地震地质 ›› 2022, Vol. 44 ›› Issue (6): 1403-1420.DOI: 10.3969/j.issn.0253-4967.2022.06.004
张秀丽1)(), 熊建国1),*(), 张培震2,1), 刘晴日1,3), 姚勇4), 钟岳志3), 张会平1), 李有利3)
收稿日期:
2022-02-07
修回日期:
2022-09-06
出版日期:
2022-12-20
发布日期:
2023-01-21
通讯作者:
熊建国
作者简介:
张秀丽, 女, 1998年生, 现为中国地震局地质研究所构造地质学专业在读硕士研究生, 主要研究方向为活动构造与构造地貌, E-mail: 2547768244@qq.com。
基金资助:
ZHANG Xiu-li1)(), XIONG Jian-guo1),*(), ZHANG Pei-zhen2,1), LIU Qing-ri1,3), YAO Yong4), ZHONG Yue-zhi3), ZHANG Hui-ping1), LI You-li3)
Received:
2022-02-07
Revised:
2022-09-06
Online:
2022-12-20
Published:
2023-01-21
Contact:
XIONG Jian-guo
摘要:
约束断层在不同时间尺度上的滑动速率, 有利于认识其活动性和区域构造特征。文中以山西地堑系南部中条山北麓断层为研究对象, 利用无人机摄影测量技术获取小李村河断错地貌的高精度DEM, 通过光释光和AMS 14C年代学约束河流阶地序列的废弃年代和地层的沉积时代, 建立中更新世晚期以来小李村河地貌演化与中条山北麓断层活动的关系。结合断层上盘钻孔所揭露的沉积地层和光释光年龄, 约束中条山北麓断层在中更新世晚期以来2个不同时段的垂直断距, 获得的相应滑动速率为0.3~0.4mm/a, 并简要讨论了晚新生代以来该断层滑动速率的变化。
中图分类号:
张秀丽, 熊建国, 张培震, 刘晴日, 姚勇, 钟岳志, 张会平, 李有利. 中更新世晚期以来中条山北麓断层滑动速率研究[J]. 地震地质, 2022, 44(6): 1403-1420.
ZHANG Xiu-li, XIONG Jian-guo, ZHANG Pei-zhen, LIU Qing-ri, YAO Yong, ZHONG Yue-zhi, ZHANG Hui-ping, LI You-li. STUDY ON THE SLIP RATE OF THE NORTH ZHONGTIAO SHAN FAULT SINCE THE LATE MIDDLE PLEISTOCENE[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1403-1420.
图 1 中条山-运城盆地地貌和构造分布图 a 中条山-运城盆地地貌和断层分布(Li et al., 1998); b 中条山北麓断层、 盐湖南岸断层和盐湖北岸断层展布特征。盐湖钻孔 (李肖杨等, 2020)、 Pz3钻孔(曾金艳等, 2020)、 P3钻孔(Wang et al., 2002)的位置用白色五角星表示; 研究区用四边形表示
Fig. 1 Geomorphologic and tectonic map of the Zhongtiao Shan-Yuncheng Graben.
图 2 运城盆地钻孔岩心的年代学和沉积学 Pz3钻孔岩性、 光释光样品及其年龄来自文献(曾金艳等, 2020); δ18O 深海氧同位素曲线(Lisiecki et al., 2005); 盐湖钻孔: LOI(烧矢量)、L*(亮度)、 极性、 岩性、 光释光样品及其年龄来自文献(李肖杨等, 2020); GPTS 地磁极性年表(Gibbard et al., 2008)
Fig. 2 Geochronology and stratigraphy of boreholes in the Yuncheng Graben.
图 3 无人机摄影测量技术获取小李村河断错地貌的DEM a 无人机摄影测量获得的覆盖研究区的区域合成图像; b 无人机摄影相机的位置; c 15个地面控制点及相关的水平误差和垂直误差DEM分辨率, 每个地面控制点的误差以向量表示; d 使用Agisoft PhotoScan 1.4软件生成的数字高程DEM模型航空图像。A1-A2和B1-B2、 B3-B4、 B5-B6分别为小李村河阶地横剖面(图5)和纵剖面(图6)
Fig. 3 The DEM of the Xiaolicun River landform by the UAV photogrammetry technology.
图 4 断层分布与小李村河阶地、 洪积扇的年代样品位置 黄色菱形为本文光释光样品的取样点, 蓝色菱形为AMS 14C样品的取样点(Lü et al., 2014; 司苏沛等, 2014)
Fig. 4 Fault distribution and locations of dating samples for terraces and alluvial fan of the Xiaolicun River.
样品号 | 地貌单元 | 埋藏深度 /m | 含水率 /% | U/ppm | Th/ppm | K /% | 剂量率 /Gy·ka-1 | 等效剂量 /Gy | 年龄 /ka |
---|---|---|---|---|---|---|---|---|---|
XLC1-2 | T1 | 1.8 | 5±3 | 2.47±0.04 | 11.80±0.19 | 2.29±0.04 | 4.56±0.16 | 49.51±1.22 | 10.9±0.5* |
XLC2-2 | T2 | 4.1 | 11±5 | 2.73±0.18 | 10.34±0.82 | 2.00±0.05 | 3.91±0.17 | 235.97±6.81 | 60.4±3.1 |
XLC2-3 | T2 | 1.9 | 6±3 | 2.85±0.05 | 9.65±0.11 | 1.74±0.02 | 3.88±0.14 | 231.24±4.84 | 59.6±2.4* |
XLC3-1 | T3 | 1.1 | 5±3 | 2.88±0.05 | 11.68±0.16 | 1.98±0.01 | 4.41±0.15 | 559.09±23.91 | 126.9±7.0 |
XLC3-2 | T3 | 1.1 | 5±3 | 2.53±0.06 | 10.74±0.21 | 2.05±0.03 | 4.26±0.15 | 504.80±21.29 | 118.5±6.4* |
XLC5-2 | T4 | 1.1 | 12±5 | 1.28±0.02 | 3.81±0.05 | 0.84±0.02 | 1.73±0.07 | 430.45±35.06 | 248.8±22.4 |
XLC5-3 | T4 | 0.7 | 12±5 | 6.03±0.09 | 6.03±0.09 | 1.20±0.01 | 2.50±0.09 | 535.73±27.02 | 214.3±13.5* |
XLC4-1 | 离石黄土基座 | 5.3 | 12±5 | 2.23±0.05 | 9.29±0.17 | 1.71±0.01 | 3.34±0.13 | 543.41±16.43 | 162.9±78.0 |
XLC4-2 | 离石黄土基座 | 7.6 | 14±5 | 2.67±0.09 | 14.51±0.49 | 2.04±0.03 | 4.13±0.16 | 611.63±24.61 | 147.9±8.4* |
表1 小李村河阶地的光释光年龄
Table1 Optical stimulated luminescence ages for terraces of the Xiaolicun River
样品号 | 地貌单元 | 埋藏深度 /m | 含水率 /% | U/ppm | Th/ppm | K /% | 剂量率 /Gy·ka-1 | 等效剂量 /Gy | 年龄 /ka |
---|---|---|---|---|---|---|---|---|---|
XLC1-2 | T1 | 1.8 | 5±3 | 2.47±0.04 | 11.80±0.19 | 2.29±0.04 | 4.56±0.16 | 49.51±1.22 | 10.9±0.5* |
XLC2-2 | T2 | 4.1 | 11±5 | 2.73±0.18 | 10.34±0.82 | 2.00±0.05 | 3.91±0.17 | 235.97±6.81 | 60.4±3.1 |
XLC2-3 | T2 | 1.9 | 6±3 | 2.85±0.05 | 9.65±0.11 | 1.74±0.02 | 3.88±0.14 | 231.24±4.84 | 59.6±2.4* |
XLC3-1 | T3 | 1.1 | 5±3 | 2.88±0.05 | 11.68±0.16 | 1.98±0.01 | 4.41±0.15 | 559.09±23.91 | 126.9±7.0 |
XLC3-2 | T3 | 1.1 | 5±3 | 2.53±0.06 | 10.74±0.21 | 2.05±0.03 | 4.26±0.15 | 504.80±21.29 | 118.5±6.4* |
XLC5-2 | T4 | 1.1 | 12±5 | 1.28±0.02 | 3.81±0.05 | 0.84±0.02 | 1.73±0.07 | 430.45±35.06 | 248.8±22.4 |
XLC5-3 | T4 | 0.7 | 12±5 | 6.03±0.09 | 6.03±0.09 | 1.20±0.01 | 2.50±0.09 | 535.73±27.02 | 214.3±13.5* |
XLC4-1 | 离石黄土基座 | 5.3 | 12±5 | 2.23±0.05 | 9.29±0.17 | 1.71±0.01 | 3.34±0.13 | 543.41±16.43 | 162.9±78.0 |
XLC4-2 | 离石黄土基座 | 7.6 | 14±5 | 2.67±0.09 | 14.51±0.49 | 2.04±0.03 | 4.13±0.16 | 611.63±24.61 | 147.9±8.4* |
样品号 | 采样层位 | 埋深/m | 传统年龄/ka | 校正年龄/ka | 参考文献 |
---|---|---|---|---|---|
X11 | 中粗砾石层 | 2 | 1.03±0.03 | 0.94±0.02 | 2014 |
XLC12 | 黑褐色古土壤条带 | 1.2 | 3.34±0.04 | 3.60±0.10 | 2014 |
X46 | 粗砾石层 | 1.8 | 3.61±0.04 | 3.91±0.08 | 2014 |
X47 | 灰黑色古土壤条带 | 3.2 | 4.85±0.05 | 5.60±0.10 | 2014 |
X40 | 浅棕黄色黄土层 | 3.6 | 5.25±0.04 | 5.97±0.03 | 2014 |
XLC10 | 灰白色粉砂层 | 5.5 | 9.36±0.05 | 10.60±0.20 | 2014 |
X17 | 浅棕色黄土层 | 3.5 | 14.49±0.08 | 17.45±0.34 | 2014 |
C04 | 灰黑色砾石层 | 11 | 20.64±0.09 | 24.70±0.20 | 2014 |
X31 | 灰黑色砾石层 | 4.8 | 20.67±0.09 | 24.70±0.20 | 2014 |
X23 | 棕色黄土 | 9.7 | 24.67±0.12 | 28.69±0.28 | 2014 |
X19 | 粗砂中砾石层 | 9.8 | 28.60±0.16 | 32.57±0.64 | 2014 |
X16 | 粗砂砾石层 | 9.5 | 28.80±0.16 | 33.30±0.20 | 2014 |
X28 | 浅褐色黄土层 | 2 | 31.39±0.20 | 35.27±0.47 | 2014 |
表2 中条山北麓断层北盘(下降盘)沉积物的AMS 14C年龄
Table2 AMS 14C ages of sediments in the north wall(hanging wall)of the north Zhongtiao Shan Fault
样品号 | 采样层位 | 埋深/m | 传统年龄/ka | 校正年龄/ka | 参考文献 |
---|---|---|---|---|---|
X11 | 中粗砾石层 | 2 | 1.03±0.03 | 0.94±0.02 | 2014 |
XLC12 | 黑褐色古土壤条带 | 1.2 | 3.34±0.04 | 3.60±0.10 | 2014 |
X46 | 粗砾石层 | 1.8 | 3.61±0.04 | 3.91±0.08 | 2014 |
X47 | 灰黑色古土壤条带 | 3.2 | 4.85±0.05 | 5.60±0.10 | 2014 |
X40 | 浅棕黄色黄土层 | 3.6 | 5.25±0.04 | 5.97±0.03 | 2014 |
XLC10 | 灰白色粉砂层 | 5.5 | 9.36±0.05 | 10.60±0.20 | 2014 |
X17 | 浅棕色黄土层 | 3.5 | 14.49±0.08 | 17.45±0.34 | 2014 |
C04 | 灰黑色砾石层 | 11 | 20.64±0.09 | 24.70±0.20 | 2014 |
X31 | 灰黑色砾石层 | 4.8 | 20.67±0.09 | 24.70±0.20 | 2014 |
X23 | 棕色黄土 | 9.7 | 24.67±0.12 | 28.69±0.28 | 2014 |
X19 | 粗砂中砾石层 | 9.8 | 28.60±0.16 | 32.57±0.64 | 2014 |
X16 | 粗砂砾石层 | 9.5 | 28.80±0.16 | 33.30±0.20 | 2014 |
X28 | 浅褐色黄土层 | 2 | 31.39±0.20 | 35.27±0.47 | 2014 |
地貌面 | 废弃年代 /ka | 海拔 /m | 对应盆地地貌面 海拔/m | 坡降 /m | 气候堆积误差 /m | 盐湖南岸断层 断距/m① | 垂直断距 /m | 滑动速率 /mm·a-1 |
---|---|---|---|---|---|---|---|---|
T4 | 214.3±13.5 | 406.2 | 320.4 | 13.6 | ±3.8 | 5.1 | 67.1±6.7 | 0.31±0.05 |
T3 | 118.5±6.4 | 386.8 | 337.2 | 1.5 | ±1.5 | 1.9 | 40.4±3.2 | 0.34±0.04 |
洪积扇② | 24.7±0.2 | 383.6 | 370.3 | 0.7 | 18.4±1.0 | 0.75±0.05 | ||
唐县面③ | 3 120±100.0 | 680 | -104.7 | 784.7±10.0 | 0.25±0.01 | |||
夏县砾岩面③ | 2 580±100.0 | 638.5 | -62.6 | 701.1±10.0 | 0.27±0.01 |
表3 中条山北麓断层滑动速率的约束
Table3 Constraints on the slip rates of the northern Zhongtiaoshan Fault
地貌面 | 废弃年代 /ka | 海拔 /m | 对应盆地地貌面 海拔/m | 坡降 /m | 气候堆积误差 /m | 盐湖南岸断层 断距/m① | 垂直断距 /m | 滑动速率 /mm·a-1 |
---|---|---|---|---|---|---|---|---|
T4 | 214.3±13.5 | 406.2 | 320.4 | 13.6 | ±3.8 | 5.1 | 67.1±6.7 | 0.31±0.05 |
T3 | 118.5±6.4 | 386.8 | 337.2 | 1.5 | ±1.5 | 1.9 | 40.4±3.2 | 0.34±0.04 |
洪积扇② | 24.7±0.2 | 383.6 | 370.3 | 0.7 | 18.4±1.0 | 0.75±0.05 | ||
唐县面③ | 3 120±100.0 | 680 | -104.7 | 784.7±10.0 | 0.25±0.01 | |||
夏县砾岩面③ | 2 580±100.0 | 638.5 | -62.6 | 701.1±10.0 | 0.27±0.01 |
图 7 中条山北麓断层垂直断距的获取 红色圆圈代表Pz3钻孔的光释光年龄取样点(曾金艳等, 2020); 灰色阴影为T3、 T4阶地对应的沉积地层
Fig. 7 Acquisition of vertical displacements of the north Zhongtiao Shan Fault.
[1] | 陈杰, 卢演俦, 魏兰英, 等. 1999. 第四纪沉积物光释光测年中等效剂量测定方法的对比研究[J]. 地球化学, 28(5): 443-452. |
CHEN Jie, LU Yan-chou, WEI Lan-ying, et al. 1999. Optically stimulated luminescence dating of Quaternary sediments: A comparison using different equivalent dose determination methods[J]. Geochimica, 28(5): 443-452. (in Chinese) | |
[2] | 程绍平, 杨桂枝. 2002. 山西中条山断裂带的晚第四纪分段模型[J]. 地震地质, 24(3): 289-302. |
CHENG Shao-ping, YANG Gui-zhi. 2002. Late Quaternary segmentation model of Zhongtiaoshan Fault, Shanxi Province[J]. Seismology and Geology, 24(3): 289-302. (in Chinese) | |
[3] | 慈洪娟, 闫冬冬, 李有利, 等. 2016. 中条山北麓韩阳段冲沟发育及其新构造意义[J]. 水土保持研究, 23(4): 363-367. |
CI Hong-juan, YAN Dong-dong, LI You-li, et al. 2016. Geomorphic indices in the Hanyang segment of Zhongtiaoshan Mountains, Shanxi and its implication for neotectonics[J]. Research of Soil and Water Conservation, 23(4): 363-367. (in Chinese) | |
[4] | 邓起东, 王克鲁, 汪一鹏, 等. 1973. 山西隆起区断陷地震带地震地质条件及地震发展趋势概述[J]. 地质科学, 8(1): 37-47. |
DENG Qi-dong, WANG Ke-lu, WANG Yi-peng, et al. 1973. Overview of seismogeological conditions and seismic development trend of fault depression seismic belt in Shanxi uplift area[J]. Chinese Journal of Geology, 8(1): 37-47. (in Chinese) | |
[5] | 郭春杉, 李文巧, 田勤俭, 等. 2019. 中条山北麓断裂解州段晚更新世滑动速率研究[J]. 地震, 39(4): 13-26. |
GUO Chun-shan, LI Wen-qiao, TIAN Qin-jian, et al. 2019. Study on the Late Pleistocene sliding rate of Haizhou section of the north Zhongtiaoshan faults[J]. Earthquake, 39(4): 13-26. (in Chinese) | |
[6] | 李冬雪, 刘楠楠, 杨胜利, 等. 2021. 石英标准生长曲线在青藏高原东缘黄土光释光测年中的应用[J]. 第四纪研究, 41(1): 111-122. |
LI Dong-xue, LIU Nan-nan, YANG Sheng-li, et al. 2021. Application of quartz OSL standardized growth curve for De determination in loess on the eastern Tibetan plateau[J]. Quaternary Sciences, 41(1): 111-122. (in Chinese) | |
[7] | 李光涛, 程理, 吴昊, 等. 2020. 临潭-宕昌主干断裂南东段晚第四纪活动的地质地貌证据[J]. 地震工程学报, 42(2): 376-383. |
LI Guang-tao, CHENG Li, WU Hao, et al. 2020. Geological and geomorphological evidence of Late Quaternary activity along the southeastern segment of the Lintan-Tanchang major fault, China[J]. China Earthquake Engineering Journal, 42(2): 376-383. (in Chinese) | |
[8] | 李肖杨, 梁浩, 张珂, 等. 2020. 侯马-运城盆地沉积特征及其对构造运动、 气候变化及河流演化的响应[J]. 沉积学报, 38(2): 306-318. |
LI Xiao-yang, LIANG Hao, ZHANG Ke, et al. 2020. Depositional characteristics of the Houma-Yuncheng Basin and its response to tectonic activity, climate change, and river evolution[J]. Acta Sedimentologica Sinica, 38(2): 306-318. (in Chinese) | |
[9] |
李有利, 杨景春. 1994. 运城盐湖沉积环境演化[J]. 地理研究, 13(1): 70-75.
DOI |
LI You-li, YANG Jing-chun. 1994. Environmental evolution of Yuncheng saline lake[J]. Geographical Research, 13(1): 70-75. (in Chinese) | |
[10] | 申屠炳明, 宋方敏, 曹忠权, 等. 1991. 秦岭北麓晚第四纪断层陡坎的初步研究[J]. 地震地质, 13(1): 15-25. |
SHENTU Bing-ming, SONG Fang-min, CAO Zhong-quan, et al. 1991. Preliminary study on Late Quaternary fault scarps on the northern piedmont of Qinling Mountain[J]. Seismology and Geology, 13(1): 15-25. (in Chinese) | |
[11] | 司苏沛, 李有利, 吕胜华, 等. 2014. 山西中条山北麓断裂盐池段全新世古地震事件和滑动速率研究[J]. 中国科学(D辑), 44(9): 1958-1967. |
SI Su-pei, LI You-li, LÜ Sheng-hua, et al. 2014. Holocene slip rate and paleoearthquake records of the Salt Lake segment of the northern Zhongtiaoshan Fault, Shanxi Province[J]. Science in China(Ser D), 44(9): 1958-1967. (in Chinese) | |
[12] | 田建梅, 李有利, 司苏沛, 等. 2013. 中条山北麓中段洪积扇上全新世断层陡坎的发现及其新构造意义[J]. 北京大学学报(自然科学版), 49(6): 986-992. |
TIAN Jian-mei, LI You-li, SI Su-pei, et al. 2013. Discovery and neotectonic significance of fault scarps on alluvial fans in the middle of northern piedmont of the Zhongtiao Mountains[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6): 986-992. (in Chinese) | |
[13] | 王建, 徐孝彬. 2000. 地面测年技术: 宇生同位素测年[J]. 地球科学进展, 15(2): 237-240. |
WANG Jian, XU Xiao-bin. 2000. Technique for surface dating: Cosmogenic isotopes dating[J]. Advances in Earth Science, 15(2): 237-240. (in Chinese) | |
[14] | 王怡然, 李有利, 闫冬冬, 等. 2015. 中条山北麓断裂中南段全新世地震事件的初步研究[J]. 地震地质, 37(1): 1-12. |
WANG Yi-ran, LI You-li, YAN Dong-dong, et al. 2015. Holocene paleoseismology of the middle and south segments of the north Zhongtiaoshan fault zone, Shanxi[J]. Seismology and Geology, 37(1): 1-12. (in Chinese) | |
[15] | 闫纪元. 2021 运城盆地及北侧孤山晚新生代构造-沉积与隆升-剥蚀过程研究[D]. 北京: 中国地质科学院:25-27. |
YAN Ji-yuan. 2021. Late Cenozoic tectonic-sedimentary, uplifting and denudational process of the Yuncheng Basin and northern Gushan Mountain[D]. Chinese Academy of Geological Sciences, Beijing: 25-27. (in Chinese) | |
[16] |
杨景春. 1983. 中国北部和东北部构造地貌发育和第四纪构造应力状态的关系[J]. 地理学报, 38(3): 218-228.
DOI |
YANG Jing-chun. 1983. Relationship between morphotectonic evolution and Quaternary tectonic stress state in north and northeastern China[J]. Acta Geographica Sinica, 38(3): 218-228. (in Chinese)
DOI |
|
[17] | 杨晓平, 冯希杰, 黄雄南, 等. 2015. 礼县-罗家堡断裂晚第四纪活动特征: 兼论1654年礼县8级地震孕震机制[J]. 地球物理学报, 58(2): 504-519. |
YANG Xiao-ping, FENG Xi-jie, HUANG Xiong-nan, et al. 2015. The Late Quaternary activity characteristics of the Lixian-Luojiabu Fault: A discussion on the seismogenic mechanism of the Lixian M8 earthquake in 1654[J]. Chinese Journal of Geophysics, 58(2): 504-519. (in Chinese) | |
[18] | 易锦俊. 2008. 山西地堑系活动断裂与地震、 地裂缝灾害研究[D]. 西安: 长安大学:8-10. |
YI Jin-jun. 2008. Study on active faults and earthquake and ground fissure disasters in Shanxi graben system[D]. Chang'an University, Xi'an: 8-10 (in Chinese) | |
[19] | 曾金艳, 李自红, 陈文, 等. 2020. 运城盆地盐湖南岸断层晚第四纪活动特征研究[J]. 第四纪研究, 40(1): 124-131. |
ZENG Jin-yan, LI Zi-hong, CHEN Wen, et al. 2020. Study on the activity characteristics of the south bank fault of Yuncheng Salt Lake in Yuncheng Basin since the Late Quaternary[J]. Quaternary Sciences, 40(1): 124-131. (in Chinese) | |
[20] | 张家富, 袁宝印, 周力平. 2007. 福建晋江“老红砂”的释光年代学及对南方第四纪沉积物释光测年的指示意义[J]. 科学通报, 52(22): 2646-2654. |
ZHANG Jia-fu, YUAN Bao-yin, ZHOU Li-ping. 2007. Luminescence chronology of “old red sand” in Jinjiang, Fujian Province and its indicative significance for luminescence dating of Quaternary sediments in South China[J]. Chinese Science Bulletin, 52(22): 2646-2654. (in Chinese) | |
[21] | 张培震, 李传友, 毛凤英. 2008. 河流阶地演化与走滑断裂滑动速率[J]. 地震地质, 30(1): 44-57. |
ZHANG Pei-zhen, LI Chuan-you, MAO Feng-ying. 2008. Strath terrace formation and strike-slip faulting[J]. Seismology and Geology, 30(1): 44-57. (in Chinese) | |
[22] | 张岳桥, 廖昌珍, 施炜, 等. 2006. 鄂尔多斯盆地周边地带新构造演化及其区域动力学背景[J]. 高校地质学报, 12(3): 285-297. |
ZHANG Yue-qiao, LIAO Chang-zhen, SHI Wei, et al. 2006. Neotectonic evolution of the peripheral zones of the Ordos Basin and geodynamic setting[J]. Geological Journal of China Universities, 12(3): 285-297. (in Chinese) | |
[23] | 郑立龙, 孔凡全, 黄赞慧, 等. 2019. 小江断裂带中段西支沧溪-清水海断层更新世活动性[J]. 科学技术与工程, 19(14): 39-45. |
ZHENG Li-long, KONG Fan-quan, HUANG Zan-hui, et al. 2019. The Pleistocene activity of Cangxi-Qingshuihai Fault of the west branch in the middle segment of Xiaojiang Fault[J]. Science Technology and Engineering, 19(14): 39-45. (in Chinese) | |
[24] | Aitken M J. 1998. Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence [M]. Oxford University Press, Oxford: 7-13. |
[25] | Anders M H, Geissman J W, Piety L A, et al. 1989. Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot[J]. Journal of Geophysical Research: Solid Earth, 94(B2): 1589-1621. |
[26] |
Anderson R S, Repka J L, Dick G S. 1996. Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al[J]. Geology, 24(1): 47-51.
DOI URL |
[27] |
Bayliss A. 2009. Rolling out revolution: Using radiocarbon dating in archaeology[J]. Radiocarbon, 51(1): 123-147.
DOI URL |
[28] |
Cerling T E, Craig H. 1994. Geomorphology and in-situ cosmogenic isotopes[J]. Annual Review of Earth and Planetary Sciences, 22: 273-317.
DOI URL |
[29] | Gibbard P, Cohen K M. 2008. Global chronostratigraphical correlation table for the last 2.7 million years[J]. Episodes Journal of International Geoscience, 31(2): 243-247. |
[30] | Hetzel R, Hampel A, Gebbeken P, et al. 2019. A constant slip rate for the western Qilian Shan frontal thrust during the last 200ka consistent with GPS-derived and geological shortening rates[J]. Earth and Planetary Science Letters, 59: 100-113. |
[31] |
Li B, Jacobs Z, Roberts R G, et al. 2014. Review and assessment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence[J]. Geochronometria, 41(3): 178-201.
DOI URL |
[32] | Li C Y, Zhang P Z, Yin J H, et al. 2009. Late Quaternary left-lateral slip rate of the Haiyuan Fault, northeastern margin of the Tibetan plateau[J]. Tectonics, 28(TC5010): 1-26. |
[33] |
Li Y L, Yang J C, Xia Z K, et al. 1998. Tectonic geomorphology in the Shanxi graben system, northern China[J]. Geomorphology, 23(1): 77-89.
DOI URL |
[34] |
Libby W F, Anderson E C, Arnold J R. 1949. Age determination by radiocarbon content: World-wide assay of natural radiocarbon[J]. Science, 109(2827): 227-228.
PMID |
[35] | Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 20(1): PA1003. |
[36] |
Liu Q R, Li Y L, Xiong J G, et al. 2021. Late Quaternary steady deformation of the Minle Fault in the north Qilian Shan, NE Tibet[J]. Tectonophysics, 807:228775.
DOI URL |
[37] |
Lu H H, Li B J, Wu D Y, et al. 2019. Spatiotemporal patterns of the Late Quaternary deformation across the northern Chinese Tian Shan foreland[J]. Earth-Science Reviews, 194: 19-37.
DOI URL |
[38] |
Lü S H, Li Y L, Wang Y R, et al. 2014. The Holocene paleoseismicity of the North Zhongtiao Shan faults in Shanxi Province, China[J]. Tectonophysics, 623: 67-82. doi: 10.1016/j.tecto.2014.03.019.
DOI URL |
[39] |
Mouslopoulou V, Walsh J J, Nicol A. 2009. Fault displacement rates on a range of timescales[J]. Earth and Planetary Science Letters, 278(3-4): 186-197.
DOI URL |
[40] |
Newnham R M, Vandergoes M J, Garnett M H, et al. 2007. Test of AMS 14C dating of pollen concentrates using tephrochronology[J]. Journal of Quaternary Science, 22(1): 37-51.
DOI URL |
[41] |
Nicol A, Walsh J, Berryman K, et al. 2006. Interdependence of fault displacement rates and paleoearthquakes in an active rift[J]. Geology, 34(10): 865-868.
DOI URL |
[42] |
Nicol A, Walsh J J, Manzocchi T, et al. 2005. Displacement rates and average earthquake recurrence intervals on normal faults[J]. Journal of Structural Geology, 27(3): 541-551.
DOI URL |
[43] |
Sieh K E, Jahns R H. 1984. Holocene activity of the San Andreas Fault at Wallace Creek, California[J]. Geological Society of America Bulletin, 95(8): 883-896.
DOI URL |
[44] |
Wallace R E. 1977. Profiles and ages of young fault scarps, north-central Nevada[J]. Geological Society of America Bulletin, 88(9): 1267-1281.
DOI URL |
[45] |
Wang Q, Li C G, Tian G Q, et al. 2002. Tremendous change of the earth surface system and tectonic setting of salt-lake formation in Yuncheng Basin since 7.1Ma[J]. Science in China(Ser D), 45(2): 110-122.
DOI URL |
[46] |
Xiong J G, Li Y L, Zheng W J, et al. 2018. Climatically driven formation of the Tangxian planation surface in North China: An example from northwestern Zhongtiao Shan of the Shanxi Graben System[J]. Lithosphere, 10(4): 530-544.
DOI URL |
[47] |
Xiong J G, Li Y L, Zhong Y Z, et al. 2017. Latest Pleistocene to Holocene thrusting recorded by a flight of strath terraces in the eastern Qilian Shan, NE Tibetan plateau[J]. Tectonics, 36(12): 2973-2986.
DOI URL |
[48] |
Yan J Y, Hu J M, Gong W B, et al. 2020. Late Cenozoic magnetostratigraphy of the Yuncheng Basin, central North China Craton and its tectonic implications[J]. Geological Journal, 55(11): 7415-7428.
DOI URL |
[49] | Zhang P Z, Molnar P, Xu X W. 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan plateau[J]. Tectonics, 26: TC5010. |
[50] |
Zheng D W, Clark M K, Zhang P Z, et al. 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan(northern Tibetan plateau)[J]. Geosphere, 6(6): 937-941.
DOI URL |
[1] | 杨源源, 李鹏飞, 路硕, 疏鹏, 潘浩波, 方良好, 郑海刚, 赵朋, 郑颖平, 姚大全. 郯庐断裂带中段F5断裂淮河-女山湖段的古地震与垂直滑动速率[J]. 地震地质, 2022, 44(6): 1365-1383. |
[2] | 邵延秀, 刘静, 高云鹏, 王文鑫, 姚文倩, 韩龙飞, 刘志军, 邹小波, 王焱, 李云帅, 刘璐. 同震地表破裂的位移测量与弥散变形分析——以2021年青海玛多MW7.4地震为例[J]. 地震地质, 2022, 44(2): 506-523. |
[3] | 张驰, 李智敏, 任治坤, 刘金瑞, 张志亮, 武登云. 日月山断裂南段晚第四纪活动特征[J]. 地震地质, 2022, 44(1): 1-19. |
[4] | 闫小兵, 周永胜, 李自红, 扈桂让, 任瑞国, 郝雪景. 山西浮山断裂的晚第四纪活动与位移速率[J]. 地震地质, 2022, 44(1): 35-45. |
[5] | 万永魁, 沈小七, 刘瑞丰, 刘峡, 郑智江, 李媛, 张扬, 王雷. 川滇地区活动块体边界断裂现今运动和应力分布[J]. 地震地质, 2021, 43(6): 1614-1637. |
[6] | 刘瑞春, 张锦, 郭文峰, 陈慧, 郑亚迪, 成诚. 鄂尔多斯块体东南缘现今的变形特征与构造模式探讨[J]. 地震地质, 2021, 43(3): 540-558. |
[7] | 张波, 田勤俭, 王爱国, 李文巧, 徐岳仁, 高泽民. 西秦岭临潭-宕昌断裂第四纪最新活动特征[J]. 地震地质, 2021, 43(1): 72-91. |
[8] | 朱爽, 梁洪宝, 魏文薪, 李经纬. 天山地震带主要活动断层现今的滑动速率及其地震矩亏损[J]. 地震地质, 2021, 43(1): 249-261. |
[9] | 陈健龙, 张冬丽, 周宇. 利用Envisat ASAR数据探讨渭河盆地断层现今的滑动速率[J]. 地震地质, 2020, 42(2): 333-345. |
[10] | 罗全星, 李传友, 任光雪, 李新男, 马字发, 董金元. 阳高-天镇断裂晚第四纪活动特征及滑动速率[J]. 地震地质, 2020, 42(2): 399-413. |
[11] | 田镇, 杨志强, 王师迪. 喜马拉雅东构造结主要断裂的地震矩亏损与危险性评估[J]. 地震地质, 2020, 42(1): 33-49. |
[12] | 乔鑫, 屈春燕, 单新建, 李彦川, 朱传华. 基于时序InSAR的海原断裂带形变特征及运动学参数反演[J]. 地震地质, 2019, 41(6): 1481-1496. |
[13] | 姚远, 李帅, 黄帅堂, 贾海梁. 西准噶尔冬别列克断裂晚第四纪以来的阶地位错与滑动速率[J]. 地震地质, 2019, 41(4): 803-820. |
[14] | 李光涛, 苏刚, 程理, 李峰, 吴昊. 中甸-大具断裂南东段晚第四纪活动的地质地貌证据[J]. 地震地质, 2019, 41(3): 545-560. |
[15] | 胡宗凯, 杨晓平, 杨海波, 李军, 吴国栋, 黄伟亮. 博罗可努-阿齐克库都克断裂精河段晚更新世以来的断错地貌和走滑速率[J]. 地震地质, 2019, 41(2): 266-280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||