地震地质 ›› 2022, Vol. 44 ›› Issue (3): 561-577.DOI: 10.3969/j.issn.0253-4967.2022.03.001
彭菲1)(), 王伟君1),*(
), 熊仁伟1), 吕晓健1), 闫坤2), 孙鑫喆1), 耿爽1), 寇华东2)
收稿日期:
2021-08-20
修回日期:
2021-12-28
出版日期:
2022-06-20
发布日期:
2022-08-02
通讯作者:
王伟君
作者简介:
彭菲, 女, 1981年生, 2008年于中国地震局地震预测研究所获固体地球物理硕士学位, 助理研究员, 现主要研究方向为地震工程、 数值模拟等, E-mail: pengfei@ief.ac.cn。
基金资助:
PENG Fei1)(), WANG Wei-jun1),*(
), XIONG Ren-wei1), LÜ Xiao-jian1), YAN Kun2), SUN Xin-zhe1), GENG Shuang1), KOU Hua-dong2)
Received:
2021-08-20
Revised:
2021-12-28
Online:
2022-06-20
Published:
2022-08-02
Contact:
WANG Wei-jun
摘要:
江苏省泗阳地处郯庐地震带内, 存在一定的地震灾害风险。地震场地放大效应是加重地震灾害的重要因素, 与浅层结构密切相关。文中基于217个微动观测的H/V谱比法结果, 研究江苏省泗阳县城的地震场地效应和浅层沉积结构。H/V峰值频率分布结果表明, 泗阳研究区地震场地的共振频率介于0.6~1.8Hz之间, 有明显的起伏变化; 对应的浅层沉积厚度为30~200m, 整体上表现为中部浅、 向东西两侧逐渐加深的特征, 其中中部城区浅层沉积厚度为30~70m, 东南角最厚; 浅层沉积在NNE走向有显著的深浅交替条带, 与海泗断裂带的位置和走向基本一致。与区内2条浅层反射地震勘探剖面进行对比发现, 微动方法获得的基岩起伏形态较为可靠。 通过微动H/V谱比法得到的沉积结构和场地响应特征, 能够为泗阳地区地震危险性的小区划提供有益参考。
中图分类号:
彭菲, 王伟君, 熊仁伟, 吕晓健, 闫坤, 孙鑫喆, 耿爽, 寇华东. 江苏省泗阳浅层沉积结构的微动H/V谱比法探测[J]. 地震地质, 2022, 44(3): 561-577.
PENG Fei, WANG Wei-jun, XIONG Ren-wei, LÜ Xiao-jian, YAN Kun, SUN Xin-zhe, GENG Shuang, KOU Hua-dong. DETECTION OF SHALLOW SEDIMENTARY STRUCTURE IN SIYANG, JIANGSU PROVINCE BY MICROTREMOR H/V SPECTRAL RATIO METHOD[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(3): 561-577.
图 1 研究区的地理位置、 断裂带分布(徐锡伟等, 2016)和历史强震(李善邦, 1960)
Fig. 1 Map of geographical location and hidden faults(after XU Xi-wei et al., 2016), and historical strong earthquake(after LI Shan-bang, 1960).
钻孔编号 | 钻孔类型 | 孔口高程 /m | 沉积层底深度 /m | 微动测点 | 测点高程 /m | 峰值频率 /Hz | 拟合浅层沉积厚度 /m |
---|---|---|---|---|---|---|---|
ZK31 | 工程钻孔 | 13.46 | 51 | AS-1 | 9 | 1.512 | 51.87 |
HZ13-1 | 水文地质钻孔 | 11 | 105.46 | L-6 | 21 | 0.841 | 116.89 |
PH12 | 水文地质钻孔 | 11.96 | 132.25 | Z28 | 11 | 0.777 | 130.58 |
表1 泗阳钻孔数据、 相应测点的H/V谱比曲线值和拟合结果统计表
Table 1 Table of borehole data, H/V spectral ratio curve values of corresponding measuring points and fitting results in Siyang
钻孔编号 | 钻孔类型 | 孔口高程 /m | 沉积层底深度 /m | 微动测点 | 测点高程 /m | 峰值频率 /Hz | 拟合浅层沉积厚度 /m |
---|---|---|---|---|---|---|---|
ZK31 | 工程钻孔 | 13.46 | 51 | AS-1 | 9 | 1.512 | 51.87 |
HZ13-1 | 水文地质钻孔 | 11 | 105.46 | L-6 | 21 | 0.841 | 116.89 |
PH12 | 水文地质钻孔 | 11.96 | 132.25 | Z28 | 11 | 0.777 | 130.58 |
图 8 利用H/V谱比法获得的研究区三维沉积分布图 a 厚度分布; b 深度分布
Fig. 8 Three-dimensional distribution of sedimentary structures of the study area obtained by the microtremor H/V spectral ratio method.
图 9 由南向北沿2条地震勘探测线方向的微动测点峰值频率、 浅层沉积厚度和沉积深度
Fig. 9 From the south to the north, the peak frequency, thickness and depth of shallow sediments are obtained by the microtremor H/V spectral ratio method along 2 shallow seismic exploration profiles. a DZ01; b DZ02
图 10 微动H/V谱比法获得的浅层沉积结果与2条地震勘探测线的对比图 a DZ01; b DZ02。黄色实线为微动H/V谱比法获得的浅层沉积深度, 粉色实线为通过地震勘探测线得到的基岩界面
Fig. 10 Comparison of shallow sedimentary results between microtremor H/V spectral ratio method and two seismic exploration profiles.
[1] | 何正勤, 丁志峰, 贾辉, 等. 2007. 用微动中的面波信息探测地壳浅部的速度结构[J]. 地球物理学报, 50(2): 492—498. |
HE Zheng-qing, DING Zhi-feng, JIA Hui, et al. 2007. To determine the velocity structure of shallow crust with surface wave information in microtremors[J]. Chinese Journal of Geophysics, 50(2): 492—498 (in Chinese). | |
[2] | 胡聿贤. 1999. 地震安全性评价技术教程[M]. 北京: 地震出版社. |
HU Yu-xian. 1999. Technical Course of Seismic Safety Evaluation[M]. Seismological Press, Beijing (in Chinese). | |
[3] | 李善邦. 1960. 中国地震目录(第2集)[M]. 北京: 科学出版社. |
LI Shan-bang. 1960. Catalogue of Chinese Earthquakes(Part 2)[M]. Science Press, Beijing (in Chinese). | |
[4] | 刘朔宽, 查小刚. 1982. 唐山地震高烈度区场地条件对震害的影响[J]. 西北地震学报, 4(2): 67—74. |
LIU Shuo-kuan, ZHA Xiao-gang. 1982. The damage anomaly of 1976 Tangshan earthquake in high intensity region[J]. Northwestern Seismological Journal, 4(2): 67—74 (in Chinese). | |
[5] | 彭菲, 王伟君, 寇华东. 2020. 三河—平谷地区地脉动H/V谱比法探测: 场地响应、 浅层沉积结构及其反映的断层活动[J]. 地球物理学报, 63(10): 3775—3790. |
PENG Fei, WANG Wei-jun, KOU Hua-dong. 2020. Microtremer H/V spectral ratio investigation in the Sanhe-Pinggu area: Site responses, shallow sedimentary structure, and fault activity revealed[J]. Chinese Journal of Geophysics, 63(10): 3775—3790 (in Chinese). | |
[6] | 师黎静, 陈盛扬. 2020. 基于地脉动单点谱比的场地特征参数测定方法适用性研究[J]. 振动与冲击, 39(11): 138—145. |
SHI Li-jing, CHEN Sheng-yang. 2020. The applicability of site characteristic parameters measurement based on micro-tremor’s H/V spectra[J]. Journal of Vibration and Shock, 39(11): 138—145 (in Chinese). | |
[7] | 王伟君, 陈棋福, 齐诚, 等. 2011. 利用噪声HVSR方法探测近地表结构的可能性和局限性: 以保定地区为例[J]. 地球物理学报, 54(7): 1783—1797. |
WANG Wei-jun, CHEN Qi-fu, QI Cheng, et al. 2011. The feasibilities and limitations to explore the near-surface structure with microtremor HVSR method: A case in Baoding area of Hebei Province, China[J]. Chinese Journal of Geophysics, 54(7): 1783—1797 (in Chinese). | |
[8] | 王伟君, 刘澜波, 陈棋福, 等. 2009. 应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J]. 地球物理学报, 52(6): 1515—1525. |
WANG Wei-jun, LIU Lan-bo, CHEN Qi-fu, et al. 2009. Applications of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure[J]. Chinese Journal of Geophysics, 52(6): 1515—1525 (in Chinese). | |
[9] | 徐锡伟, 韩竹军, 杨晓平, 等.2016. 中国及邻区地震构造图[CM]. 北京: 地震出版社. |
XU Xi-wei, HAN Zhu-jun, YANG Xiao-ping, et al. 2016. Seismotectonic Map in China and Its Adjacent Regions [CM]. Seismological Press, Beijing (in Chinese). | |
[10] | 薛国强, 潘冬明, 于景邨. 2018. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 33(5): 2187—2192. |
XUE Guo-qiang, PAN Dong-ming, YU Jing-cun. 2018. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 33(5): 2187—2192 (in Chinese). | |
[11] | 朱引, 屈秀宜, 李宗尧. 1984. 江苏省基岩地质图说明书: 1︰20万 [Z]. 全国地质资料馆. |
ZHU Yin, QU Xiu-yi, LI Zong-yao. 1984. Description of Bedrock Geological Map of Jiangsu Province: 1︰200 000 [Z]. National Geological Data Museum(in Chinese). | |
[12] | 宗健业, 孙新蕾, 张鹏. 2020. 利用HVSR方法研究广州地区的场地效应及估算地震灾害特征[J]. 地震地质, 42(3): 628—639. |
ZONG Jian-ye, SUN Xin-lei, ZHANG Peng. 2020. Site effect and earthquake disaster characteristics in Guangzhou area from horizontal-to-vertical spectral ratio(HVSR)method[J]. Seismology and Geology, 42(3): 628—639 (in Chinese). | |
[13] |
Bao F, Li Z W, Yuen D A, et al. 2018. Shallow structure of the Tangshan fault zone unveiled by dense seismic array and horizontal-to-vertical spectral ratio method[J]. Physics of the Earth and Planetary Interiors, 281: 46—54.
DOI URL |
[14] | Bard P Y, SESAME Participants. 2004. The SESAME project: An overview and main results[C]. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, paper No. 2207. |
[15] | Bonnefoy-Claudet S, Cotton F, Bard P Y. 2006. The nature of noise wavefield and its applications for site effects studies: A literature review[J]. Earth-Science Reviews, 79(3-4): 205—227. |
[16] |
Bradley B A, Wotherspoon L M, Kaiser A E, et al. 2018. Influence of site effects on observed ground motions in the Wellington region from the MW7.8 Kaikōura, New Zealand, earthquake[J]. Bulletin of the Seismological Society of America, 108(3B): 1722—1735.
DOI URL |
[17] | Chen Q F, Liu L B, Wang W J, et al. 2009. Site effects on earthquake ground motion based on microtremor measurements for metropolitan Beijing[J]. Chinese Science Bulletin, 54(2): 280—287. |
[18] |
Ibs-von S M, Wohlenberg J. 1999. Microtremor measurements used to map thickness of soft sediments[J]. Bulletin of the Seismological Society of America, 89(1): 250—259.
DOI URL |
[19] |
Konno K, Ohmachi T. 1997. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor[J]. Bulletin of the Seismological Society of America, 88(1): 228—241.
DOI URL |
[20] |
Lachet C, Bard P Y. 1994. Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique[J]. Journal of Physics of the Earth, 42(5): 377—397.
DOI URL |
[21] |
Liu L B, Chen Q F, Wang W J, et al. 2014. Ambient noise as the new source for urban engineering seismology and earthquake engineering: A case study from Beijing metropolitan area[J]. Earthquake Science, 27(1): 89—100.
DOI URL |
[22] |
Mitchell D, Adams J, Devall R H, et al. 1986. Lessons from the 1985 Mexican earthquake[J]. Canadian Journal of Civil Engineering, 13: 535—557.
DOI URL |
[23] | Nakamura Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Quarterly Report of Railway Technical Research Institute, 30(1): 25—33. |
[24] | Nakamura Y. 2000. Clear identification of fundamental idea of Nakamura’s technique and its applications[C]. Proceedings of the 12th World Conference on Earthquake Engineering. |
[25] |
Parolai S, Bormann P, Milkereit C. 2002. New relationships between VS, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area(Germany)[J]. Bulletin of the Seismological Society of America, 92(6): 2521—2527.
DOI URL |
[26] |
Takai N, Shigefuji M, Rajaure S, et al. 2016. Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake[J]. Earth, Planets and Space, 68:10. https://doi.org/10.1186/s40623-016-0383—7.
DOI URL |
[27] |
Tumurbaatar Z, Miura H, Tsamba T. 2019. Site effect assessment in Ulaanbaatar, Mongolia through inversion analysis of microtremor H/V spectral ratios[J]. Geosciences, 9(5): 228—244.
DOI URL |
[28] | Wang W J, Liu L B, Chen Q F, et al. 2008. Site responses and sediment structures along the NW and NE profiles in Beijing area revealed by microtremor H/V spectral ratio studies[C]. The 14th World Conference on Earthquake Engineering, Beijing, October 12—17, Paper No. 09-01-0059. |
[29] |
Withers M, Aster R, Young C, et al. 1998. A comparison of select trigger algorithms for automated global seismic phase and event detection[J]. Bulletin of the Seismological Society of America, 88(1): 95—106.
DOI URL |
[1] | 吴微微, 苏金蓉, 魏娅玲, 吴朋, 李俊, 孙玮. 四川地区介质衰减、场地响应与震级测定的讨论[J]. 地震地质, 2016, 38(4): 1005-1018. |
[2] | 张永久, 赵翠萍. 紫坪铺水库库区介质衰减、台站响应和震源参数研究[J]. 地震地质, 2009, 31(4): 664-675. |
[3] | 李祖宁, 周峥嵘, 林树, 陈祥熊, 鲍挺. 利用数字地震台网资料联合反演福建地区Q值、场地响应和震源参数[J]. 地震地质, 2005, 27(3): 437-445. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 231
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 744
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||