beng. CRUSTAL S-WAVE VELOCITY STRUCTURE BENEATH THE XIAO-JIANG FAULT ZONE AND ADJACENT REGIONS REVEALED BY TWO-STEP INVERSION METHOD OF RECEIVER FUNCTIONS[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 190-207.
图1 a ChinArray Ⅰ期台站和云南区域台网台站分布; b 研究区的台站、 断层、 垂直剖面分布 F1罗茨-易门断裂; F2普渡河断裂; F3-1小江断裂西支; F3-2小江断裂东支; F4寻甸-宣威断裂; F5曲靖断裂; F6师宗-弥勒断裂; F7曲江断裂; F8石屏-建水断裂; F9红河断裂。 SYDB 川滇菱形块体; SCB华南地块; ICB 印支块体
Fig. 1 Stations distribution of ChinArray Phase Ⅰ and Yunnan regional seismic network(a), distribution of stations, faults, vertical profiles in the study area(b).
图3 53195台第1步低频(α=1.0)接收函数反演的波形拟合和解的不确定性评估 a 23个接收函数(黑色-灰色填充)和合成结果(红色虚线)的拟合情况; b 23个接收函数的S波反演结果; c 基于Bootstrap技术进行1000次重采样获得的最优解(红色粗实线)和95%的置信区间(蓝色细实线)
Fig. 3 Waveform fitting and solution uncertainty evaluation of the first-step low-frequency(α=1.0) receiver function inversion for station 53195.
图4 53195台第2步高频(α=2.5)接收函数反演的波形拟合和解的不确定性评估(子图说明见图3)
Fig. 4 Waveform fitting and solution uncertainty evaluation of the second-step high-frequency(α=2.5) receiver function inversion for station 53195(Same subgraph description as in Fig. 3).
图5 研究区4km、 10km、 16km、 22km、 30km和36km深度处的S波速度分布图(断裂说明见图1) 中红色圆圈为1900年以来的M≥6.0地震的震中分布
图b S-wave velocity distribution at the depths of 4km, 10km, 16km, 22km, 30km and 36km in the study areas(Same faults description as in Fig. 1).
[1] | 何宏林, 池田安隆, 宋方敏, 等. 2002. 小江断裂带第四纪晚期左旋走滑速率及其构造意义[J]. 地震地质, 24(1): 1426. |
HE Hong-lin, Yasutaka Ikeda, SONG Fang-min, et al. 2002. Late Quaternary slip rate of the Xiaojiang Fault and its implication[J]. Seismology and Geology, 24(1): 1426. (in Chinese) | |
[2] | 皇甫岗, 陈颙, 秦嘉政, 等. 2010. 云南地震活动性[M]. 昆明: 云南科技出版社:24. |
HUANGFU Gang, CHEN Yong, QIN Jia-zheng, et al. 2010. The Seismicity in Yunnan[M]. Yunnan Science and Technology Press, Kunming: 24. (in Chinese) | |
[3] | 李海艳, 蔡辉腾, 金星, 等. 2021. 利用远震P波接收函数研究中国福建地区地壳厚度和泊松比[J]. 地球物理学报, 64(3): 805822. |
LI Hai-yan, CAI Hui-teng, JIN Xing, et al. 2021. Analysis of the crustal thickness and Poisson’s ratio in Fujian, southeast China, from teleseismic P-wave receiver functions[J]. Chinese Journal of Geophysics, 64(3): 805822. (in Chinese) | |
[4] | 李建有, 石宝文, 徐晓雅, 等. 2018. 利用远震接收函数探测四川盆地及周边地区的地壳结构[J]. 地球物理学报, 61(7): 27192735. |
LI Jian-you, SHI Bao-wen, XU Xiao-ya, et al. 2018. Crustal structure beneath the Sichuan Basin and adjacent regions revealed by teleseismic receiver functions[J]. Chinese Journal of Geophysics, 61(7): 27192735. (in Chinese) | |
[5] |
李西, 冉勇康, 吴富峣, 等. 2018. 小江断裂带西支晚第四纪强震破裂特征[J]. 地震地质, 40(6): 11791203. doi: 10.3969/j.issn.0253-4967.2018.06.001.
DOI |
LI Xi, RAN Yong-kang, WU Fu-yao, et al. 2018. Rupture characteristics of late Quaternary strong earthquakes on the western branch of the Xiaojiang fault zone[J]. Seismology and Geology, 40(6): 11791203. (in Chinese) | |
[6] | 黎源, 雷建设. 2012. 青藏高原东缘上地慢顶部Pn波速度结构及各向异性研究[J]. 地球物理学报, 55(11): 36153624. |
LI Yuan, LEI Jian-she. 2012. Velocity and anisotropy structure of the uppermost mantle under the eastern Tibetan plateau inferred from Pn tomography[J]. Chinese Journal of Geophysics, 55(11): 36153624. (in Chinese) | |
[7] | 刘伟, 吴庆举, 张风雪. 2019. 利用双差层析成像方法反演青藏高原东南缘地壳速度结构[J]. 地震学报, 41(2): 155168. |
LIU Wei, WU Qing-ju, ZHANG Feng-xue. 2019. Crustal structure of southeastern Tibetan plateau inferred from double-difference tomography[J]. Acta Seismologica Sinica, 41(2): 155168. (in Chinese) | |
[8] | 毛燕, 刘自凤, 叶建庆, 等. 2016. 小江断裂带强震危险性分析[J]. 地震研究, 39(2): 213217. |
MAO Yan, LIU Zi-feng, YE Jian-qing, et al. 2016. Analysis on strong earthquake risk of Xiaojiang fault zone[J]. Journal of Seismological Research, 39(2): 213217. (in Chinese) | |
[9] | 钱晓东, 秦嘉政. 2008. 小江断裂带及周边地区强震危险性分析[J]. 地震研究, 31(4): 354361. |
QIAN Xiao-dong, QIN Jia-zheng. 2008. Strong earthquake risk analysis of Xiaojiang fault zone and surrounding areas[J]. Journal of Seismological Research, 31(4): 354361. (in Chinese) | |
[10] | 沈军, 汪一鹏, 宋方敏, 等. 1998. 相对蠕滑速率与特征地震复发间隔的估计: 以小江断裂带为例[J]. 地震地质, 20(4): 328331. |
SHEN Jun, WANG Yi-peng, SONG Fang-min, et al. 1998. Relative creep rate and characteristic earthquake recurrence interval: Example from the Xiaojiang fault zone in Yunnan, China[J]. Seismology and Geology, 20(4): 328331. (in Chinese) | |
[11] | 宋方敏, 汪一鹏, 俞维贤, 等. 1998. 小江活动断裂带[M]. 北京: 地震出版社:1516. |
SONG Fang-min, WANG Yi-peng, YU Wei-xian, et al. 1998. The Xiaojiang Active Fault Zone[M]. Seismological Press, Beijing: 1516. (in Chinese) | |
[12] |
唐彦东, 刘春平, 廖欣, 等. 2013. 小江断裂带中段和南段井水位变化与形变分析[J]. 地震地质, 35(3): 553564. doi: 10.3969/j.issn.0253-4967.2013.03.009.
DOI |
TANG Yan-dong, LIU Chun-ping, LIAO Xin, et al. 2013. Analysis of water level changes and deformation process of the middle and southern segments of Xiaojiang fault zone[J]. Seismology and Geology, 35(3): 553564. (in Chinese) | |
[13] | 王椿镛, 楼海, 姚志祥, 等. 2010. 龙门山及其邻区的地壳厚度和泊松比[J]. 第四纪研究, 30(4): 652661. |
WANG Chun-yong, LOU Hai, YAO Zhi-xiang, et al. 2010. Crustal thicknesses and Poisson’s ratios in Longmenshan Mountains and adjacent regions[J]. Quaternary Sciences, 30(4): 652661. (in Chinese) | |
[14] | 王云, 赵慈平, 刘峰, 等. 2014. 小江断裂带及邻近地区温泉地球化学特征与地震活动关系研究[J]. 地震研究, 37(2): 228243. |
WANG Yun, ZHAO Ci-ping, LIU Feng, et al. 2014. Research on relationship between geochemical characteristics of thermal springs and seismic activity in Xiaojiang fault zone and its adjacent area[J]. Journal of Seismological Research, 37(2): 228243. (in Chinese) | |
[15] | 魏文薪. 2012. 川滇块体东边界主要断裂带运动特性及动力学机制研究[D]. 北京: 中国地震局地质研究所:5564. |
WEI Wen-xin. 2012. Study on mechanisms and characteristics of major faults in the eastern boundary of the Sichuan-Yunnan block[D]. Institute of Geology, China Earthquake Administration, Beijing: 5564. (in Chinese) | |
[16] | 杨晶琼, 李月芯, 运乃丹, 等. 2021. 云南小江断裂带北段动态触发现象研究[J]. 地球物理学报, 64(9): 32073219. |
YANG Jing-qiong, LI Yue-xin, YUN Nai-dan, et al. 2021. Dynamic earthquake triggering in the north of Xiaojiang fault zone, Yunnan[J]. Chinese Journal of Geophysics, 64(9): 32073219. (in Chinese) | |
[17] | 易桂喜, 闻学泽, 苏有锦. 2008. 川滇活动地块东边界强震危险性研究[J]. 地球物理学报, 51(6): 17191725. |
YI Gui-xi, WEN Xue-ze, SU You-jin. 2008. Study on the potential strong-earthquake risk for the eastern boundary of the Sichuan-Yunnan active faulted-block, China[J]. Chinese Journal of Geophysics, 51(6): 17191725. (in Chinese) | |
[18] | 张培震, 王敏, 甘卫军, 等. 2003. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J]. 地学前缘, 10(S1): 8192. |
ZHANG Pei-zhen, WANG Min, GAN Wei-jun, et al. 2003. Slip rates along major active faults from GPS measurements and constraints on contemporary continental tectonics[J]. Earth Science Frontiers, 10(S1): 8192. (in Chinese) | |
[19] | 张培震, 王琪, 马宗晋. 2002. 青藏高原现今构造变形特征与GPS速度场[J]. 地学前缘, 9(2): 442450. |
ZHANG Pei-zhen, WANG Qi, MA Zong-jin. 2002. GPS velocity field and active crustal deformation in and around the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 9(2): 442450. (in Chinese) | |
[20] | 张天继, 金明培. 2021. 利用远震P波接收函数研究漾濞 MS6.4 地震孕震环境[J]. 地球物理学报, 64(12): 44624474. |
ZHANG Tian-ji, JIN Ming-pei. 2021. The study of seismogenic environment in Yangbi MS6.4 earthquake region by teleseismic P-wave receiver function[J]. Chinese Journal of Geophysics, 64(12): 44624474. (in Chinese) | |
[21] | 郑晨, 丁志峰, 宋晓东. 2016. 利用面波频散与接收函数联合反演青藏高原东南缘地壳上地幔速度结构[J]. 地球物理学报, 59(9): 32233236. |
ZHENG Chen, DING Zhi-feng, SONG Xiao-dong. 2016. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure in southeast Tibetan plateau[J]. Chinese Journal of Geophysics, 59(9): 32233236. (in Chinese) | |
[22] | 朱介寿, 王绪本, 杨宜海, 等. 2017. 青藏高原东缘的地壳流及动力过程[J]. 地球物理学报, 60(6): 20382057. |
ZHU Jie-shou, WANG Xu-ben, YANG Yi-hai, et al. 2017. The crustal flow beneath the eastern margin of the Tibetan plateau and its process of dynamics[J]. Chinese Journal of Geophysics, 60(6): 20382057. (in Chinese) | |
[23] | Ammon C J, Randall G E, Zandt G. 1990. On the nonuniqueness of receiver function inversions[J]. Journal of Geophysical Research: Solid Earth, 95(B10): 1530315318. |
[24] |
Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3(5): 358362.
DOI |
[25] |
Bao X W, Sun X X, Xu M J, et al. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions[J]. Earth and Planetary Science Letters, 415:1624.
DOI URL |
[26] |
Berteussen K A. 1977. Moho depth determinations based on spectral-ratio analysis of NORSAR long-period P waves[J]. Physics of the Earth and Planetary Interiors, 15(1): 1327.
DOI URL |
[27] | Efron B. 1979. Bootstrap methods: Another look at the jackknife[J]. The Annals of Statistics, 7(1): 126. |
[28] | Lei J S, Li Y, Xie F R, et al. 2014. Pn anisotropic tomography and dynamics under eastern Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 119(3): 21742198. |
[29] |
Ligorría J P, Ammon C J. 1999. Iterative deconvolution and receiver-function estimation[J]. Bulletin of the Seismological Society of America, 89(5): 13951400.
DOI URL |
[30] |
Liu Q Y, Van D, Li Y, et al. 2014. Eastward expansion of the Tibetan plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 7(5): 361365.
DOI |
[31] |
Peng H C, Yang H Y, Hu J F, et al. 2017. Three-dimensional S-velocity structure of the crust in the southeast margin of the Tibetan plateau and geodynamic implications[J]. Journal of Asian Earth Sciences, 148: 210222.
DOI URL |
[32] |
Shen J, Wang Y P, Song F M. 2003. Characteristics of the active Xiaojiang fault zone in Yunnan, China: A slip boundary for the southeastward escaping Sichuan-Yunnan block of the Tibetan plateau[J]. Journal of Asian Earth Sciences, 21(10): 10851096.
DOI URL |
[33] |
Sun X X, Bao X W, Xu M J, et al. 2014. Crustal structure beneath SE Tibet from joint analysis of receiver functions and Rayleigh wave dispersion[J]. Geophysical Research Letters, 41(5): 14791484.
DOI URL |
[34] | Wen X Z. 1998. The uniform-slip method for estimating mean slip-rate of strike-slip fault[J]. Journal of Earthquake Prediction Research, 7: 170182. |
[35] |
Zandt G, Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson’s ratio[J]. Nature, 374(6518): 152154.
DOI |
[36] | Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 105(B2): 29692980. |
[1] | 宫猛, 吕坚, 郑勇, 谢祖军, 盛书中, 张杏棉. 华南地块及邻区基于背景噪声的壳幔三维S波速度结构[J]. 地震地质, 2022, 44(4): 1011-1028. |
[2] | 孔祥艳, 吴建平, 房立华, 蔡妍, 范莉苹, 王未来. 利用面波频散和接收函数联合反演中国境内天山及邻区的地壳上地幔速度结构[J]. 地震地质, 2020, 42(4): 844-865. |
[3] | 张娜, 赵翠萍, 李春宏, 周连庆. 基于加密观测的金沙江下游水库区速度结构成像[J]. 地震地质, 2019, 41(6): 1380-1394. |
[4] | 冯红武, 颜文华, 严珊, 郭瑛霞, 惠少兴, 常城. 背景噪声和地震面波联合反演渭河盆地及邻区壳幔S波速度结构[J]. 地震地质, 2019, 41(5): 1185-1205. |
[5] | 李西, 冉勇康, 吴富峣, 马兴全, 张彦琪, 曹筠. 小江断裂带西支晚第四纪强震破裂特征[J]. 地震地质, 2018, 40(6): 1179-1203. |
[6] | 谢辉, 马禾青, 焦明若, 马小军, 张楠, 李青梅. 利用背景噪声成像技术反演宁夏及邻区S波速度结构[J]. 地震地质, 2017, 39(3): 605-622. |
[7] | 宫猛, 徐锡伟, 张新东, 欧阳龙斌, 江国焰, 董博. 华北东部基于背景噪声的壳幔三维S波速度结构[J]. 地震地质, 2017, 39(1): 130-146. |
[8] | 韩竹军, 董绍鹏, 毛泽斌, 呼楠, 谭锡斌, 袁仁茂, 郭鹏. 小江断裂带南段全新世活动的地质地貌证据与滑动速率[J]. 地震地质, 2017, 39(1): 1-19. |
[9] | 罗佳宏, 马文涛. 三峡库区上地壳速度结构初步研究[J]. 地震地质, 2016, 38(2): 329-341. |
[10] | 唐彦东, 刘春平, 廖欣, 石云, 万飞. 小江断裂带中段和南段井水位变化与形变分析[J]. 地震地质, 2013, 35(3): 553-564. |
[11] | 何宏林, 池田安隆, 宋方敏, 董兴权. 小江断裂带第四纪晚期左旋走滑速率及其构造意义[J]. 地震地质, 2002, 24(1): 14-26. |
[12] | 陈睿, 李玶. 小江西支断裂的滑动速率与强震重复周期[J]. 地震地质, 1988, 10(2): 1-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||