地震地质 ›› 2022, Vol. 44 ›› Issue (4): 831-844.DOI: 10.3969/j.issn.0253-4967.2022.04.001
• 研究论文 • 下一篇
周秉锐1,2)(), 潘波1,2),*(), 尹成孝3), 张哲宇3), 颜丽丽1,2)
收稿日期:
2021-11-30
修回日期:
2022-01-25
出版日期:
2022-08-20
发布日期:
2022-09-23
通讯作者:
潘波
作者简介:
周秉锐, 男, 1996年生, 2022年于中国地震局地质研究所获矿物学、 岩石学、 矿床学专业硕士学位, 主要研究方向为岩石地球化学, 电话: 15003407231, E-mail: zhoubingrui19@mails.ucas.ac.cn。
基金资助:
ZHOU Bing-rui1,2)(), PAN Bo1,2),*(), YUN Sung-hyo3), CHANG Cheol-woo3), YAN Li-li1,2)
Received:
2021-11-30
Revised:
2022-01-25
Online:
2022-08-20
Published:
2022-09-23
Contact:
PAN Bo
摘要:
长白山天池火山是一座大型的复合式活火山, 公元946-947年发生的大喷发和2002-2005年的岩浆扰动事件, 使其受到社会和学者的高度关注。然而, 目前对天池火山的岩浆演化过程, 尤其是玄武岩-粗安岩-粗面岩-碱流岩的演化过程还未能获得良好的认识, 存在诸多争议。文中通过大量野外工作, 获得了天池火山各阶段的岩石样品, 对其进行了全岩地球化学测试与分析。结果显示, 不同喷发阶段的火山岩主量元素随着岩浆硅含量的上升有着连续渐变的趋势, 稀土及微量元素的分布也具有一致性, 反映了一个连续的演化过程。同时, 文中基于MELTS模型对天池火山的岩浆演化进行了模拟, 模拟结果与天池火山的演化过程具有良好的吻合性, 并发现粗面岩向碱流岩的演化过程中除经历分离结晶作用外, 还遭到了浅部地壳花岗岩的同化混染。这些对天池火山岩浆演化过程的新认识, 加深了对天池火山发展演化过程的理解, 也为未来火山喷发的灾害预警和监测数据解释提供了理论支撑。
中图分类号:
周秉锐, 潘波, 尹成孝, 张哲宇, 颜丽丽. 基于MELTS模型的长白山天池火山岩浆演化过程的新认识[J]. 地震地质, 2022, 44(4): 831-844.
ZHOU Bing-rui, PAN Bo, YUN Sung-hyo, CHANG Cheol-woo, YAN Li-li. NEW UNDERSTANDING OF THE MAGMA EVOLUTION OF CHANGBAISHAN-TIANCHI VOLCANO BASED ON MELTS SIMULATION[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 831-844.
图1 天池区域的地质与样品分布图(钱程等, 2014)1 全新世火山喷发物; 2 中更新世粗安质火山喷发物; 3 早更新世粗安质火山喷发物; 4 上新世-早更新世玄武质火山喷发物; 5 中-晚更新世玄武质火山喷发物; 6 中新世玄武质火山喷发物; 7 采样位置; 8火山口群; 9 花岗岩区
Fig. 1 Regional geology and sample distribution of Tianchi volcano(after QIAN Cheng et al., 2014).
样号 | 1 | 2 | 3 | 4 | 5 | 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HSOB | TN-1* | HTS1 | HSKB | SYYT | NMET | WRDT | TWFP | SMEB | HAN3 | WMG3 | GPG1 | |
SiO2 | 47.24 | 45.36 | 49.78 | 50.15 | 64.67 | 66.2 | 70.22 | 69.1 | 56.03 | 57.44 | 67.22 | 75.87 |
TiO2 | 2.182 | 2.44 | 3.155 | 3.139 | 0.47 | 0.36 | 0.347 | 0.31 | 1.88 | 1.67 | 0.355 | 0.08 |
Al2O3 | 12.77 | 14.01 | 15.91 | 16.07 | 14.96 | 14.62 | 11.53 | 11.1 | 16.97 | 17.11 | 13.52 | 13.4 |
FeOT | 11.69 | 11.45 | 13.47 | 10.76 | 6.72 | 4.96 | 6.04 | 5.52 | 8.02 | 7.04 | 5.49 | 0.77 |
MnO | 0.456 | 0.16 | 0.164 | 0.137 | 0.429 | 0.122 | 0.126 | 0.112 | 0.123 | 0.1 | 0.121 | 0.017 |
MgO | 12.5 | 10.24 | 3.76 | 4.76 | 0.15 | 0.13 | 0.05 | 0.02 | 3 | 2.71 | 0.05 | 0.1 |
CaO | 7.55 | 7.16 | 6.68 | 8.29 | 1.63 | 1 | 0.55 | 0.44 | 5.76 | 5.84 | 0.64 | 0.89 |
Na2O | 2.81 | 3 | 3.69 | 3.69 | 5.412 | 5.718 | 5.3 | 5.665 | 4.505 | 4.5 | 5.75 | 3.759 |
K2O | 1.64 | 2.58 | 2.49 | 2.05 | 5.41 | 5.3 | 4.56 | 4.55 | 3.43 | 3.27 | 5.06 | 4.92 |
P2O5 | 0.5 | 0.32 | 0.74 | 0.7 | 0.098 | 0.043 | 0.03 | 0.016 | 0.356 | 0.32 | 0.02 | 0.015 |
LOI | 1.25 | 0.36 | -0.58 | 0.05 | 1.94 | 0.21 | 2.71 | -0.2 | 0.22 | 0.24 | ||
总量 | 100.3 | 99.46 | 100.2 | 99.16 | 99.97 | 100.39 | 98.95 | 99.53 | 99.88 | 100 | 98.44 | 100.1 |
Sc | 17 | 7.78 | 16 | 17 | 15.8 | 2.3 | 1 | 1.1 | 10.9 | 10 | 1 | 0.35 |
V | 193 | 149.7 | 208 | 192 | 2.02 | 2.34 | 5 | 1.62 | 90.4 | 85 | 5 | 6.08 |
Co | 55 | 43.79 | 37 | 32 | 0.31 | 0.92 | 1 | 0.18 | 19.6 | 18 | 1 | 0.55 |
Ni | 440 | 211.9 | 20 | 30 | 0.61 | 1.32 | 20 | 0.23 | 27.8 | 40 | 20 | 0.67 |
Cu | 30 | 38.4 | 20 | 20 | 3.26 | 8.76 | 10 | 9.09 | 19.9 | 10 | 10 | 1.17 |
Zn | 120 | 211.3 | 150 | 100 | 142.9 | 146.56 | 210 | 285 | 106 | 90 | 180 | 15.4 |
Rb | 38 | 44 | 31 | 128.2 | 180.66 | 201 | 319 | 61.1 | 55 | 226 | 143 | |
Sr | 1039 | 930.5 | 669 | 801 | 10.41 | 11.11 | 2 | 0.95 | 549 | 595 | 5 | 179 |
Y | 24.9 | 14.58 | 32 | 23 | 48.45 | 67.92 | 61.7 | 134 | 26.1 | 21.7 | 48.2 | 11.3 |
Zr | 299 | 217.2 | 298 | 246 | 900.7 | 1038 | 1453 | 2482 | 328 | 273 | 1142 | 227 |
Nb | 38 | 35.64 | 45.3 | 35.1 | 83.08 | 120.7 | 138 | 264 | 44.6 | 35 | 93.7 | 6.1 |
Cs | 0.7 | 0.4 | 0.1 | 0.66 | 2.48 | 0.7 | 4.72 | 0.66 | 0.5 | 6.2 | 0.62 | |
Ba | 437 | 355.6 | 781 | 684 | 56.24 | 32.62 | 5 | 1.33 | 521 | 862 | 13 | 402 |
La | 31.5 | 32.18 | 45 | 33.5 | 89.43 | 130.9 | 143 | 224 | 47.2 | 37.1 | 49 | 12.3 |
Ce | 65.1 | 67.79 | 89.6 | 67.3 | 165.7 | 245.2 | 189 | 420 | 88.9 | 74.6 | 92.5 | 17.4 |
Pr | 7.89 | 7.8 | 10.6 | 8.08 | 18.65 | 26.04 | 29.3 | 46.8 | 10.1 | 8.45 | 9.91 | 1.56 |
Nd | 33.3 | 30.7 | 43.9 | 35.5 | 72.41 | 95.75 | 105 | 164 | 40.9 | 33.2 | 35.8 | 5.23 |
Sm | 6.91 | 5.78 | 9.16 | 8.02 | 12.98 | 18.16 | 20.2 | 32.9 | 8.77 | 6.9 | 8.13 | 0.83 |
Eu | 2.11 | 2.01 | 2.81 | 2.56 | 1.21 | 0.29 | 0.364 | 0.36 | 1.85 | 2.41 | 0.195 | 0.23 |
Gd | 5.27 | 5.09 | 7.53 | 6.19 | 11.06 | 14.31 | 14.6 | 27.4 | 7.3 | 6.23 | 6.33 | 0.71 |
Tb | 0.75 | 0.43 | 1.13 | 0.89 | 1.66 | 2.17 | 2.39 | 4.48 | 1.08 | 0.86 | 1.2 | 0.11 |
Dy | 4.06 | 3.63 | 6.06 | 4.48 | 9.11 | 12.84 | 12.6 | 26.2 | 5.36 | 4.46 | 7.33 | 0.64 |
Ho | 0.69 | 0.63 | 1.09 | 0.75 | 1.61 | 2.15 | 2.21 | 4.58 | 1.02 | 0.76 | 1.48 | 0.12 |
Er | 1.71 | 1.5 | 2.87 | 1.89 | 4.73 | 6 | 5.94 | 13 | 2.65 | 2.09 | 4.6 | 0.4 |
Tm | 0.23 | 0.13 | 0.386 | 0.247 | 0.68 | 0.84 | 0.851 | 1.91 | 0.33 | 0.273 | 0.757 | 0.073 |
Yb | 1.4 | 1.18 | 2.39 | 1.4 | 4.14 | 5.17 | 5.56 | 10.8 | 2.03 | 1.67 | 5.36 | 0.52 |
Lu | 0.186 | 0.25 | 0.343 | 0.188 | 0.68 | 0.78 | 0.83 | 1.54 | 0.3 | 0.265 | 0.862 | 0.094 |
Hf | 6.8 | 7.2 | 5.7 | 18.77 | 25.23 | 28.3 | 58.9 | 7.91 | 5.9 | 25.6 | 6.76 | |
Ta | 2.39 | 2.63 | 2.08 | 4.74 | 6.74 | 8.91 | 15.4 | 2.58 | 2.1 | 7.18 | 0.39 | |
Pb | 5 | 6 | 5 | 17.22 | 16.97 | 20 | 40.3 | 7.43 | 7 | 31 | 25.2 | |
Th | 3.15 | 7.49 | 4.81 | 3.53 | 13.96 | 19.78 | 26.5 | 43.6 | 5.69 | 5.03 | 22.9 | 6.97 |
U | 0.84 | 1 | 0.43 | 3.09 | 4.17 | 4.39 | 8.67 | 1.22 | 1.12 | 5.22 | 1.04 |
表1 天池火山各阶段喷发物的化学成分表
Table 1 Chemical composition of eruptive materials at each stage of Tianchi volcano
样号 | 1 | 2 | 3 | 4 | 5 | 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HSOB | TN-1* | HTS1 | HSKB | SYYT | NMET | WRDT | TWFP | SMEB | HAN3 | WMG3 | GPG1 | |
SiO2 | 47.24 | 45.36 | 49.78 | 50.15 | 64.67 | 66.2 | 70.22 | 69.1 | 56.03 | 57.44 | 67.22 | 75.87 |
TiO2 | 2.182 | 2.44 | 3.155 | 3.139 | 0.47 | 0.36 | 0.347 | 0.31 | 1.88 | 1.67 | 0.355 | 0.08 |
Al2O3 | 12.77 | 14.01 | 15.91 | 16.07 | 14.96 | 14.62 | 11.53 | 11.1 | 16.97 | 17.11 | 13.52 | 13.4 |
FeOT | 11.69 | 11.45 | 13.47 | 10.76 | 6.72 | 4.96 | 6.04 | 5.52 | 8.02 | 7.04 | 5.49 | 0.77 |
MnO | 0.456 | 0.16 | 0.164 | 0.137 | 0.429 | 0.122 | 0.126 | 0.112 | 0.123 | 0.1 | 0.121 | 0.017 |
MgO | 12.5 | 10.24 | 3.76 | 4.76 | 0.15 | 0.13 | 0.05 | 0.02 | 3 | 2.71 | 0.05 | 0.1 |
CaO | 7.55 | 7.16 | 6.68 | 8.29 | 1.63 | 1 | 0.55 | 0.44 | 5.76 | 5.84 | 0.64 | 0.89 |
Na2O | 2.81 | 3 | 3.69 | 3.69 | 5.412 | 5.718 | 5.3 | 5.665 | 4.505 | 4.5 | 5.75 | 3.759 |
K2O | 1.64 | 2.58 | 2.49 | 2.05 | 5.41 | 5.3 | 4.56 | 4.55 | 3.43 | 3.27 | 5.06 | 4.92 |
P2O5 | 0.5 | 0.32 | 0.74 | 0.7 | 0.098 | 0.043 | 0.03 | 0.016 | 0.356 | 0.32 | 0.02 | 0.015 |
LOI | 1.25 | 0.36 | -0.58 | 0.05 | 1.94 | 0.21 | 2.71 | -0.2 | 0.22 | 0.24 | ||
总量 | 100.3 | 99.46 | 100.2 | 99.16 | 99.97 | 100.39 | 98.95 | 99.53 | 99.88 | 100 | 98.44 | 100.1 |
Sc | 17 | 7.78 | 16 | 17 | 15.8 | 2.3 | 1 | 1.1 | 10.9 | 10 | 1 | 0.35 |
V | 193 | 149.7 | 208 | 192 | 2.02 | 2.34 | 5 | 1.62 | 90.4 | 85 | 5 | 6.08 |
Co | 55 | 43.79 | 37 | 32 | 0.31 | 0.92 | 1 | 0.18 | 19.6 | 18 | 1 | 0.55 |
Ni | 440 | 211.9 | 20 | 30 | 0.61 | 1.32 | 20 | 0.23 | 27.8 | 40 | 20 | 0.67 |
Cu | 30 | 38.4 | 20 | 20 | 3.26 | 8.76 | 10 | 9.09 | 19.9 | 10 | 10 | 1.17 |
Zn | 120 | 211.3 | 150 | 100 | 142.9 | 146.56 | 210 | 285 | 106 | 90 | 180 | 15.4 |
Rb | 38 | 44 | 31 | 128.2 | 180.66 | 201 | 319 | 61.1 | 55 | 226 | 143 | |
Sr | 1039 | 930.5 | 669 | 801 | 10.41 | 11.11 | 2 | 0.95 | 549 | 595 | 5 | 179 |
Y | 24.9 | 14.58 | 32 | 23 | 48.45 | 67.92 | 61.7 | 134 | 26.1 | 21.7 | 48.2 | 11.3 |
Zr | 299 | 217.2 | 298 | 246 | 900.7 | 1038 | 1453 | 2482 | 328 | 273 | 1142 | 227 |
Nb | 38 | 35.64 | 45.3 | 35.1 | 83.08 | 120.7 | 138 | 264 | 44.6 | 35 | 93.7 | 6.1 |
Cs | 0.7 | 0.4 | 0.1 | 0.66 | 2.48 | 0.7 | 4.72 | 0.66 | 0.5 | 6.2 | 0.62 | |
Ba | 437 | 355.6 | 781 | 684 | 56.24 | 32.62 | 5 | 1.33 | 521 | 862 | 13 | 402 |
La | 31.5 | 32.18 | 45 | 33.5 | 89.43 | 130.9 | 143 | 224 | 47.2 | 37.1 | 49 | 12.3 |
Ce | 65.1 | 67.79 | 89.6 | 67.3 | 165.7 | 245.2 | 189 | 420 | 88.9 | 74.6 | 92.5 | 17.4 |
Pr | 7.89 | 7.8 | 10.6 | 8.08 | 18.65 | 26.04 | 29.3 | 46.8 | 10.1 | 8.45 | 9.91 | 1.56 |
Nd | 33.3 | 30.7 | 43.9 | 35.5 | 72.41 | 95.75 | 105 | 164 | 40.9 | 33.2 | 35.8 | 5.23 |
Sm | 6.91 | 5.78 | 9.16 | 8.02 | 12.98 | 18.16 | 20.2 | 32.9 | 8.77 | 6.9 | 8.13 | 0.83 |
Eu | 2.11 | 2.01 | 2.81 | 2.56 | 1.21 | 0.29 | 0.364 | 0.36 | 1.85 | 2.41 | 0.195 | 0.23 |
Gd | 5.27 | 5.09 | 7.53 | 6.19 | 11.06 | 14.31 | 14.6 | 27.4 | 7.3 | 6.23 | 6.33 | 0.71 |
Tb | 0.75 | 0.43 | 1.13 | 0.89 | 1.66 | 2.17 | 2.39 | 4.48 | 1.08 | 0.86 | 1.2 | 0.11 |
Dy | 4.06 | 3.63 | 6.06 | 4.48 | 9.11 | 12.84 | 12.6 | 26.2 | 5.36 | 4.46 | 7.33 | 0.64 |
Ho | 0.69 | 0.63 | 1.09 | 0.75 | 1.61 | 2.15 | 2.21 | 4.58 | 1.02 | 0.76 | 1.48 | 0.12 |
Er | 1.71 | 1.5 | 2.87 | 1.89 | 4.73 | 6 | 5.94 | 13 | 2.65 | 2.09 | 4.6 | 0.4 |
Tm | 0.23 | 0.13 | 0.386 | 0.247 | 0.68 | 0.84 | 0.851 | 1.91 | 0.33 | 0.273 | 0.757 | 0.073 |
Yb | 1.4 | 1.18 | 2.39 | 1.4 | 4.14 | 5.17 | 5.56 | 10.8 | 2.03 | 1.67 | 5.36 | 0.52 |
Lu | 0.186 | 0.25 | 0.343 | 0.188 | 0.68 | 0.78 | 0.83 | 1.54 | 0.3 | 0.265 | 0.862 | 0.094 |
Hf | 6.8 | 7.2 | 5.7 | 18.77 | 25.23 | 28.3 | 58.9 | 7.91 | 5.9 | 25.6 | 6.76 | |
Ta | 2.39 | 2.63 | 2.08 | 4.74 | 6.74 | 8.91 | 15.4 | 2.58 | 2.1 | 7.18 | 0.39 | |
Pb | 5 | 6 | 5 | 17.22 | 16.97 | 20 | 40.3 | 7.43 | 7 | 31 | 25.2 | |
Th | 3.15 | 7.49 | 4.81 | 3.53 | 13.96 | 19.78 | 26.5 | 43.6 | 5.69 | 5.03 | 22.9 | 6.97 |
U | 0.84 | 1 | 0.43 | 3.09 | 4.17 | 4.39 | 8.67 | 1.22 | 1.12 | 5.22 | 1.04 |
图3 主量元素及模拟结果图 a、 b TAS分类图(据Le Bas et al., 1986), 1和2分别为粗面玄武岩和玄武粗安岩; c SiO2-Al2O3图; d SiO2-MgO图。曲线代表模拟结果。前人数据来自文献(解广轰等, 1988; 金伯禄等, 1994; Liu et al., 2015; 郭文峰等, 2016; Yi et al., 2021)
Fig. 3 Major elements and simulation results.
图4 天池火山岩标准化稀土元素配分图与标准化微量元素蛛网图(据Sun et al., 1989) a 稀土元素配分图解; b 微量元素蛛网图。前人数据同图3
Fig. 4 Chondrite normalized REE distribution diagram and primitive mantle normalized spider diagram of Tianchi volcanic rocks(after SUN et al., 1989).
图6 天池火山岩的Sr同位素图 a 87Sr/86Sr-Th/Nb图; b 87Sr/86Sr-SiO2图。样品数据来自文献(解广轰等, 1988; 樊祺诚等, 2007; Liu et al., 2015; 郭文峰等, 2016; Yi et al., 2021); 地壳平均值来自文献(Rudnick et al., 2003)
Fig. 6 Sr isotopes in Tianchi volcanic rocks.
图7 模拟实验系统温度分别对熔体组分(a)与分馏矿物质量图(b)
Fig. 7 The influence of simulated experimental system temperature on melt components(a) and fractionated mineral mass(b), respectively.
[1] | 崔天日, 钱程, 江斌, 等. 2017. 长白山天池火山CZK07钻所揭示的火山地层层序和火山作用特征[J]. 地质学报, 91(11): 2409-2422. |
CUI Tian-ri, QIAN Cheng, JIANG Bin, et al. 2017. Volcanic stratigraphic sequence and volcanism revealed by CZK07 drill core at Changbaishan Tianchi volcano[J]. Acta Geologica Sinica, 91(11): 2409-2422. (in Chinese) | |
[2] | 樊祺诚, 隋建立, 孙谦, 等. 2005. 天池火山千年大喷发的岩浆混合作用与喷发机制初步探讨[J]. 岩石学报, 21(6): 1703-1708. |
FAN Qi-cheng, SUI Jian-li, SUN Qian, et al. 2005. Preliminary research of magma mixing and explosive mechanism of the Millennium eruption of Tianchi volcano[J]. Acta Petrologica Sinica, 21(6): 1703-1708. (in Chinese) | |
[3] | 樊祺诚, 隋建立, 王团华, 等. 2007. 长白山火山活动历史、 岩浆演化与喷发机制探讨[J]. 高校地质学报, 13(2): 175-190. |
FAN Qi-cheng, SUI Jian-li, WANG Tuan-hua, et al. 2007. History of volcanic activity, magma evolution and eruptive mechanisms of the Changbai volcanic province[J]. Geological Journal of China Universities, 13(2): 175-190. (in Chinese) | |
[4] | 郭文峰, 刘嘉麒, 吴才来, 等. 2016. 长白山天池火山粗面岩成因与岩浆房系统演化[J]. 地质论评, 62(3): 617-630. |
GUO Wen-feng, LIU Jia-qi, WU Cai-lai, et al. 2016. Petrogenesis of trachyte and the felsic magma system at Tianchi volcano: Trace elements and isotopic constraints[J]. Geological Review, 62(3): 617-630. (in Chinese) | |
[5] | 郭文峰, 刘嘉麒, 徐文刚, 等. 2015. 长白山天池火山岩浆系统再认识: 岩石热力学模拟[J]. 科学通报, 60(35): 3489-3500. |
GUO Wen-feng, LIU Jia-qi, XU Wen-gang, et al. 2015. Reassessment of the magma system beneath Tianchi volcano, Changbaishan: Phase equilibria constraints[J]. Chinese Science Bulletin, 60(35): 3489-3500. (in Chinese) | |
[6] | 金伯禄, 张希友. 1994. 长白山火山地质研究[M]. 长春: 东北朝鲜民族教育出版社:1-187. |
JIN Bo-lu, ZHANG Xi-you. 1994. Research on Volcanic Geology in Changbaishan Mountains[M]. Education Press of Northeast China Korean Minority, Changchun: 1-187. (in Chinese) | |
[7] | 刘强, 盘晓东, 魏海泉, 等. 2008. 长白山天池火山喷发序列研究[J]. 中国地震, 24(3): 235-246. |
LIU Qiang, PAN Xiao-dong, WEI Hai-quan, et al. 2008. A borehole study on the eruptive sequence from the Tianchi volcano, Changbai Mountains[J]. Earthquake Research in China, 24(3): 235-246. (in Chinese) | |
[8] | 刘若新, 樊祺诚, 郑祥身, 等. 1998. 长白山天池火山的岩浆演化[J]. 中国科学(D辑), 28(3): 226-231. |
LIU Ruo-xin, FAN Qi-cheng, ZHENG Xiang-shen, et al. 1998. Magma evolution of Changbaishan Tianchi volcano[J]. Science in China(Ser D), 28(3): 226-231. (in Chinese) | |
[9] | 潘波, 樊祺诚, 许建东, 等. 2017. 长白山天池火山千年大喷发的岩浆过程[J]. 岩石学报, 33(1): 163-172. |
PAN Bo, FAN Qi-cheng, XU Jian-dong, et al. 2017. Magmatic processes of the Millennium eruption at Changbaishan Tianchi volcano, China/North Korea[J]. Acta Petrologica Sinica, 33(1): 163-172. (in Chinese) | |
[10] | 钱程, 崔天日, 江斌, 等. 2014. 长白山地区晚新生代火山地貌形态研究及其地质应用[J]. 第四纪研究, 34(2): 312-324. |
QIAN Cheng, CUI Tian-ri, JIANG Bin, et al. 2014. A study on the characteristics of Late Cenozoic volcanic terrain in Changbaishan Mountains and its geological application[J]. Quaternary Sciences, 34(2): 312-324. (in Chinese) | |
[11] | 钱程, 崔天日, 唐振, 等. 2016. 长白山天池火山造锥阶段玄武质火山活动期次划分及成因探讨[J]. 中国地质, 43(6): 1963-1976. |
QIAN Cheng, CUI Tian-ri, TANG Zhen, et al. 2016. Stage division and genesis discussion of basaltic volcanism during the cone-forming stage of Tianchi volcano in Changbaishan region[J]. Geology in China, 43(6): 1963-1976. (in Chinese) | |
[12] | 田丰, 汤德平. 1989. 吉林省长白山地区新生代火山岩的特点及其成因[J]. 岩石学报, 5(2): 49-64. |
TIAN Feng, TANG De-ping. 1989. Petrogenesis of the Cenozoic vlocanic rocks in the Changbaishan region[J]. Acta Petrologica Sinica, 5(2): 49-64. (in Chinese) | |
[13] | 王团华, 樊祺诚, 孙谦, 等. 2006. 长白山区图们江流域新生代火山岩的岩石化学研究[J]. 岩石学报, 22(6): 1481-1490. |
WANG Tuan-hua, FAN Qi-cheng, SUN Qian, et al. 2006. Petrochemistry of Cenozoic volcanic rocks in the Tumen river field, Changbai mountain region[J]. Acta Petrologica Sinica, 22(6): 1481-1490. (in Chinese) | |
[14] | 吴建平, 明跃红, 张恒荣, 等. 2007. 长白山天池火山区的震群活动研究[J]. 地球物理学报, 50(4): 1089-1096. |
WU Jian-ping, MING Yue-hong, ZHANG Heng-rong, et al. 2007. Earthquake swarm activity in Changbaishan Tianchi volcano[J]. Chinese Journal of Geophysics, 50(4): 1089-1096. (in Chinese)
DOI URL |
|
[15] | 解广轰, 王俊文, Basu A R, 等. 1988. 长白山地区新生代火山岩的岩石化学及Sr、 Nd、 Pb同位素地球化学研究[J]. 岩石学报, 4(4): 1-13. |
XIE Guang-hong, WANG Jun-wen, Basu A R, et al. 1988. Petrochemistry and Sr, Nd, Pb-isotopic geochemistry of Cenozoic volcanic rocks, Changbaishan area, Northeast China[J]. Acta Petrologica Sinica, 4(4): 1-13. (in Chinese) | |
[16] |
Andreeva O A, Yarmolyuk V V, Andreeva I A, et al. 2018. Magmatic evolution of Changbaishan Tianchi volcano, China-North Korea: Evidence from mineral-hosted melt and fluid inclusions[J]. Petrology, 26(5): 515-545.
DOI URL |
[17] |
Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 19(3): 463-513.
DOI URL |
[18] |
Ghiorso M S, Carmichael I S E, Rivers M L, et al. 1983. The Gibbs free energy of mixing of natural silicate liquids: An expanded regular solution approximation for the calculation of magmatic intensive variables[J]. Contributions to Mineralogy and Petrology, 84(2-3): 107-145.
DOI URL |
[19] |
Ghiorso M S, Sack R O. 1995. Chemical mass transfer in magmatic processes Ⅳ: A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures[J]. Contributions to Mineralogy and Petrology, 119(2-3): 197-212.
DOI URL |
[20] |
Gualda G A R, Ghiorso M S, Lemons R V, et al. 2012. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems[J]. Journal of Petrology, 53(5): 875-890.
DOI URL |
[21] |
Le Bas M J, Le Maitre R W, Streckeisen A, et al. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 27(3): 745-750.
DOI URL |
[22] | Liu J Q, Chen S S, Guo Z F, et al. 2015. Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China-Korea border[J]. Lithos, 236-237: 46-73. |
[23] | Pan B, de Silva S L, Xu J D, et al. 2020. Late Pleistocene to present day eruptive history of the Changbaishan-Tianchi Volcano, China/DPRK: New field, geochronological and chemical constraints[J]. Journal of Volcanology and Geothermal Research, 399: 1-18. |
[24] | Rudnick R L, Gao S. 2003. Composition of the Continental Crust[M]// //Holland H D, Turekian K K(eds), Treatise on Geochemistry(1st Edition). Elsevier, Amsterdam: 1-64. |
[25] | Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [G]//Saunders A D, Norry M J(eds), Magmatism in the Ocean Basins. Geological Society, Special Publications, London: 313-345. |
[26] |
Yi J, Wang P J, Shan X L, et al. 2021. Modeling the multi-level plumbing system of the Changbaishan caldera from geochemical, mineralogical, Sr-Nd isotopic and integrated geophysical data[J]. Geoscience Frontiers, 12(5): 1-20.
DOI URL |
[27] | Zou H B, Fan Q C, Zhang H F, et al. 2014. U-series zircon age constraints on the plumbing system and magma residence times of the Changbai volcano, China/North Korea border[J]. Lithos, 200-201: 169-180. |
[1] | 李营, 方震, 张晨蕾, 李继业, 鲍志诚, 张翔, 刘兆飞, 周晓成, 陈志, 杜建国. 地震流体地球化学短临预测研究进展与展望[J]. 地震地质, 2023, 45(3): 593-621. |
[2] | 申华梁, 杨耀, 周志华, 芮雪莲, 廖晓峰, 赵德杨, 梁明剑, 陈梦蝶, 官致君, 任宏微. 川西理塘毛垭温泉群的成因及深部地热过程[J]. 地震地质, 2023, 45(3): 689-709. |
[3] | 王喜龙, 罗银花, 金秀英, 杨梦尧, 孔祥瑞. 辽南地区断裂带的断层土壤气地球化学特征及其对区域应力调整的指示[J]. 地震地质, 2023, 45(3): 710-734. |
[4] | 张文亮, 李营, 刘兆飞, 胡乐, 路畅, 陈志, 韩晓昆. 六盘山东麓断裂带土壤气体He浓度的空间分布特征及其与构造活动之间的关系[J]. 地震地质, 2023, 45(3): 753-771. |
[5] | 朱成英, 闫玮, 麻荣, 李志海, 汪成国, 黄建明, 周晓成. 2017年8月9日精河MS6.6地震宏观烈度及其余震分布的断层气体地球化学表征[J]. 地震地质, 2022, 44(5): 1225-1239. |
[6] | 王博, 周永胜, 钟骏, 胡小静, 张翔, 周青云, 李旭茂. 滇西北断裂带土壤气地球化学特征及对断层活动性的启示[J]. 地震地质, 2022, 44(2): 428-447. |
[7] | 路畅, 周晓成, 李营, 刘磊, 颜玉聪, 徐岳仁. 玛多MS7.4 地表破裂带与东昆仑断裂温泉的水文地球化学特征[J]. 地震地质, 2021, 43(5): 1101-1126. |
[8] | 阮帅, 汤吉, 董泽义, 王立凤, 邓琰, 韩冰. 基于三维大地电磁AR-QN反演的长白山天池火山区电性结构[J]. 地震地质, 2020, 42(6): 1282-1300. |
[9] | 于红梅, 赵波, 魏费翔, 许建东, 王庆民. 华北东部海兴一带第四纪火山岩岩石学及地球化学特征[J]. 地震地质, 2015, 37(4): 1070-1083. |
[10] | 高小其, 梁卉, 王海涛, 郑黎明, 李杰, 赵纯青, 向阳, 张涛. 北天山地区泥火山的地球化学成因[J]. 地震地质, 2015, 37(4): 1215-1224. |
[11] | 李欣, 刘嘉麒, 孙春青, 杜德道, 王石. 云南腾冲全新世火山源区性质及其岩浆演化[J]. 地震地质, 2014, 36(4): 991-1008. |
[12] | 唐攀攀, 单新建, 王长林. 基于PSInSAR技术的长白山天池火山形变监测[J]. 地震地质, 2014, 36(1): 177-185. |
[13] | 许建东, 于红梅, 赵波. 长白山天池火山天文峰黄色浮岩的岩相学与显微结构特征[J]. 地震地质, 2013, 35(2): 363-370. |
[14] | 刘俊清, 孙继财, 武成智, 李克. 长白山天池火山溃湖洪水最大流量的初步估算及影响分析[J]. 地震地质, 2013, 35(1): 85-91. |
[15] | 尹功明, 樊祺诚. 长白山天池火山顶部黄色物质成因的初步探讨[J]. 地震地质, 2012, (4): 739-742. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||