地震地质 ›› 2022, Vol. 44 ›› Issue (6): 1384-1402.DOI: 10.3969/j.issn.0253-4967.2022.06.003
收稿日期:
2021-12-31
修回日期:
2022-03-22
出版日期:
2022-12-20
发布日期:
2023-01-21
通讯作者:
尹金辉
作者简介:
石文芳, 女, 1992年生, 现为中国地震局地质研究所构造地质学专业在读博士研究生, 从事活动构造与年代学研究, E-mail: shiwenfang@ies.ac.cn。
基金资助:
SHI Wen-fang1)(), XU Wei2), YIN Jin-hui1)(), ZHENG Yong-gang1)
Received:
2021-12-31
Revised:
2022-03-22
Online:
2022-12-20
Published:
2023-01-21
Contact:
YIN Jin-hui
摘要:
地震崩塌、 滑坡是较为严重的地震次生灾害, 研究地震崩塌、 滑坡发生的时代及其活动规律, 从而恢复断裂带古地震活动历史、 地震复发周期, 有助于地震危险性评价及地震灾害防御工作。文中选择秦岭北缘断裂带和华山山前断裂中段被历史文献记录的地震基岩崩塌、 滑坡为研究对象, 使用施密特锤测量416个岩块的反弹值, 并对其进行统计分析, 计算了崩塌、 滑坡体暴露岩石的风化因子, 讨论了施密特锤暴露测年法的分辨率, 评估了施密特锤测年的可靠性, 同时建立了古地震基岩崩塌、 滑坡历史记录年代与反弹值参数之间的关系曲线。结果表明: 施密特锤暴露测年方法提供了一种简单、 快速、 廉价、 无破坏的原位相对测年方法, 初步建立的岩石风化因子-年龄校正曲线为T=(19 723±888)×fw-(2 145±166), 基于该校正曲线, 可以对形成年龄>500a的基岩崩塌和滑坡进行分期, 为确定秦岭北缘古地震基岩崩塌、 滑坡形成时代提供一种新的相对测年手段。施密特锤岩石反弹值还可用来评估宇宙成因核素暴露测年样品是否存在先期暴露、 翻滚、 二次埋藏等复杂暴露历史带来的核素继承浓度问题, 帮助选择合格的宇宙成因核素测年样品的采集地点, 保证测年数据的可靠性, 提高测年效率。在秦岭北缘的气候和岩性条件下, 岩石经历2ka风化后, 表面强度减小约(25%±1%), 约1ka后减小(16%±1%), 约0.5ka后减小(15%±1%)。
中图分类号:
石文芳, 徐伟, 尹金辉, 郑勇刚. 秦岭北缘古地震基岩崩塌和滑坡施密特锤暴露年龄[J]. 地震地质, 2022, 44(6): 1384-1402.
SHI Wen-fang, XU Wei, YIN Jin-hui, ZHENG Yong-gang. SCHMIDT HAMMER EXPOSURE AGE DATING OF ANCIENT EARTHQUAKE-INDUCED BEDROCK LANDSLIDES AND ROCK AVALANCHES IN THE NORTHERN MARGIN OF QINLING MOUNTAINS[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(6): 1384-1402.
图 1 研究区的地理位置与构造背景图 底图为ALOS PALSAR数据, 分辨率为12.5m。 F1秦岭北缘断裂带; F2华山山前断裂带。 A 甘湫池古滑坡(780BC); B 水湫池古崩塌(780BC); C 太平峪崩塌(1556AD); D 莲花寺古滑坡(多期)
Fig. 1 Topography, active tectonics and historical earthquakes in the study area.
图 7 古崩塌、 滑坡堆积块石的反弹值分布情况及其风化因子 #号表示该年龄为通过风化因子fw平均值-年龄校正曲线推算得到
Fig. 7 Frequency distributions of rebound values from various parts of ancient rock avalanches and landslides, and their weathering factor.
[1] | 白世彪, 崔鹏, 葛永刚, 等. 2020. 古滑坡测年方法与定年精度的提高途径[J]. 地学前缘, 28(2): 19-34. |
BAI Shi-biao, CUI Peng, GE Yong-gang, et al. 2020. Geochronological analysis of fossil landslides and improvement of dating accuracy[J]. Earth Science Frontiers, 28(2): 19-34. (in Chinese) | |
[2] | 陈立萍, 耿豪鹏, 张建, 等. 2019. 黑河流域基岩回弹值(施密特锤)的空间分布特征及其指示意义[J]. 冰川冻土, 41(2): 364-373. |
CHEN Li-ping, GENG Hao-peng, ZHANG Jian, et al. 2019. Spatial distribution of bedrock rebound value(Schmidt Hammer)across the Heihe River Basin and its implication[J]. Journal of Glaciology and Geocryology, 41(2): 364-373. (in Chinese) | |
[3] |
陈晓利, 刘春国, 传一健, 等. 2021. 鲁甸地震的滑坡物质运移规律与地形特征[J]. 地震地质, 43(1): 92-104. doi: 10.3969/j.issn.0253-4967.2021.01.003.
DOI |
CHEN Xiao-li, LIU Chun-guo, CHUAN Yi-jian, et al. 2021. Study on the distribution of co-seismic landslides and terrain features in the MS6.5 Ludian earthquake affected area[J]. Seismology and Geology, 43(1): 92-104. (in Chinese) | |
[4] | 杜建军, 黎敦朋, 马寅生, 等. 2013. 18.7万年前的高速远程古滑坡: 来自陕西华县莲花寺滑坡体上覆黄土光释光(OSL)测年的证据[J]. 第四纪研究, 33(5): 1005-1015. |
DU Jian-jun, LI Dun-peng, MA Yin-sheng, et al. 2013. The high-speed and long-distance ancient landslides before 187ka: The evidence from the OSL dating of the loess overlying the landslides body of Lianhuasi in Huaxian, Shaanxi Provence, China[J]. Quaternary Sciences, 33(5): 1005-1015. (in Chinese) | |
[5] | 付碧宏, 时丕龙, 王萍, 等. 2009. 2008年汶川地震断层北川段的几何学与运动学特征及地震地质灾害效应[J]. 地球物理学报, 52(2): 485-495. |
FU Bi-hong, SHI Pi-long, WANG Ping, et al. 2009. Geometry and kinematics of the Wenchuan earthquake surface ruptures around the Qushan town of Beichuan County, Sichuan: Implications for mitigation of seismic and geologic disasters[J]. Chinese Journal of Geophysics, 52(2): 485-495. (in Chinese) | |
[6] | 郭海婷. 2015. 黄河上游戈龙布滑坡及其堰塞湖沉积物光释光年代研究[D]. 南京: 南京师范大学:1-77. |
GUO Hai-ting. 2015. The OSL dating of Gelongbu landslide and its barrier lake sediments in the upper reaches of the Yellow River[D]. Nanjing Normal University, Nanjing: 1-77. (in Chinese) | |
[7] | 国家地震局兰州地震研究所, 宁夏回族自治区地震队. 1980. 一九二〇年海原大地震[M]. 北京: 地震出版社. |
Lanzhou Institute of Seismology of State Seismological Bureau, the Seismological Brigade of Ningxia Hui Autonomous Region. 1980. The 1920 Haiyuan Earthquake[M]. Seismological Press, Beijing. (in Chinese) | |
[8] | 贺明静. 1986. 华县大地震与断裂活动[J]. 地震研究, 9(4): 427-432. |
HE Ming-jing. 1986. The great 1556 Huaxian earthquake and the related faulting[J]. Journal of Seismological Research, 9(4): 427-432. (in Chinese) | |
[9] | 贺明静, 孙根年, 于立新. 2006. 翠华山甘湫池景观地质遗迹成因[J]. 地球科学与环境学报, 28(1): 37-40. |
HE Ming-jing, SUN Gen-nian, YU Li-xin. 2006. Genesis of Ganqiu pool scenic and geological remains in Cuihuanshan Mountain[J]. Journal of Earth Sciences and Environment, 28(1): 37-40. (in Chinese) | |
[10] | 洪婷, 白世彪, 王建, 等. 2012. 利用树轮重建九房山滑坡活动年份[J]. 山地学报, 30(1): 57-64. |
HONG Ting, BAI Shi-biao, WANG Jian, et al. 2012. Reconstruct the activity years of Jiufangshan landslide by means of tree-rings[J]. Journal of Mountain Science, 30(1): 57-64. (in Chinese) | |
[11] | 黄润秋, 李为乐. 2009. 汶川地震触发崩塌滑坡数量及其密度特征分析[J]. 地质灾害与环境保护, 20(3): 1-7. |
HUANG Run-qiu, LI Wei-le. 2009. Analysis on the characteristics of the quantity and density of landslides triggered by Wenchuan earthquake[J]. Journal of Geological Hazards and Environment Preservation, 20(3): 1-7. (in Chinese) | |
[12] | 黄伟亮, 杨虔灏, 吕艳, 等. 2020. 秦岭北麓古滑坡分布特征与地震活动关系研究[J]. 工程地质学报, 28(6): 1259-1271. |
HUANG Wei-liang, YANG Qian-hao, LÜ Yan, et al. 2020. Relationship between distribution characteristics of prehistoric landslides and seismic activity along Qinling piedmont fault[J]. Journal of Engineering Geology, 28(6): 1259-1271. (in Chinese) | |
[13] | 蒋瑶, 吴中海, 刘艳辉, 等. 2014. 青海玉树活动断裂带的多期古地震滑坡及其年龄[J]. 地质通报, 32(4): 503-516. |
JIANG Yao, WU Zhong-hai, LIU Yan-hui, et al. 2014. The characteristics of palaeo-earthquake landslides along Yushu faulted zone and their ages[J]. Geological Bulletin of China, 32(4): 503-516. (in Chinese) | |
[14] |
赖忠平, 杨安娜, 丛禄, 等. 2021. 山地灾害沉积物的测年综述[J]. 地学前缘, 28(2): 1-18.
DOI |
LAI Zhong-ping, YANG An-na, CONG Lu, et al. 2021. A review on the dating techniques for mountain hazards-induced sediment[J]. Earth Science Frontier, 28(2): 1-18. (in Chinese) | |
[15] | 李树林, 余利峰, 陈丽霞. 2014. 雅安芦山县地震崩塌滑坡信息提取与发育规律分析[J]. 工程地质学报, 22(5): 861-868. |
LI Shu-lin, YU Li-feng, CHEN Li-xia. 2014. Extraction and analysis of Lushan earthquake triggered landsides: A case study in Baosheng town, Ya’an city[J]. Journal of Engineering Geology, 22(5): 861-868. (in Chinese) | |
[16] | 刘静, 徐锡伟, 李岩峰, 等. 2007. 以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性: 兼论古地震研究中的若干问题[J]. 地质通报, 26(6): 650-660. |
LIU Jing, XU Xi-wei, LI Yan-feng, et al. 2007. On the completeness of paleoseismic records of strike-slip faults: An example from the Laohushan segment of the Haiyuan Fault in Gansu, China, with a discussion of several problems in the paleoearthquake study[J]. Geological Bulletin of China, 26(6): 650-660. (in Chinese) | |
[17] |
刘静, 袁兆德, 徐岳仁, 等. 2021. 古地震学: 活动断裂强震复发规律的研究[J]. 地学前缘, 28(2): 211-231.
DOI |
LIU Jing, YUAN Zhao-de, XU Yue-ren, et al. 2021. Paleoseismic investigation of the recurrence behavior of large earthquakes on active faults[J]. Earth Science Frontier, 28(2): 211-231. (in Chinese) | |
[18] |
马冀, 冯希杰, 李高阳, 等. 2016. 1556年华县地震地表破裂带同震垂直位移[J]. 地震地质, 38(1): 22-30. doi: 10.3969/j.issn.0253-4967.2016.01.002.
DOI |
MA Ji, FENG Xi-jie, LI Gao-yang, et al. 2016. The coseismic vertical displacements of surface rupture zone of the 1556 Huaxian earthquake[J]. Seismology and Geology, 38(1): 22-30. (in Chinese) | |
[19] |
冉勇康, 李彦宝, 杜鹏, 等. 2014. 中国大陆古地震研究的关键技术与案例解析(3): 正断层破裂特征、 环境影响与古地震识别[J]. 地震地质, 36(2): 287-301. doi: 10.3969/j.issn.0253-4967.2014.02.001.
DOI |
RAN Yong-kang, LI Yan-bao, DU Peng, et al. 2014. Key techniques and several cases analysis in paleoseismic studies in mainland China(3): Rupture characteristics, environment impact and paleoseismic indicators on normal faults[J]. Seismology and Geology, 36(2): 287-301. (in Chinese) | |
[20] | 陕西省地震局. 1996. 秦岭北缘活动断裂带[M]. 北京: 地震出版社:1-126. |
Seismological Bureau of Shaanxi Province. 1996. The Active Fault Zone in the North Margin of Qinling Mountains[M]. Seismological Press, Beijing: 1-126. (in Chinese) | |
[21] | 陕西省地震局. 2005. 陕西省地震目录(公元前1189年至公元2001年)[M]. 北京: 地震出版社:1-75. |
Seismological Bureau of Shaanxi Province. 2005. Earthquake Catalogue of Shaanxi Province from 1189BC to 2001AD[M]. Seismological Press, Beijing: 1-75 (in Chinese) | |
[22] | 师亚芹, 李晋, 冯希杰, 等. 2007. 渭河断裂带古地震研究[J]. 地震地质, 29(3): 607-616. |
SHI Ya-qin, LI Jin, FENG Xi-jie, et al. 2007. The study of paleoearthquake on the Weihe fault zone[J]. Seismology and Geology, 29(3): 607-616. (in Chinese) | |
[23] | 王兰生, 杨立铮, 王小群, 等. 2005. 岷江叠溪古堰塞湖的发现[J]. 成都理工大学学报(自然科学版), 32(1): 1-11. |
WANG Lan-sheng, YANG Li-zheng, WANG Xiao-qun, et al. 2005. Discovery of huge ancient dammed lake on upstream of Minjiang River in Sichuan, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 32(1): 1-11. (in Chinese) | |
[24] | 吴成基, 彭永祥. 2001. 西安翠华山山崩地质遗迹及资源评价[J]. 山地学报, 19(4): 359-362. |
WU Cheng-ji, PENG Yong-xiang. 2001. The resource of geological remains by landslide in Cuihua Mountain, Xi'an and resource evaluation[J]. Journal of Mountain Science, 19(4): 359-362. (in Chinese) | |
[25] | 谢新生, 肖振敏. 1989. 地衣测年法研究及其在陕西若干地质事件中的应用[J]. 科学通报, 34(24): 1885-1888. |
XIE Xin-sheng, XIAO Zhen-min. 1989. Study on lichen dating method and its application to some geological events in Shaanxi Province[J]. Chinese Science Bulletin, 34(24): 1885-1888. (in Chinese) | |
[26] |
徐伟, 刘志成, 袁兆德, 等. 2017. 华山山前河流地貌参数及其构造意义[J]. 地震地质, 39(6): 1316-1335. doi: 10.3969/j.issn.0253-4967.2017.06.015.
DOI |
XU Wei, LIU Zhi-cheng, YUAN Zhao-de, et al. 2017. River geomorphic parameters of the Huashan piedmont and their tectonic implications[J]. Seismology and Geology, 39(6): 1316-1335. (in Chinese) | |
[27] | 杨银科, 彭建兵, 刘聪. 2015. 滑坡年代学研究方法应用进展[J]. 灾害学, 30(2): 133-137. |
YANG Yin-ke, PENG Jian-bing, LIU Cong. 2015. The application progress on research methods of landslide chronology[J]. Journal of Catastrophology, 30(2): 133-137. (in Chinese) | |
[28] | 原廷宏, 冯希杰, 吕莲, 等. 2010. 一五五六年华县特大地震[M]. 北京: 地震出版社. |
YUAN Ting-hong, FENG Xi-jie, LÜ Lian, et al. 2010. The 1556 Great Huaxian Earthquake[M]. Seismological Press, Beijing. (in Chinese) | |
[29] | 袁兆德, 陈杰, 李文巧, 等. 2012. 帕米尔高原东部塔合曼大型滑坡体的10Be测年[J]. 第四纪研究, 32(3): 409-416. |
YUAN Zhao-de, CHEN Jie, LI Wen-qiao, et al. 2012. 10Be dating of Taheman large scale landslide in eastern Pamir and paleoseismic implications[J]. Quaternary Sciences, 32(3): 409-416. (in Chinese) | |
[30] |
Aydin A, Basu A. 2005. The Schmidt hammer in rock material characterization[J]. Engineering Geology, 81(1): 1-14.
DOI URL |
[31] |
Balescu S, Ritz J F, Lamothe M, et al. 2007. Luminescence dating of a gigantic palaeolandslide in the Gobi-Altay Mountains, Mongolia[J]. Quaternary Geochronology, 2(1-4): 290-295.
DOI URL |
[32] |
Bertolini G, Casagli N, Ermini L, et al. 2004. Radiocarbon data on lateglacial and Holocene landslides in the northern Apennines[J]. Natural Hazards, 31(3): 645-662.
DOI URL |
[33] |
Dai F C, Lee C F, Deng J H, et al. 2005. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China[J]. Geomorphology, 65(3-4): 205-221.
DOI URL |
[34] |
Duman T Y. 2009. The largest landslide dam in Turkey: Tortum landslide[J]. Engineering Geology, 104(1-2): 66-79.
DOI URL |
[35] |
Ericson K. 2004. Geomorphological surfaces of different age and origin in granite landscapes: An evaluation of the Schmidt hammer test[J]. Earth Surface Processes and Landforms, 29(4): 495-509.
DOI URL |
[36] |
Geertsema M, Clague J J. 2006. 1 000-year record of landslide dams at Halden Creek, northeastern British Columbia[J]. Landslides, 3(3): 217-227.
DOI URL |
[37] |
Hewitt K, Gosse J, Clague J J. 2011. Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya[J]. Geological Society of America Bulletin, 123(9): 1836-1850.
DOI URL |
[38] |
Hughes P D, Fink D, Fletcher W J, et al. 2014. Catastrophic rock avalanches in a glaciated valley of the High Atlas, Morocco: 10Be exposure ages reveal a 4.5ka seismic event[J]. Geological Society of America Bulletin, 126(7-8): 1093-1104.
DOI URL |
[39] | International Society for Rock Mechanics(ISRM). 1978. Commission on Standardization of Laboratory and Field Tests: Suggested methods for determining hardness and abrasiveness of rocks[S]. International Journal of Rock Mechanics & Mining Sciences & Geomechanical Abstracts, 15(3): 89-97. |
[40] |
Ivy-Ochs S, Poschinger A V, Synal H A, et al. 2009. Surface exposure dating of the Flims landslide, Graubünden, Switzerland[J]. Geomorphology, 103(1): 104-112.
DOI URL |
[41] |
Keefer D K. 1984. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 95(4): 406-421.
DOI URL |
[42] |
Lü Y, Peng J B, Wang G L. 2014. Characteristics and genetic mechanism of the Cuihua rock avalanche triggered by a paleo-earthquake in northwest China[J]. Engineering Geology, 182(1): 88-96.
DOI URL |
[43] |
Matthews J A, Owen G, Winkler S, et al. 2016. A rock-surface microweathering index from Schmidt hammer R-values and its preliminary application to some common rock types in southern Norway[J]. Catena, 143(1): 35-44.
DOI URL |
[44] |
Matthews J A, Shakesby R A. 1984. The status of the ‘Little Ice Age’ in southern Norway: Relative-age dating of Neoglacial moraines with Schmidt hammer and lichenometry[J]. Boreas, 13(3): 333-346.
DOI URL |
[45] |
Matthews J A, Wilson P. 2015. Improved Schmidt-hammer exposure ages for active and relict pronival ramparts in southern Norway, and their palaeoenvironmental implications[J]. Geomorphology, 246(1): 7-21.
DOI URL |
[46] |
McCarroll D. 1991. The Schmidt hammer, weathering and rock surface roughness[J]. Earth Surface Processes and Landforms, 16(5): 477-480.
DOI URL |
[47] | McEwen L J, Matthews J A, Owen G. 2020. Development of a Holocene glacier-fed composite alluvial fan based on surface exposure-age dating techniques: The Illåe fan, Jotunheimen, Norway[J]. Geomorphology, 363(1): 107200-1-107200-15. |
[48] |
Niedzielski T, Migon P, Placek A. 2010. A minimum sample size required from Schmidt hammer measurements[J]. Earth Surface Processes and Landforms, 34(13): 1713-1725.
DOI URL |
[49] |
Pánek T, Smolková V, Hradecký J, et al. 2013. Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians(Czech Republic/Slovakia)[J]. Quaternary Research, 80(1): 33-46.
DOI URL |
[50] |
Rao G, Cheng Y L, Lin A M, et al. 2017. Relationship between landslides and active normal faulting in the epicentral area of the AD1556 M-8.5 Huaxian earthquake, SE Weihe Graben(Central China)[J]. Journal of Earth Science, 28(3): 545-554.
DOI URL |
[51] | Schmidt E. 1951. A non-destructive concrete tester[J]. Concrete, 59(8): 34-35. |
[52] |
Stahl T, Tye A. 2020. Schmidt hammer and terrestrial laser scanning(TLS)used to detect single-event displacements on the Pleasant Valley Fault(Nevada, USA)[J]. Earth Surface Processes and Landforms, 45(2): 473-483.
DOI URL |
[53] |
Stahl T, Winkler S, Quigley M, et al. 2013. Schmidt hammer exposure-age dating(SHD)of late Quaternary fluvial terraces in New Zealand[J]. Earth Surface Processes and Landforms, 38(15): 1838-1850.
DOI URL |
[54] |
Sumner P, Nel W. 2002. The effect of rock moisture on Schmidt hammer rebound: Tests on rock samples from Marion Island and South Africa[J]. Earth Surface Processes and Landforms, 27(10): 1137-1142.
DOI URL |
[55] |
Tomkins M D, Dortch J M, Hughes P D, et al. 2018. Rapid age assessment of glacial landforms in the Pyrenees using Schmidt hammer exposure dating(SHED)[J]. Quaternary Research, 90(1): 1-12.
DOI URL |
[56] |
Tye A, Stahl T. 2018. Field estimate of paleoseismic slip on a normal fault using the Schmidt hammer and terrestrial LiDAR: Methods and application to the Hebgen Fault(Montana, USA)[J]. Earth Surface Processes and Landforms, 43(11): 2397-2408.
DOI URL |
[57] |
Weidinger J T, Wang J D, Ma N X. 2002. The earthquake-triggered rock avalanche of Cui Hua, Qin Ling Mountains, P R of China: The benefits of a lake-damming prehistoric natural disaster[J]. Quaternary International, 93-94: 207-214.
DOI URL |
[58] | Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. |
[59] |
Williams R B G, Robinson D A. 1983. The effect of surface texture on the determination of the surface hardness of rock using the Schmidt hammer[J]. Earth Surface Processes and Landforms, 8(3): 289-292.
DOI URL |
[60] |
Wilson P, Linge H, Matthews J A, et al. 2019. Comparative numerical surface exposure-age dating(10Be and Schmidt hammer)of an Early-Holocene rock avalanche at Alstadfjellet, Valldalen, southern Norway[J]. Geografiska Annaler: Series A, Physical Geography, 101(4): 293-309.
DOI URL |
[61] |
Wistuba M, Malik I, Gärtner H, et al. 2013. Application of eccentric growth of trees as a tool for landslide analyses: The example of Piceaabies Karst. in the Carpathian and Sudeten Mountains(Central Europe)[J]. Catena, 111(1): 41-55.
DOI URL |
[62] | Yaalon D H, Singer S. 1974. Vertical variation in strength and porosity of Calcrete(Nari)on Chalk, Shefela, Israel and interpretation of its origin[J]. Journal of Sedimentary Research, 44(4): 1016-1023. |
[63] |
Yin J H, Chen J, Xu X W, et al. 2010. The characteristics of the landslides triggered by the Wenchuan MS8.0 earthquake from Anxian to Beichuan[J]. Journal of Asian Earth Sciences, 37(5-6): 452-459.
DOI URL |
[64] | Zhou B G, Zhang Y M. 1994. Some characteristics of earthquake induced landslides in southwestern China[J]. Northwestern Seismological Journal, 16(1): 95-103. |
[1] | 刘庆, 刘韶, 张世民. 大凉山断裂带中段越西断裂晚第四纪古地震[J]. 地震地质, 2023, 45(2): 321-337. |
[2] | 李安, 万波, 王晓先, 计昊旻, 索锐. 金州断裂盖州北鞍山段古地震破裂的新证据[J]. 地震地质, 2023, 45(1): 111-126. |
[3] | 郑海刚, 姚大全, 赵朋, 杨源源, 黄金水. 郯庐断裂带赤山段全新世新活动的特征[J]. 地震地质, 2023, 45(1): 127-138. |
[4] | 杨源源, 李鹏飞, 路硕, 疏鹏, 潘浩波, 方良好, 郑海刚, 赵朋, 郑颖平, 姚大全. 郯庐断裂带中段F5断裂淮河-女山湖段的古地震与垂直滑动速率[J]. 地震地质, 2022, 44(6): 1365-1383. |
[5] | 刘兴旺, 袁道阳, 姚赟胜, 邹小波. 三危山断裂敦煌段古地震活动特征[J]. 地震地质, 2021, 43(6): 1398-1411. |
[6] | 常祖峰, 常昊, 李鉴林, 毛泽斌, 臧阳. 维西-乔后断裂全新世活动与古地震[J]. 地震地质, 2021, 43(4): 881-898. |
[7] | 冯嘉辉, 陈立春, 王虎, 刘姣, 韩明明, 李彦宝, 高帅坡, 卢丽莉. 大凉山断裂带北段石棉断裂的古地震[J]. 地震地质, 2021, 43(1): 53-71. |
[8] | 马骏, 周本刚, 王明明, 安力科. 鲜水河断裂带折多塘断裂西北段全新世活动的地质地貌依据[J]. 地震地质, 2020, 42(5): 1021-1038. |
[9] | 张玲, 杨晓平, 李胜强, 黄伟亮, 杨海波. 秋里塔格褶皱带东段探槽的古地震事件[J]. 地震地质, 2020, 42(5): 1039-1057. |
[10] | 黄帅堂, 胡伟华, 杨攀新, 李帅, 伊力亚尔. 东天山唐巴勒-塔斯墩断裂带晚第四纪活动特征[J]. 地震地质, 2020, 42(5): 1058-1071. |
[11] | 王莅斌, 尹功明, 袁仁茂, 王盈, 苏刚. 金沙江中游永胜昔格达层软沉积变形构造[J]. 地震地质, 2020, 42(5): 1072-1090. |
[12] | 胡宗凯, 杨晓平, 杨海波, 吴国栋, 李军, 周本刚. 北天山博罗可努-阿齐克库都克断裂精河段的古地震事件[J]. 地震地质, 2020, 42(4): 773-790. |
[13] | 覃金堂, 陈杰, 李涛. 阿尔金断裂带中段现代沉积物样品钾长石红外激发后红外释光的残留信号——对年轻古地震事件测年的指示意义[J]. 地震地质, 2020, 42(4): 981-992. |
[14] | 邵延秀, 袁道阳, 刘静, Jerome Van der Woerd, 李志刚, 吴磊, 刘方斌. 阿尔金断裂中段南月牙山古地震地表破裂带及其构造意义[J]. 地震地质, 2020, 42(2): 435-454. |
[15] | 邹俊杰, 何宏林, 横山祐典, 魏占玉, 石峰, 郝海健, 庄其天, 孙稳, 周朝, 白滨吉起. 基岩断层面的古地震研究方法:国内外应用现状及展望[J]. 地震地质, 2019, 41(6): 1539-1562. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||