地震地质 ›› 2023, Vol. 45 ›› Issue (1): 172-189.DOI: 10.3969/j.issn.0253-4967.2023.01.010
刘奕均1),3)(), 杨光亮1),2),3),*(), 王嘉沛1),3), 谈洪波1),3), 周怀斌2), 申重阳1),3)
收稿日期:
2022-02-16
修回日期:
2022-10-05
出版日期:
2023-02-20
发布日期:
2023-03-24
通讯作者:
* 杨光亮, 男, 1980年生, 副研究员, 主要从事重力探测与地球动力学相关研究, E-mail: 3193459@qq.com。
作者简介:
刘奕均, 男, 1998年生, 现为中国地震局地震研究所固体地球物理学专业硕士研究生, 研究方向为重力反演, E-mail: liuyijun202@mails.ucas.ac.cn。
基金资助:
LIU Yi-jun1),3)(), YANG Guang-liang1),2),3),*(), WANG Jia-pei1),3), TAN Hong-bo1),3), ZHOU Huai-bin2), SHEN Chong-yang1),3)
Received:
2022-02-16
Revised:
2022-10-05
Online:
2023-02-20
Published:
2023-03-24
摘要:
为减少密度界面重力反演的非唯一性, 文中对经典粒子群算法的初值模型和参数设定进行优化, 并通过理论模型验证其有效性。基于该改进算法, 采用长宁科考的多条实测重力剖面数据反演计算了长宁地区印支密度界面的深度, 并结合界面起伏形态分析该地区的构造特征及其与地震的关系。研究结果表明, 经优化的粒子群算法全局搜寻最优解的性能稳定, 深度误差更小。对长宁地区印支密度界面的反演显示, 该界面总体呈现中间隆起、 四周凹陷的特征, 深度介于0.3~3.3km, 与前人的结果基本一致, 文中所得结果的细节更精细。研究区东侧界面的凹陷程度显著大于西侧, 界面隆起部分对应长宁-双河复式大背斜, 深度介于0.3~1.9km, 背斜核部受到构造运动的抬升侵蚀作用导致古老地层出露地表。大背斜北翼处的界面较南翼陡峻, 呈条带状分布的北翼浅层地震发震位置与界面起伏具有高相关性, 地震多发生在印支界面剧烈起伏处; 呈团状分布的南翼浅层地震发震位置处的印支界面存在明显凹陷。文中的反演结果为该地区地震构造环境研究提供了基础信息, 也是后续多层密度界面模型的重要参考。
中图分类号:
刘奕均, 杨光亮, 王嘉沛, 谈洪波, 周怀斌, 申重阳. 基于粒子群算法的四川长宁地区印支构造界面反演[J]. 地震地质, 2023, 45(1): 172-189.
LIU Yi-jun, YANG Guang-liang, WANG Jia-pei, TAN Hong-bo, ZHOU Huai-bin, SHEN Chong-yang. INVERSION OF INDOSINIAN SURFACE IN CHANGNING, SICHUAN BASED ON PARTICLE SWARM OPTIMIZATION ALGORITHM[J]. SEISMOLOGY AND GEOLOGY, 2023, 45(1): 172-189.
X(0~3000m) | X(3000~6000m) | ||
---|---|---|---|
深度/m | 密度差/kg·m-3 | 深度/m | 密度差/kg·m-3 |
0 | -580 | 0 | -600 |
100 | -580 | 110 | -600 |
150 | -540 | 150 | -570 |
表1 模型密度差的横纵向分配
Table1 Horizontal and vertical distribution of density contrast of the synthetic model
X(0~3000m) | X(3000~6000m) | ||
---|---|---|---|
深度/m | 密度差/kg·m-3 | 深度/m | 密度差/kg·m-3 |
0 | -580 | 0 | -600 |
100 | -580 | 110 | -600 |
150 | -540 | 150 | -570 |
密度差 | 网格大小 | 粒子数 | 迭代次数 |
---|---|---|---|
-160kg/m3 | 2km×2km | 100 | 60 |
表2 反演所需参数设置
Table2 Set parameters required for inversion
密度差 | 网格大小 | 粒子数 | 迭代次数 |
---|---|---|---|
-160kg/m3 | 2km×2km | 100 | 60 |
图7 长宁地区印支界面的反演结果(二维) a 长宁地区印支界面的深度; be 长宁地区所截取的4条剖面切片。背斜、 向斜及断层的位置分布参考文献(常祖峰等, 2020; 孙权等, 2021)。地震数量分布的热力图数据来自国家地震科学数据中心, 选取自2019年6月17日起2a内发生在该地区的地震。地表高程数据来源于ASTER GDEM v3。长宁-双河大背斜北翼的精定位地震数据由易桂喜等(2019)提供, 南翼选取自2019年6月17日起2a内发生在该区域的地震(龙锋, 私人通讯)进行绘图。图7a中黄色加粗虚线为推测的隐伏断裂的大致位置, 红色五角星自北向南依次表示长宁 MS6.0 地震、 珙县 MS5.1 地震、 长宁 MS5.3 地震和珙县 MS5.4 地震。 图be中蓝色圆形代表震级在0~1的地震, 红色圆形指示 1~2级地震, 绿色星形指示2~3级地震, 紫色星形指示震级>3级的地震
Fig. 7 Inversion results of the Indosinian unconformity in the Changning area(2D).
图8 长宁地区印支界面的反演结果及地震位置分布(三维) a 震源深度为0~3.5km的地震分布; b、 c 发生在此地区的所有地震的位置分布。反演图像包含外推结果; 地震位置信息来自国家地震科学数据中心, 选取自2019年6月17日起2a内发生在该地区的地震, 图例斜杠左侧文字为图a中的符号 说明, 右侧为图b、 c中的符号说明; 灰点组成的椭球为页岩气开采的大致位置
Fig. 8 Inversion results of Indosinian unconformity and regional earthquake distribution in Changning area(3D).
[1] | 常祖峰, 张艳凤, 王光明, 等. 2020. 2019年四川长宁 MS6.0 地震的地质构造成因: 区域性构造节理贯通、 破裂结果[J]. 地球学报, 41(4): 469480. |
CHANG Zu-feng, ZHANG Yan-feng, WANG Guang-ming, et al. 2020. The geological genesis of the 2019 Changning MS6.0 earthquake in Sichuan: Connecting and rupturing of regional structural joints[J]. Acta Geoscientica Sinica, 41(4): 469480. (in Chinese) | |
[2] | 陈军, 王家林, 吴健生. 2000. 应用改进的遗传算法反演多层密度界面[J]. 地球科学(中国地质大学学报), 9(6): 651655. |
CHEN Jun, WANG Jia-lin, WU Jian-sheng. 2000. Application of improved genetic algorithm to inversion of multi-layer density interface[J]. Earth Science(Journal of China University of Geosciences), 9(6): 651655. (in Chinese) | |
[3] | 宫悦, 王宇玺, 梁明剑, 等. 2020. 2019年四川长宁6.0级地震序列时空演化特征及其地震构造环境研究[J]. 地震, 40(4): 90102. |
GONG Yue, WANG Yu-xi, LIANG Ming-jian, et al. 2020. Study on the spatio-temporal evolution characteristics and seismic structure environment of the 2019 M6.0 Changning Sichuan earthquake sequence[J]. Earthquake, 40(4): 90102. (in Chinese) | |
[4] | 郭卫星, 唐建明, 欧阳嘉穗, 等. 2021. 四川盆地南部构造变形特征及其与页岩气保存条件的关系[J]. 天然气工业, 41(5): 1119. |
GUO Wei-xing, TANG Jian-ming, OUYANG Jia-sui, et al. 2021. Characteristics of structural deformation in the southern Sichuan Basin and its relationship with the storage condition of shale gas[J]. Natural Gas Industry, 41(5): 1119. (in Chinese) | |
[5] | 郭志, 高星, 路珍. 2020. 2019年6月17日四川长宁地震重定位及震源机制研究[J]. 地震学报, 42(3): 245255. |
GUO Zhi, GAO Xing, LU Zhen. 2020. Relocation and focal mechanism inversion for the Changning, Sichuan, earthquake on 17 June 2019[J]. Acta Seismologica Sinica, 42(3): 245255. (in Chinese) | |
[6] | 韩道范, 谢靖, 刘财, 等. 1994. 利用重力异常反演多层密度分界面的理论和方法[J]. 地球物理学报, 37(S2): 272281. |
HAN Dao-fan, XIE Jing, LIU Cai, et al. 1994. The theory and method of inversing the multi-interfaces of density by gravity anomaly[J]. Acta Geophysica Sinica, 37(S2): 272281. (in Chinese) | |
[7] |
何登发, 鲁人齐, 黄涵宇, 等. 2019. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发, 46(5): 9931006.
DOI |
HE Deng-fa, LU Ren-qi, HUANG Han-yu, et al. 2019. Tectonic and geological background of the earthquake hazards in Changning shale gas development zone, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46(5): 9931006. (in Chinese) | |
[8] | 胡晓辉, 盛书中, 万永革, 等. 2020. 2019年6月17日四川长宁地震序列震源机制与震源区震后构造应力场研究[J]. 地球物理学进展, 35(5): 16751681. |
HU Xiao-hui, SHENG Shu-zhong, WAN Yong-ge, et al. 2020. Study on focal mechanism and post-seismic tectonic stress field of the Changning, Sichuan, earthquake sequence on June 17th 2019[J]. Progress in Geophysics, 35(5): 16751681. (in Chinese) | |
[9] | 胡幸平, 崔效锋, 张广伟, 等. 2021. 长宁地区复杂地震活动的力学成因分析[J]. 地球物理学报, 64(1): 117. |
HU Xing-ping, CUI Xiao-feng, ZHANG Guang-wei, et al. 2021. Analysis on the mechanical causes of the complex seismicity in Changning area, China[J]. Chinese Journal of Geophysics, 64(1): 117. (in Chinese) | |
[10] | 柯小平, 王勇, 许厚泽. 2004. 用遗传算法反演地壳的变密度模型[J]. 武汉大学学报(信息科学版), 29(11): 981984. |
KE Xiao-ping, WANG Yong, XU Hou-ze. 2004. Inversion of variable density model of crust from genetic algorithms[J]. Geomatics and Information Science of Wuhan University, 29(11): 981984. (in Chinese) | |
[11] | 李大虎, 詹艳, 丁志峰, 等. 2021. 四川长宁 MS6.0 地震震区上地壳速度结构特征与孕震环境[J]. 地球物理学报, 64(1): 1835. |
LI Da-hu, ZHAN Yan, DING Zhi-feng, et al. 2021. Upper crustal velocity and seismogenic environment of the Changning MS6.0 earthquake region in Sichuan, China[J]. Chinese Journal of Geophysics, 64(1): 1835. (in Chinese) | |
[12] | 李洪奎, 李忠权, 龙伟, 等. 2019. 四川盆地纵向结构及原型盆地叠合特征[J]. 成都理工大学学报(自然科学版), 46(3): 257267. |
LI Hong-kui, LI Zhong-quan, LONG Wei, et al. 2019. Vertical configuration of Sichuan Basin and its superimposed characteristics of the prototype basin[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 46(3): 257267. (in Chinese) | |
[13] | 李平恩, 廖力, 奉建州. 2022. 2019年6月17日四川长宁6.0级地震震后应力演化与余震关系研究[J]. 地球科学, 47(6): 21492164. |
LI Ping-en, LIAO Li, FENG Jian-zhou. 2022. Relationship between stress evolution and aftershocks after the Changning M6.0 earthquake in Sichuan on 17 June, 2019[J]. Earth Science, 47(6): 21492164. (in Chinese) | |
[14] | 楼海, 王椿镛. 2005. 川滇地区重力异常的小波分解与解释[J]. 地震学报, 27(5): 515523. |
LOU Hai, WANG Chun-yong. 2005. Wavelet analysis and interpretation of gravity data in Sichuan-Yunnan region, China[J]. Acta Seismologica Sinica, 27(5): 515523. (in Chinese) | |
[15] | 鲁人齐, 何登发, 刘静, 等. 2020. 20182019年四川长宁地区中等地震的发震断层认识与探讨[C]. 北京: 2020年中国地球科学联合学术年会论文集(八): 5253. |
LU Ren-qi, HE Deng-fa, LIU Jing, et al. 2020. Recognition and discussion on seismogenic faults of moderate earthquakes in Changning area, Sichuan Province during 2018-2019[C]. Proceedings of 2020 Annual Meeting of Chinese Geoscience Union, Beijing, (8): 5253. (in Chinese) | |
[16] | 陆晓芳. 2011. 改进的非常快速模拟退火算法反演四川盆地主要构造界面形态[D]. 西安: 西北大学:168. |
LU Xiao-fang. 2011. Main structural interfaces of Sichuan Basin obtained from inversions of gravity anomalies through modified very fast simulated annealing method[D]. Northwest University, Xi'an: 168. (in Chinese) | |
[17] | 覃作鹏, 刘树根, 邓宾, 等. 2013. 川东南构造带中新生代多期构造特征及演化[J]. 成都理工大学学报(自然科学版), 40(6): 703711. |
QIN Zuo-peng, LIU Shu-gen, DENG Bin, et al. 2013. Multiphase structural features and evolution of southeast Sichuan tectonic belt in China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 40(6): 703711. (in Chinese) | |
[18] | 屈燕微. 2008. 四川盆地主要密度界面正、 反演研究[D]. 西安: 西北大学:172. |
QU Yan-wei. 2008. A forward and inversion study on the main density interface in Sichuan Basin[D]. Northwest University, Xi'an: 172. (in Chinese) | |
[19] | 孙权, 裴顺平, 苏金蓉, 等. 2021. 2019年6月17日四川长宁 MS6.0 地震震源区三维速度结构[J]. 地球物理学报, 64(1): 3653. |
SUN Quan, PEI Shun-ping, SU Jin-rong, et al. 2021. Three-dimensional seismic velocity structure across the 17 June 2019 Changning MS6.0 earthquake, Sichuan, China[J]. Chinese Journal of Geophysics, 64(1): 3653. (in Chinese) | |
[20] | 王家林, 王一新, 万明浩, 等. 1987. 用重力归一化总梯度法确定密度界面[J]. 石油地球物理勘探, 22(6): 684692. |
WANG Jia-lin, WANG Yi-xin, WAN Ming-hao, et al. 1987. The determination of density interface using the normalized total gravity gradient method[J]. Oil Geophysical Prospecting, 22(6): 684692. (in Chinese) | |
[21] | 王适择. 2014. 川南长宁地区构造特征及志留系龙马溪组裂缝特征研究[D]. 成都: 成都理工大学:188. |
WANG Shi-ze. 2014. The tectonic characteristics of Changning area, south Sichuan and crack characteristics of Longmaxi formation of Silurian System[D]. Chengdu University of Technology, Chengdu: 188. (in Chinese) | |
[22] | 肖鹏飞, 陈生昌, 孟令顺, 等. 2007. 高精度重力资料的密度界面反演[J]. 物探与化探, 31(1): 2933. |
XIAO Peng-fei, CHEN Sheng-chang, MENG Ling-shun, et al. 2007. The density interface inversion of high-precision gravity data[J]. Geophysical & Geochemical Exploration, 31(1): 2933. (in Chinese) | |
[23] | 杨长福. 2004. 用脊回法反演重力异常的多层密度及其界面[J]. 西北地震学报, 26(4): 293297. |
YANG Chang-fu. 2004. Inversion of gravity anomaly for multi-layered densities and their interfaces by ridge regression procedure[J]. Northwestern Seismological Journal, 26(4): 293297. (in Chinese) | |
[24] | 杨光亮, 申重阳, 黎哲君, 等. 2018. 重力异常场云计算软件系统[J]. 大地测量与地球动力学, 38(2): 111115. |
YANG Guang-liang, SHEN Chong-yang, LI Zhe-jun, et al. 2018. Cloud computing system of gravity field[J]. Journal of Geodesy and Geodynamics, 38(2): 111115. (in Chinese) | |
[25] | 易桂喜, 龙锋, 梁明剑, 等. 2019. 2019年6月17日四川长宁 MS6.0 地震序列震源机制解与发震构造分析[J]. 地球物理学报, 62(9): 34323447. |
YI Gui-xi, LONG Feng, LIANG Ming-jian, et al. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics, 62(9): 34323447. (in Chinese) | |
[26] | 曾琴琴, 张恒磊, 刘天佑, 等. 2009. 华南燕山、 印支与加里东构造面及其对油气影响的地球物理研究[J]. 地质科技情报, 28(4): 96100. |
ZENG Qin-qin, ZHANG Heng-lei, LIU Tian-you, et al. 2009. Yanshanian, Indosinian and Caledonian structure planes and geophysical research on their impact to oil-gas reservoir in South China[J]. Geological Science and Technology Information, 28(4): 96100. (in Chinese) | |
[27] | 张岳桥. 2020. 四川盆地南部地震区发震构造及其新构造背景[J]. 地质学报, 94(11): 31613177. |
ZHANG Yue-qiao. 2020. Seismogenic structures of the south Sichuan Basin seismic zone and its neotectonic setting[J]. Acta Geologica Sinica, 94(11): 31613177. (in Chinese) | |
[28] | 张致伟, 孙小龙. 2018. 四川长宁地区注水诱发地震的孔隙压力扩散特征[J]. 国际地震动态, (8): 132133. |
ZHANG Zhi-wei, SUN Xiao-long. 2018. Pore pressure diffusion characteristics of water injection induced earthquakes in Changning area, Sichuan Province[J]. Recent Developments in World Seismology, (8): 132133. (in Chinese) | |
[29] | 朱航, 何畅. 2014. 注水诱发地震序列的震源机制变化特征: 以四川长宁序列为例[J]. 地球科学(中国地质大学学报), 39(12): 17761782. |
ZHU Hang, HE Chang. 2014. Focal mechanism Changning character of earthquake sequence induced by water injection: A case study of Changning sequence, Sichuan Province[J]. Earth Science(Journal of China University of Geosciences), 39(12): 17761782. (in Chinese) | |
[30] |
Aleardi M. 2018. Using orthogonal Legendre polynomials to parameterize global geophysical optimizations: Applications to seismic-petrophysical inversion and 1D elastic full-waveform inversion[J]. Geophysical Prospecting, 67(2): 331348.
DOI URL |
[31] | Barrera J, Bajo O A, Flores J J, et al. 2016. Limiting the velocity in the particle swarm optimization algorithm[J]. Computación Y Sistemas, 20(4): 635645. |
[32] |
Barbosa V, Silva J, Medeiros W E. 1997. Gravity inversion of basement relief using approximate equality constraints on depths[J]. Geophysics, 62(6): 17451757.
DOI URL |
[33] | Engelbrecht A P. 2007. Computational Intelligence: An Introduction, Second Edition[M]. Wiley, New York. |
[34] |
Essa K S, Mehanee S A, Elhussein M. 2021. Gravity data interpretation by a two-sided fault-like geologic structure using the global particle swarm technique[J]. Physics of the Earth and Planetary Interiors, 311(2): 106631.
DOI URL |
[35] |
Godio A, Santilano A. 2018. On the optimization of electromagnetic geophysical data: Application of the PSO algorithm[J]. Journal of Applied Geophysics, 148: 163174.
DOI URL |
[36] |
Healy J H, Rubey W W, Griggs D T, et al. 1968. The Denver earthquakes[J]. Science, 161(3848): 13011310.
PMID |
[37] |
Keilis-Borok V I, Knopoff L, Rotvain I M. 1980. Bursts of aftershocks, long-term precursors of strong earthquakes[J]. Nature, 283(5744): 259263.
DOI URL |
[38] | Kennedy J, Eberhart R. 1995. Particle Swarm Optimization(PSO)[C]. IEEE International Conference on Neural Networks, Perth: 19421948. |
[39] |
Lei X L, Wang Z W, Su J R. 2019. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in south Sichuan Basin induced by shale gas hydraulic fracturing[J]. Seismological Research Letters, 90(3): 10991110.
DOI URL |
[40] | Motavalli-Anbaran S H, Jamasb A. 2016. Estimating the depth to the base of sedimentary layer in south Caspian Basin(Iran)by particle swarm optimization(PSO)[C]. 78th EAGE Conference and Exhibition, Vienna: 15. |
[41] |
Nagy D, Papp G, Benedek J. 2000. The gravitational potential and its derivatives for the prism[J]. Journal of Geodesy, 74:552560.
DOI URL |
[42] |
Pace F, Godio A, Santilano A, et al. 2019a. Joint optimization of geophysical data using multi-objective swarm intelligence[J]. Geophysical Journal International, 218(3): 15021521.
DOI URL |
[43] | Pace F, Santilano A, Godio A. 2019b. Particle swarm optimization of 2D magnetotelluric data[J]. Geophysics, 84(3): 125141. |
[44] |
Pace F, Santilano A, Godio A. 2021. A review of geophysical modeling based on Particle Swarm Optimization[J]. Surveys in Geophysics, 42(3): 505549.
DOI |
[45] |
Pallero J L G, Fernández-Martínez J L, Bonvalot S, et al. 2015. Gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization[J]. Journal of Applied Geophysics, 116: 180191.
DOI URL |
[46] |
Pallero J L G, Fernández-Martínez J L, Bonvalot S, et al. 2017. 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization[J]. Journal of Applied Geophysics, 139: 338350.
DOI URL |
[47] |
Pallero J L G, Fernández-Martínez M Z, Cernea A, et al. 2018. Particle Swarm Optimization and uncertainty assessment in inverse problems[J]. Entropy, 20(2): 96.196.14.
DOI URL |
[48] |
Pallero J L G, Fernández-Martínez J L, Fernández-Muñiz Z, et al. 2021. GravPSO2D: A Matlab package for 2D gravity inversion in sedimentary basins using the Particle Swarm Optimization algorithm[J]. Computers & Geosciences, 146:104653.1104653.12.
DOI URL |
[49] |
Perrouty S, Moussirou B, Martinod J, et al. 2015. Geometry of two glacial valleys in the northern Pyrenees estimated using gravity data[J]. Comptes Rendus Geoscience, 347(1): 1323.
DOI URL |
[50] |
Roy A, Kumar T S. 2021. Gravity inversion of 2D fault having variable density contrast using particle swarm optimization[J]. Geophysical Prospecting, 69(6): 13581374.
DOI URL |
[51] |
Singh K K, Singh U K. 2017. Application of particle swarm optimization for gravity inversion of 2.5-D sedimentary basins using variable density contrast[J]. Geoscientific Instrumentation Methods and Data Systems, 6(1): 193198.
DOI URL |
[52] |
Sun X L, Yang P T, Zhang Z W. 2017. A study of earthquakes induced by water injection in the Changning salt mine area, SW China[J]. Journal of Asian Earth Sciences, 136: 102109.
DOI URL |
[53] |
Wang Y, Li B, Yin L, et al. 2019. Velocity-controlled Particle Swarm Optimization(PSO)and its application to the optimization of transverse flux induction heating apparatus[J]. Energies, 12(3): 487499.
DOI URL |
[54] |
Zhang B, Lei J S, Zhang G W. 2020. Seismic evidence for influences of deep fluids on the 2019 Changning MS6.0 earthquake, Sichuan Basin, SW China[J]. Journal of Asian Earth Sciences, 200:104492.1104492.12.
DOI URL |
[1] | 汪健, 申重阳, 孙文科, 谈洪波, 胡敏章, 梁伟锋, 韩宇飞, 张新林, 吴桂桔, 王青华. 红河断裂带北、 中段近期重力变化及深部变形[J]. 地震地质, 2021, 43(6): 1537-1562. |
[2] | 唐新功, 尤双双, 胡文宝, 严良俊. 龙门山断裂带地壳密度结构[J]. 地震地质, 2012, 34(1): 28-38. |
[3] | 方盛明, 余钦范, 楼海, 邢集善. 山西五台地区壳内低速体的重力异常的研究[J]. 地震地质, 1995, 17(2): 109-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||