[1] |
杜广宝, 吴庆举, 张雪梅. 2021. 云南漾濞M6.4地震震区三维速度结构[J]. 地震学报, 43(4): 397-409.
|
|
DU Guang-bao, WU Qing-ju, ZHANG Xue-mei. 2021. Three-dimensional seismic velocity structure beneath the M6.4 Yangbi, Yunnan earthquake region[J]. Acta Seismologica Sinica, 43(4): 397-409. (in Chinese)
|
[2] |
雷兴林, 王志伟, 马胜利, 等. 2021. 关于2021年5月滇西漾濞 MS6.4 地震序列特征及成因的初步研究[J]. 地震学报, 43(3): 261-286.
|
|
LEI Xing-lin, WANG Zhi-wei, MA Sheng-li, et al. 2021. A preliminary study on the characteristics and mechanism of the May 2021 MS6.4 Yangbi earthquake sequence, Yunnan, China[J]. Acta Seismologica Sinica, 43(3): 261-286. (in Chinese)
|
[3] |
李大虎, 丁志峰, 吴萍萍, 等. 2021. 2021年5月21日云南漾濞 MS6.4 地震震区地壳结构特征与孕震背景[J]. 地球物理学报, 64(9): 3083-3100.
|
|
LI Da-hu, DING Zhi-feng, WU Ping-ping, et al. 2021. The characteristics of crustal structure and seismogenic background of Yangbi MS6.4 earthquake on May 21, 2021 in Yunnan Province, China[J]. Chinese Journal of Geophysics, 64(9): 3083-3100. (in Chinese)
|
[4] |
梁姗姗, 徐志国, 张广伟, 等. 2021. 2021年云南漾濞 MS6.4 地震震源区断层系统的几何复杂性[J]. 地震地质, 43(4): 827-846.
|
|
LIANG Shan-shan, XU Zhi-guo, ZHANG Guang-wei, et al. 2021. Geometric complexity of fault system in the source region of the 2021 Yangbi, Yunnan, MS6.4 earthquake[J]. Seismology and Geology, 43(4): 827-846. (in Chinese)
|
[5] |
龙锋, 祁玉萍, 易桂喜, 等. 2021. 2021年5月21日云南漾濞 MS6.4 地震序列重新定位与发震构造分析[J]. 地球物理学报, 64(8): 2631-2646.
|
|
LONG Feng, QI Yu-ping, YI Gui-xi, et al. 2021. Relocation of the MS6.4 Yangbi earthquake sequence on May 21, 2021 in Yunnan Province and its seismogenic structure analysis[J]. Chinese Journal of Geophysics, 64(8): 2631-2646. (in Chinese)
|
[6] |
冉勇康, 段瑞涛, 邓起东, 等. 1997. 海原断裂高湾子地点三维探槽的开挖与古地震研究[J]. 地震地质, 19(2): 97-107.
|
|
RAN Yong-kang, DUAN Rui-tao, DENG Qi-dong, et al. 1997. 3-D trench excavation and paleoseismology at Gaowanzi of the Haiyuan Fault[J]. Seismology and Geology, 19(2): 97-107. (in Chinese)
|
[7] |
冉勇康, 王虎, 陈立春, 等. 2018. 龙门山断裂带晚第四纪的大地震活动: 来自古地震研究的资料[J]. 地球物理学报, 61(5): 1938-1948.
|
|
RAN Yong-kang, WANG Hu, CHEN Li-chun, et al. 2018. Late-Quaternary fault activity of the Longmen Shan fault zone: Evidence from paleoseismic trenching[J]. Chinese Journal of Geophysics, 61(5): 1938-1948. (in Chinese)
|
[8] |
万永革. 2022. 断裂带震源机制节面聚类确定断裂带产状方法及在2021年漾濞地震序列中的应用[J]. 地球物理学报, 65(2): 637-648.
|
|
WAN Yong-ge. 2022. Method of active fault geometry determination by clustering nodal planes of focal mechanisms occurred on the fault belt and its application to the 2021 Yangbi earthquake sequence[J]. Chinese Journal of Geophysics, 65(2): 637-648. (in Chinese)
|
[9] |
万永革, 沈正康, 刁桂苓, 等. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用[J]. 地球物理学报, 51(3): 793-804.
|
|
WAN Yong-ge, SHEN Zheng-kang, DIAO Gui-ling, et al. 2008. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence[J]. Chinese Journal of Geophysics, 51(3): 793-804. (in Chinese)
|
[10] |
王福昌, 曹慧荣, 万永革. 2010. 线性Errors-in-Variables模型在确定汶川地震主震断层面中的应用[J]. 数理统计与管理, 29(3): 381-390.
|
|
WANG Fu-chang, CAO Hui-rong, WAN Yong-ge. 2010. Application of linear errors-in-variables model for determination of main earthquake’s fault parameters of Wenchuan earthquake[J]. Journal of Applied Statistics and Management, 29(3): 381-390. (in Chinese)
|
[11] |
王福昌, 万永革, 钱小仕, 等. 2013. 由地震分布丛集性给出断层参数的一种新方法[J]. 地球物理学报, 56(2): 522-530.
|
|
WANG Fu-chang, WAN Yong-ge, QIAN Xiao-shi, et al. 2013. A new method for determining fault planes parameters according to earthquake clustering[J]. Chinese Journal of Geophysics, 56(2): 522-530. (in Chinese)
|
[12] |
王鸣, 王培德. 1992. 1989年10月18日大同-阳高地震的震源机制和发震构造[J]. 地震学报, 23(6): 407-415.
|
|
WANG Ming, WANG Pei-de. 1992. Focal mechanism and seismogenic structure of Datong-Yanggao earthquake on October 18, 1989[J]. Acta Seismologica Sinica, 23(6): 407-415. (in Chinese)
|
[13] |
叶涛, 陈小斌, 黄清华, 等. 2021. 2021年5月21日云南漾濞地震( MS6.4 )震源区三维电性结构及发震机制讨论[J]. 地球物理学报, 64(7): 2267-2277.
|
|
YE Tao, CHEN Xiao-bin, HUANG Qing-hua, et al. 2021. Three-dimentional electrical resistivity structure in focal area of the 2021 Yangbi MS6.4 earthquake and its implication for the seismogenic mechanism[J]. Chinese Journal of Geophysics, 64(7): 2267-2277. (in Chinese)
|
[14] |
余海琳, 万永革, 崔华伟, 等. 2021. 利用P波初动数据研究云南漾濞地震序列震源机制解及应力场[J]. 地震研究, 44(3): 338-347.
|
|
YU Hai-lin, WAN Yong-ge, CUI Wei-hua, et al. 2021. Study on focal mechanism solution and stress field of Yangbi earthquake sequence in Yunnan Province by using P-wave initial motion data[J]. Journal of Seismological Research, 44(3): 338-347. (in Chinese)
|
[15] |
于书媛, 骆佳骥, 杨源源, 等. 2021. InSAR数据约束的2021年5月21日云南漾濞 MS6.4 地震发震构造研究[J]. 地震工程学报, 43(4): 777-790.
|
|
YU Shu-yuan, LUO Jia-ji, YANG Yuan-yuan, et al. 2021. Seismogenic structure of the Yangbi, Yunnan MS6.4 earthquake on May 21th, 2021 constrained by InSAR data[J]. China Earthquake Engineering Journal, 43(4): 777-790. (in Chinese)
|
[16] |
张广伟, 雷建设, 谢富仁, 等. 2011. 华北地区小震精定位及构造意义[J]. 地震学报, 33(6): 699-714.
|
|
ZHANG Guang-wei, LEI Jian-she, XIE Fu-ren, et al. 2011. Precise relocation of small earthquakes occurred in North China and its tectonic implication[J]. Acta Seismologica Sinica, 33(6): 699-714. (in Chinese)
|
[17] |
张克亮, 甘卫军, 梁诗明, 等. 2021. 2021年5月21日 MS6.4 漾濞地震GNSS同震变形场及其约束反演的破裂滑动分布[J]. 地球物理学报, 64(7): 2253-2266.
|
|
ZHANG Ke-liang, GAN Wei-jun, LIANG Shi-ming, et al. 2021. Coseismic displacement and slip distribution of the 2021 May 21, MS6.4, Yangbi earthquake derived from GNSS observations[J]. Chinese Journal of Geophysics, 64(7): 2253-2266. (in Chinese)
|
[18] |
张培震, 闵伟, 邓起东, 等. 2003. 海原活动断裂带的古地震与强震复发规律[J]. 中国科学(D辑), 33(8): 705-713.
|
|
ZHANG Pei-zhen, MIN Wei, DENG Qi-dong, et al. 2003. Paleoearthquake and strong earthquake recurrent rules along the Haiyuan active fault, north-central China[J]. Science in China(Ser D), 33(8): 705-713. (in Chinese)
|
[19] |
张先康, 赵金仁, 刘国华, 等. 2002. 三河-平谷8.0级大震区震源细结构的深地震反射探测研究[J]. 中国地震, 18(4): 326-336.
|
|
ZHANG Xian-kang, ZHAO Jin-ren, LIU Guo-hua, et al. 2002. Study on fine crustal structure of the Sanhe-Pinggu earthquake(M8.0)region by deep seismic reflection profiling[J]. Earthquake Research in China, 18(4): 326-336. (in Chinese)
|
[20] |
周仕勇, 许忠淮, 韩京, 等. 1999. 主地震定位法分析以及1997年新疆伽师强震群高精度定位[J]. 地震学报, 21(3): 258-265.
|
|
ZHOU Shi-yong, XU Zhong-huai, HAN Jing, et al. 1999. Analysis on the master event method and precise location of 1997 Jiashi strong earthquake swarm in western China[J]. Acta Seismologica Sinica, 21(3): 258-265. (in Chinese)
DOI
URL
|
[21] |
Ouillon G, Ducorbier C, Sornette D. 2008. Automatic reconstruction of fault networks from seismicity catalogs: Three-dimensional optimal anisotropic dynamic clustering[J]. Journal of Geophysical Research: Solid Earth, 113(B1): B01306.1-B01306.15.
|
[22] |
Ross Z E, Cochran E S, Trugman D T, et al. 2020. 3D fault architecture controls the dynamism of earthquake swarms[J]. Science, 368(6497): 1357-1361.
DOI
PMID
|
[23] |
Waldhauser F. 2009. Near-real-time double-difference event location using long-term seismic archives, with application to northern California[J]. Bulletin of the Seismological Society of America, 99(5): 2736-2748.
DOI
URL
|
[24] |
Waldhauser F, Ellsworth W L. 2002. Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations[J]. Journal of Geophysical Research: Solid Earth, 107(B3): ESE3-1-ESE3-15.
|
[25] |
Wan Y G, Shen Z K. 2010. Static Coulomb failure stress changes on faults caused by the 2008 MW7.9 Wenchuan, China earthquake[J]. Tectonophysics, 491(1-4): 105-118.
DOI
URL
|
[26] |
Xu X, Chen W, Ma W, et al. 2002. Surface rupture of the Kunlun earthquake(MS8.1), northern Tibetan plateau, China[J]. Seismological Research Letters, 73(6): 884-892.
DOI
URL
|
[27] |
Xu X, Wen X, Yu G, et al. 2009. Co-seismic reverse- and oblique-slip surface faulting generated by the 2008 MW7.9 Wenchuan earthquake, China[J]. Geology, 37(6): 515-518.
DOI
URL
|
[28] |
Yang T, Li B R, Fang L H, et al. 2022. Relocation of the foreshocks and aftershocks of the 2021 MS6.4 Yangbi earthquake sequence, Yunnan, China[J]. Journal of Earth Science, 33(44): 892-900.
DOI
URL
|