地震地质 ›› 2022, Vol. 44 ›› Issue (2): 428-447.DOI: 10.3969/j.issn.0253-4967.2022.02.010
王博1,2)(), 周永胜1),*(), 钟骏2), 胡小静3), 张翔3), 周青云3), 李旭茂2)
收稿日期:
2021-03-15
修回日期:
2021-06-07
出版日期:
2022-04-20
发布日期:
2022-06-14
通讯作者:
周永胜
作者简介:
王博, 男, 1984年生, 现为中国地震局地质研究所构造地质专业在读博士研究生, 主要研究方向为构造物理实验及流体动力学, 电话: 010-59959322, E-mail: wangbo313@163.com。
基金资助:
WANG Bo1,2)(), ZHOU Yong-sheng1),*(), ZHONG Jun2), HU Xiao-jing3), ZHANG Xiang3), ZHOU Qing-yun3), LI Xu-mao2)
Received:
2021-03-15
Revised:
2021-06-07
Online:
2022-04-20
Published:
2022-06-14
Contact:
ZHOU Yong-sheng
摘要:
在滇西北地区多条断层进行了跨断层土壤气Rn、 H2、 CO2的浓度测量。测量结果表明, 同一测点断层土壤气浓度随时间没有发生变化, 不同断层的土壤气Rn和H2浓度和分布特征差异较大, 两者浓度范围分别为6.18~168.32kBq/m3、 7.72~429ppm。红河断裂带北段较其他断裂, 气体逸出浓度较高, 显示断层活动性较强。红河断裂带北段和鹤庆-洱源断裂上不同测线的气体浓度差别较大, 显示断裂的分段性明显。土壤氢在断层(尤其是正断层和走滑断层)出露处的浓度一般都较高, 显示了氢气在揭露断层方面具有较好的指示意义, 土壤氡的气体浓度分布特点在分析断层运动特征方面具有较好的指示性。
中图分类号:
王博, 周永胜, 钟骏, 胡小静, 张翔, 周青云, 李旭茂. 滇西北断裂带土壤气地球化学特征及对断层活动性的启示[J]. 地震地质, 2022, 44(2): 428-447.
WANG Bo, ZHOU Yong-sheng, ZHONG Jun, HU Xiao-jing, ZHANG Xiang, ZHOU Qing-yun, LI Xu-mao. GEOCHEMICAL CHARACTERISTICS OF SOIL GAS IN ACTIVE FAULT ZONE IN NORTHWEST YUNNAN AND ITS ENLIGHTENMENT TO FAULT ACTIVITY[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 428-447.
图 1 滇西北的地质构造及土壤气测线分布 F1红河断裂带北段; F2鹤庆-洱源断裂; F3通甸-巍山断裂; F4程海断裂; F5丽江-剑川断裂; F6龙蟠-乔后断裂; F7玉龙雪山东麓断裂; F8德钦-中甸-大具断裂
Fig. 1 Locations of the sampling sites of soil gases and geological structure in northwest of Yunnan, China.
测线编号 | 测线名称 | 断层编号 | 断层名称 | 气体组分 | 最大值 | 最小值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|---|---|
Ⅰ | 寅街 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 142.34 | 2.85 | 43.92 | 45.64 |
H2/ppm | 62.52 | 3.61 | 15.6 | 16.09 | ||||
CO2/% | 1.88 | 0.25 | 0.62 | 0.45 | ||||
Ⅱ | 羊旺村 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 37.87 | 15.35 | 25.54 | 6.89 |
H2/ ppm | 310.25 | 11.05 | 96.04 | 83.34 | ||||
CO2/% | 4.04 | 0.5 | 2.24 | 1.2 | ||||
Ⅲ | 蝴蝶泉 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 25.32 | 7.4 | 16.74 | 5.79 |
H2/ ppm | 44.71 | 5.13 | 23.08 | 13.61 | ||||
CO2/% | 0.99 | 0.43 | 0.72 | 0.14 | ||||
Ⅳ | 牛街 | F2 | 鹤庆-洱源断裂带 | Rn/kBq·m-3 | 93.61 | 16.48 | 43.52 | 23.84 |
H2/ ppm | 17.9 | 0.72 | 6.37 | 4.54 | ||||
CO2/% | 0.89 | 0.16 | 0.41 | 0.21 | ||||
Ⅴ | 后箐 | F6 | 龙蟠-乔后断裂 | Rn/kBq·m-3 | 81.75 | 11.71 | 37.29 | 21.52 |
H2/ ppm | 193.33 | 29.19 | 75.88 | 41.19 | ||||
CO2/% | 1.11 | 0.19 | 0.57 | 0.33 | ||||
Ⅵ | 九河 | F6 | 龙蟠-乔后断裂 | Rn/kBq·m-3 | 34.84 | 4.89 | 12.73 | 8 |
H2/ ppm | 93.64 | 2.34 | 30.28 | 26.85 | ||||
CO2/% | 1.6 | 0.13 | 0.77 | 0.48 | ||||
Ⅶ | 束河 | F7 | 玉龙雪山东麓断裂 | Rn/kBq·m-3 | 63.23 | 1.93 | 25.83 | 16.27 |
H2/ ppm | 85.81 | 7.29 | 37.13 | 30.9 | ||||
CO2/% | 0.63 | 0.19 | 0.36 | 0.14 | ||||
Ⅷ | 玉湖 | F7 | 玉龙雪山东麓断裂 | Rn/kBq·m-3 | 51.33 | 7.71 | 23.41 | 10.73 |
H2/ ppm | 19.65 | 3.45 | 10.14 | 5.22 | ||||
CO2/% | 1.14 | 0.43 | 0.71 | 0.23 | ||||
Ⅸ | 达瓦 | F2 | 鹤庆-洱源断裂带 | Rn/kBq·m-3 | 25.38 | 7.65 | 15.77 | 4.88 |
H2/ ppm | 99.7 | 6.66 | 25.79 | 25.93 | ||||
CO2/% | 1.8 | 0.09 | 0.49 | 0.46 | ||||
Ⅹ | 干塘子 | F5 | 丽江-剑川断裂 | Rn/kBq·m-3 | 168.32 | 64.38 | 87.12 | 28.32 |
H2/ ppm | 7.72 | 1.08 | 3.55 | 1.93 | ||||
CO2/% | 0.97 | 0.32 | 0.55 | 0.18 | ||||
Ⅺ | 虎跳峡 | F8 | 德钦-中甸-大具断裂 | Rn/Bq·L-1 | 6.18 | 2.13 | 4.64 | 1.18 |
H2/ ppm | 429 | 1.98 | 71.01 | 125.08 | ||||
CO2/% | 0.36 | 0.07 | 0.17 | 0.09 | ||||
Ⅻ | 恩努 | F8 | 德钦-中甸-大具断裂 | Rn/kBq·m-3 | 24.32 | 0.12 | 6.78 | 7.61 |
H2/ ppm | 53.8 | 1.22 | 24.36 | 13.48 | ||||
CO2/% | 1.6 | 0.06 | 0.33 | 0.39 | ||||
XⅢ | 龙潭 | F4 | 程海断裂 | Rn/kBq·m-3 | 61.7 | 3.22 | 29.73 | 16.13 |
H2/ ppm | 74.59 | 1.88 | 13.66 | 18.86 | ||||
CO2/% | 0.73 | 0.16 | 0.39 | 0.2 | ||||
XⅣ | 秧草箐 | F4 | 程海断裂 | Rn/kBq·m-3 | 72.7 | 12.45 | 32.43 | 16.72 |
H2/ ppm | 102.5 | 17.58 | 70.76 | 32.28 | ||||
CO2/% | 1.23 | 0.12 | 0.33 | 0.34 |
表1 研究区各测线的气体浓度测值
Table1 The gas concentration of survey lines in the study area
测线编号 | 测线名称 | 断层编号 | 断层名称 | 气体组分 | 最大值 | 最小值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|---|---|
Ⅰ | 寅街 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 142.34 | 2.85 | 43.92 | 45.64 |
H2/ppm | 62.52 | 3.61 | 15.6 | 16.09 | ||||
CO2/% | 1.88 | 0.25 | 0.62 | 0.45 | ||||
Ⅱ | 羊旺村 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 37.87 | 15.35 | 25.54 | 6.89 |
H2/ ppm | 310.25 | 11.05 | 96.04 | 83.34 | ||||
CO2/% | 4.04 | 0.5 | 2.24 | 1.2 | ||||
Ⅲ | 蝴蝶泉 | F1 | 红河断裂带北段 | Rn/kBq·m-3 | 25.32 | 7.4 | 16.74 | 5.79 |
H2/ ppm | 44.71 | 5.13 | 23.08 | 13.61 | ||||
CO2/% | 0.99 | 0.43 | 0.72 | 0.14 | ||||
Ⅳ | 牛街 | F2 | 鹤庆-洱源断裂带 | Rn/kBq·m-3 | 93.61 | 16.48 | 43.52 | 23.84 |
H2/ ppm | 17.9 | 0.72 | 6.37 | 4.54 | ||||
CO2/% | 0.89 | 0.16 | 0.41 | 0.21 | ||||
Ⅴ | 后箐 | F6 | 龙蟠-乔后断裂 | Rn/kBq·m-3 | 81.75 | 11.71 | 37.29 | 21.52 |
H2/ ppm | 193.33 | 29.19 | 75.88 | 41.19 | ||||
CO2/% | 1.11 | 0.19 | 0.57 | 0.33 | ||||
Ⅵ | 九河 | F6 | 龙蟠-乔后断裂 | Rn/kBq·m-3 | 34.84 | 4.89 | 12.73 | 8 |
H2/ ppm | 93.64 | 2.34 | 30.28 | 26.85 | ||||
CO2/% | 1.6 | 0.13 | 0.77 | 0.48 | ||||
Ⅶ | 束河 | F7 | 玉龙雪山东麓断裂 | Rn/kBq·m-3 | 63.23 | 1.93 | 25.83 | 16.27 |
H2/ ppm | 85.81 | 7.29 | 37.13 | 30.9 | ||||
CO2/% | 0.63 | 0.19 | 0.36 | 0.14 | ||||
Ⅷ | 玉湖 | F7 | 玉龙雪山东麓断裂 | Rn/kBq·m-3 | 51.33 | 7.71 | 23.41 | 10.73 |
H2/ ppm | 19.65 | 3.45 | 10.14 | 5.22 | ||||
CO2/% | 1.14 | 0.43 | 0.71 | 0.23 | ||||
Ⅸ | 达瓦 | F2 | 鹤庆-洱源断裂带 | Rn/kBq·m-3 | 25.38 | 7.65 | 15.77 | 4.88 |
H2/ ppm | 99.7 | 6.66 | 25.79 | 25.93 | ||||
CO2/% | 1.8 | 0.09 | 0.49 | 0.46 | ||||
Ⅹ | 干塘子 | F5 | 丽江-剑川断裂 | Rn/kBq·m-3 | 168.32 | 64.38 | 87.12 | 28.32 |
H2/ ppm | 7.72 | 1.08 | 3.55 | 1.93 | ||||
CO2/% | 0.97 | 0.32 | 0.55 | 0.18 | ||||
Ⅺ | 虎跳峡 | F8 | 德钦-中甸-大具断裂 | Rn/Bq·L-1 | 6.18 | 2.13 | 4.64 | 1.18 |
H2/ ppm | 429 | 1.98 | 71.01 | 125.08 | ||||
CO2/% | 0.36 | 0.07 | 0.17 | 0.09 | ||||
Ⅻ | 恩努 | F8 | 德钦-中甸-大具断裂 | Rn/kBq·m-3 | 24.32 | 0.12 | 6.78 | 7.61 |
H2/ ppm | 53.8 | 1.22 | 24.36 | 13.48 | ||||
CO2/% | 1.6 | 0.06 | 0.33 | 0.39 | ||||
XⅢ | 龙潭 | F4 | 程海断裂 | Rn/kBq·m-3 | 61.7 | 3.22 | 29.73 | 16.13 |
H2/ ppm | 74.59 | 1.88 | 13.66 | 18.86 | ||||
CO2/% | 0.73 | 0.16 | 0.39 | 0.2 | ||||
XⅣ | 秧草箐 | F4 | 程海断裂 | Rn/kBq·m-3 | 72.7 | 12.45 | 32.43 | 16.72 |
H2/ ppm | 102.5 | 17.58 | 70.76 | 32.28 | ||||
CO2/% | 1.23 | 0.12 | 0.33 | 0.34 |
断裂带名称 | 测线 | 测线所在 断裂段位置 | 第四纪位错幅度 /m | 断裂位错速率/mm·a-1 | ||
---|---|---|---|---|---|---|
垂直 | 水平 | 时 代 | ||||
红河断裂 | 蝴蝶泉 | 苍山东麓北段 | 5.2 | <1.5 | 晚更新世以来 | |
羊旺村 | 凤仪—定西岭 | <2 | 4 | 晚更新世以来 | ||
寅街 | 弥渡盆地 | 600 | 0.8 | 0.4 | 中更新世以来 | |
龙蟠-乔后断裂 | 后箐 | 剑川盆地 | 1 000~1 100 | 2 | 0.76 | 中更新世以来 |
九河 | 九河盆地 | 700~800 | 0.31 | 早更新世以来 | ||
鹤庆-洱源断裂 | 牛街 | 洱源盆地 | 1 250 | 1.3~1.7 | 中更新世以来 | |
达瓦 | 1 300 | 晚更新世以来 | ||||
玉龙雪山东麓断裂 | 束河 | 丽江盆地 | 1 200 | 0.84 | 0.70 | 早更新世时期 |
玉湖 | 丽江盆地北部区 | 0.84 | 0.70 | 早更新世时期 | ||
丽江-剑川断裂 | 干塘子 | 1.8 | 晚更新世以来 |
表2 滇西北活动断层特征和位错速率
Table2 The characteristics and dislocation rate of the active faults in northwest of Yunnan, China
断裂带名称 | 测线 | 测线所在 断裂段位置 | 第四纪位错幅度 /m | 断裂位错速率/mm·a-1 | ||
---|---|---|---|---|---|---|
垂直 | 水平 | 时 代 | ||||
红河断裂 | 蝴蝶泉 | 苍山东麓北段 | 5.2 | <1.5 | 晚更新世以来 | |
羊旺村 | 凤仪—定西岭 | <2 | 4 | 晚更新世以来 | ||
寅街 | 弥渡盆地 | 600 | 0.8 | 0.4 | 中更新世以来 | |
龙蟠-乔后断裂 | 后箐 | 剑川盆地 | 1 000~1 100 | 2 | 0.76 | 中更新世以来 |
九河 | 九河盆地 | 700~800 | 0.31 | 早更新世以来 | ||
鹤庆-洱源断裂 | 牛街 | 洱源盆地 | 1 250 | 1.3~1.7 | 中更新世以来 | |
达瓦 | 1 300 | 晚更新世以来 | ||||
玉龙雪山东麓断裂 | 束河 | 丽江盆地 | 1 200 | 0.84 | 0.70 | 早更新世时期 |
玉湖 | 丽江盆地北部区 | 0.84 | 0.70 | 早更新世时期 | ||
丽江-剑川断裂 | 干塘子 | 1.8 | 晚更新世以来 |
[1] | 车用太, 刘耀炜, 何钄. 2015. 断层带土壤气中H2观测: 探索地震短临预报的新途径[J]. 地震, 35(4): 1-10. |
CHE Yong-tai, LIU Yao-wei, HE Lan. 2015. Hydrogen monitoring in fault zone soil gas: A new approach to short/immediate earthquake prediction[J]. Earthquake, 35(4): 1-10. (in Chinese) | |
[2] | 车用太, 鱼金子, 张培仁, 等. 2002. H2与He的映震灵敏性及其干扰初析[J]. 地震, 22(2): 94-103. |
CHE Yong-tai, YU Jin-zi, ZHANG Pei-ren,et al. 2002. The preliminary analysis of earthquake-reflecting sensitivity and interference of H2 and He[J]. Earthquake, 22(2): 94-103. (in Chinese) | |
[3] | 车用太, 张大维, 鱼金子, 等. 1995. 断层带土壤气的映震效能与地震短期预报[J]. 中国地震, 11(4): 374-380. |
CHE Yong-tai, ZHANG Da-wei, YU Jin-zi,et al. 1995. Reflective capacity of soil gas in fault zone to earthquake and short-term prediction[J]. Earthquake Research in China, 11(4): 374-380. (in Chinese) | |
[4] | 邓起东, 冉勇康, 杨晓平, 等. 2007. 中国活动构造图(1︰400万) [CM]. 北京: 地震出版社. |
DENG Qi-dong, RAN Yong-kang, YANG Xiao-ping, et al. 2007. Map of Active Tectonics in China(1︰4000000)[CM]. Seismological Press, Beijing. (in Chinese) | |
[5] | 杜建国, 李圣强, 刘连柱, 等. 1999. 五大连池火山区气体地球化学特征[J]. 地球化学, 28(2): 171-176. |
DU Jian-guo, LI Sheng-qiang, LIU Lian-zhu,et al. 1999. Geochemistry of gases from Wudalianchi volcanic district, northeastern China[J]. Geochimica, 28(2): 171-176. (in Chinese) | |
[6] | 杜建国, 宇文欣, 李圣强, 等. 1998. 八宝山断裂带逸出氡的地球化学特征及其映震效能[J]. 地震, 18(2): 155-162. |
DU Jian-guo, YU Wen-xin, LI Sheng-qiang,et al. 1998. The geochemical characteristics of escaped radon from the Babaoshan fault zone and its earthquake reflecting effect[J]. Earthquake, 18(2): 155-162. (in Chinese) | |
[7] | 国家地震局地质研究所, 云南省地震局. 1990. 滇西北地区活动断裂[M]. 北京: 地震出版社. |
Institute of Geology, State Seismological Bureau, Seismological Bureau of Yunnan Province. 1990. A Monograph of Active Faults in the Northwest Yunnan Region[M]. Seismological Press, Beijing. (in Chinese) | |
[8] | 虢顺民, 计凤桔, 向宏发, 等. 2001. 红河活动断裂带[M]. 北京: 海洋出版社. |
GUO shun-min, JI Feng-ju, XIANG Hong-fa,et al. 2001. The Honghe Active Fault Zone[M]. China Ocean Press, Beijing. (in Chinese) | |
[9] | 韩竹军, 向宏发, 虢顺民. 2004. 滇西北丽江盆地北部区第四纪时期的左旋剪切拉张[J]. 科学通报, 50(4): 356-362. |
HAN Zhu-jun, XIANG Hong-fa, GUO Shun-min. 2004. Left-handed shear extension in the Quaternary period in the northern part of the Lijiang Basin, northwestern Yunnan[J]. Chinese Science Bulletin, 50(4): 356-362.
DOI URL |
|
[10] | 黄小巾, 吴中海, 李家存, 等. 2014. 滇西北裂陷带的构造地貌特征与第四纪构造活动性[J]. 地质通报, 33(4): 578-593. |
HUANG Xiao-jin, WU Zhong-hai, LI Jia-cun,et al. 2014. Tectonic geomorphology and Quaternary tectonic activity in the northwest Yunnan rift zone[J]. Geological Bulletin of China, 33(4): 578-593. (in Chinese) | |
[11] | 金之钧, 张刘平, 曾溅辉, 等. 2002. 东营凹陷与幔源富CO2流体有关的复合成因烷烃[J]. 科学通报, 47(16): 1276-1280. |
JIN Zhi-jun, ZHANG Liu-ping, ZENG Jian-hui,et al. 2002. Multi-origin alkanes related to CO2-rich mantle-drived fluid in Dongying Sag, Bohai Bay Basin[J]. Chinese Science Bulletin, 47(16): 1276-1280. (in Chinese) | |
[12] | 李营, 杜建国, 王富宽, 等. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报, 31(1): 82-91. |
LI Ying, DU Jian-guo, WANG Fu-kuan,et al. 2009. Geochemical characteristics of soil gas in Yanqing-Huailai Basin[J]. Acta Seismological Sinica, 31(1): 82-91. (in Chinese) | |
[13] | 上官志冠. 1988. 滇西实验场区主要活动断裂地球化学特征[J]. 地震地质, 10(4): 134-142. |
SHANGGUAN Zhi-guan. 1988. Geochemical characteristics of the main active faults in western Yunnan earthquake prediction test site[J]. Seismology and Geology, 10(4): 134-142. (in Chinese) | |
[14] | 上官志冠. 1989. 滇西地区断层气体成因研究[J]. 中国地震, 5(2): 51-56. |
SHANGGUAN Zhi-guan. 1989. A study on the origin of the fault gas in west Yunnan Province[J]. Earthquake Research in China, 5(2): 51-56. (in Chinese) | |
[15] | 上官志冠, 霍卫国. 2001. 腾冲热海地热区逸出H2的δD值及其成因[J]. 科学通报, 46(15): 1316-1320. |
SHANGGUAN Zhi-guan, HUO Wei-guo. 2001. The δD values of H2 in the geothermal region of Tengchong Rehai and its genesis[J]. Chinese Science Bulletin, 46(15): 1316-1320. (in Chinese) | |
[16] | 邵济安, 赵谊, 陆永发, 等. 2010. 黑龙江省氢气释放与地震及断块构造关系的探讨[J]. 地学前缘, 17(5): 271-277. |
SHAO Ji-an, ZHAO Yi, LU Yong-fa,et al. 2010. The relation between H2 release and earthquake and block structure in Heilongjiang Province[J]. Earth Science Frontiers, 17(5): 271-277. (in Chinese) | |
[17] | 邵永新, 杨绪连, 李一兵. 2007. 海河隐伏断层探测中土壤气氡和气汞测量及其结果[J]. 地震地质, 29(3): 627-636. |
SHAO Yong-xin, YANG Xu-lian, LI Yi-bing. 2007. The result and measurement of soil gas radon and soil gas mercury in the exploration of Haihe hidden fault[J]. Seismology and Geology, 29(3): 627-636. (in Chinese) | |
[18] | 孙小龙, 邵志刚, 司学芸, 等. 2017. 断层带土壤氢气浓度测量及其影响因素[J]. 大地测量与地球动力学, 37(4): 436-440. |
SUN Xiao-long, SHAO Zhi-gang, SI Xue-yun,et al. 2017. Soil hydrogen concentration in fault zone: Analysis of corresponding influence factors[J]. Journal of Geodesy and Geodynamics, 37(4): 436-440. (in Chinese) | |
[19] | 孙小龙, 王广才, 邵志刚, 等. 2016. 海原断裂带土壤气与地下水地球化学特征研究[J]. 地学前缘, 23(3): 140-150. |
SUN Xiao-long, WANG Guang-cai, SHAO Zhi-gang,et al. 2016. Geochemical characteristics of emergent gas and groundwater in Haiyuan fault zone[J]. Earth Science Frontiers, 23(3): 140-150. (in Chinese) | |
[20] | 汪成民, 李宣瑚. 1991. 我国断层气测量在地震科学研究中的应用现状[J]. 中国地震, 7(2): 21-32. |
WANG Cheng-min, LI Xuan-hu. 1991. Applications of fracture-gas measurement to the earthquake studies in China[J]. Earthquake Research in China, 7(2): 21-32. (in Chinese) | |
[21] | 王先彬, 陈践发, 徐胜, 等. 1992. 地震区温泉气体的地球化学特征[J]. 中国科学(B 辑), 22(8): 849-854. |
WANG Xian-bin, CHEN Jian-fa, XU Sheng,et al. 1992. Geochemical characteristics of gases from hot spring in seismic region[J]. Science in China(Ser B), 22(8): 849-854. (in Chinese) | |
[22] | 王云, 冉华, 李其林, 等. 2019. 滇西北裂陷区地热及构造活动特征研究[J]. 矿物岩石地球化学通报, 38(5): 923-930. |
WANG Yun, RAN Hua, LI Qi-lin,et al. 2019. A study on characteristics of geothermal and tectonic activities in the northwest Yunnan rifting zone, western China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(5): 923-930. (in Chinese) | |
[23] | 徐锡伟, 韩竹军, 杨晓平, 等. 2016. 中国及邻近地区地震构造图[CM]. 北京: 地震出版社. |
XU Xi-wei, HAN Zhu-jun, YANG Xiao-ping, et al.al. 2016. Seismotectonic Map in China and Its Adjacent Regions[CM]. Seismological Press, Beijing. (in Chinese) | |
[24] | 徐彦, 杨晶琼, 苏有锦, 等. 2005. 云南地区地震精确定位及其构造意义分析[J]. 地震研究, 28(4): 340-344. |
XU Yan, YANG Jing-qiong, SU You-jin,et al. 2005. Analysis on accurate location of earthquakes in Yunnan area and its tectonic meaning[J]. Journal of Seismological Research, 28(4): 340-344. | |
[25] |
杨婷, 吴建平, 房立华, 等. 2014. 滇西地区地壳速度结构及其构造意义[J]. 地震地质, 36(2): 392-404. doi: 10.3969/j.issn.0253-4967.2014.02.010.
DOI |
YANG Ting, WU Jian-ping, FANG Li-hua,et al. 2014. 3-D crustal P-wave velocity structure in western Yunnan area and its tectonic implications[J]. Seismology and Geology, 36(2): 392-404. (in Chinese) | |
[26] | 云南省地震局. 2018. 云南第四纪活动断裂[M]. 北京: 地震出版社. |
Yunnan Earthquake Agency. 2018. Quaternary Active Faults in Yunnan Province[M]. Seismological Press, Beijing. (in Chinese) | |
[27] | 张培仁, 王基华, 孙凤民. 1993. 氢: 预报地震的灵敏元素[J]. 地震地质, 15(1): 69-77. |
ZHANG Pei-ren, WANG Ji-hua, SUN Feng-min. 1993. Hydrogen: A sensitive element to predictable earthquake[J]. Seismology and Geology, 15(1): 69-77. (in Chinese) | |
[28] | 赵振燊. 2012. 甘东南地震重点危险区主要活动断裂带断层气地球化学特征[D]. 兰州: 中国地震局兰州地震研究所: 1-66. |
ZHAO Zhen-shen. 2012. The geochemical characteristics on fault gas of main active faults in the earthquake risk area of Gannan and Longnan[D]. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou: 1-66. (in Chinese) | |
[29] | 周晓成, 郭文生, 杜建国, 等. 2007. 呼和浩特地区隐伏断层土壤气氡、 汞地球化学特征[J]. 地震, 27(1): 70-76. |
ZHOU Xiao-cheng, GUO Wen-sheng, DU Jian-guo,et al. 2007. The geochemical characteristics of radon and mercury in the soil gas of buried faults in the Hohhot district[J]. Earthquake, 27(1): 70-76. (in Chinese) | |
[30] | 周晓成, 王传远, 柴炽章, 等. 2011. 海原断裂带东南段土壤气体地球化学特征[J]. 地震地质, 33(1): 123-132. |
ZHOU Xiao-cheng, WANG Chuan-yuan, CHAI Chi-zhang,et al. 2011. The geochemical charateristics of soil gas in the southeastern part of Haiyuan Fault[J]. Seismology and Geology, 33(1): 123-132. (in Chinese) | |
[31] |
Annunziatellis A, Beaubien S E, Bigi S,et al. 2008. Gas migration along fault systems and through the vadose zone in the Latera caldera(central Italy): Implications for CO2 geological storage[J]. International Journal of Greenhouse Gas Control, 2(3): 353-372.
DOI URL |
[32] |
Baubron J C, Allard P, Sabroux J C,et al. 1991. Soil gas emanations as precursory indicators of volcanic eruptions[J]. Journal of the Geological Society, 148(3): 571-576.
DOI URL |
[33] |
Baubron J C, Rigo A, Toutain J P. 2002. Soil gas profiles as a tool to characterize active tectonic areas: The Jaut Pass example(Pyrenees, France)[J]. Earth and Planetary Science Letters, 196(1-2): 69-81.
DOI URL |
[34] |
Ciotoli G, Etiope G, Guerra M,et al. 1999. The detection of concealed faults in the Ofanto Basin using the correlation between soil gas fracture surveys[J]. Tectonophysics, 301(3-4): 321-332.
DOI URL |
[35] | Ciotoli G, Guerra M, Lombardi S,et al. 1998. Soil gas survey for tracing seismogenic faults: A case study in the Fucino Basin, central Italy[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 23781-23794. |
[36] | Ciotoli G, Lombardi S, Annunziatellis A. 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy[J]. Journal of Geophysical Research: Solid Earth, 112(B5): 2637-2655. |
[37] |
Dogan T, Mori T, Tsunomori F,et al. 2007. Soil H2 and CO2 surveys at several active faults in Japan[J]. Pure and Applied Geophysics, 164(12): 2449-2463.
DOI URL |
[38] |
Dogan T, Sumuno H, Nagao K,et al. 2006. Release of mantle helium from forearc region of the southwest Japan arc[J]. Chemical Geology, 233(3-4): 235-248.
DOI URL |
[39] |
Etiope G, Martinelli G. 2002. Migration of carrier and trace gases in the geosphere: An overview[J]. Physics of the Earth and Planetary Interiors, 129(3-4): 185-204.
DOI URL |
[40] |
Fang Z, Liu Y W, Yang D X,et al. 2018. Real-time hydrogen mud logging during the Wenchuan earthquake fault scientific drilling project(WFSD), holes 2 and 3 in SW China[J]. Geoscience Journal, 22(3): 453-464.
DOI URL |
[41] |
Fu C C, Yang T F, Walia V. 2005. Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan[J]. Geochemical Journal, 39(5): 427-439.
DOI URL |
[42] |
Giardini A, Subbarayudu G V, Melton C E. 1976. The emission of occluded gas from rocks as a function of stress: Its possible use as a tool for predicting earthquakes[J]. Geophysical Research Letters, 3(6): 355-358.
DOI URL |
[43] | Gold T, Soter S. 1980. The deep-earth-gas hypothesis[J]. Scientific American, 242(6): 154-161. |
[44] | Hauksson E, Goddard J G. 1981. Radon earthquake precursor studies in Iceland[J]. Journal of Geophysical Research: Solid Earth, 86(B8): 7037-7054. |
[45] | Hirose T, Kawagucci S, Suzuki K. 2011. Mechanoradical H2 generation during simulated faulting: Implications for an earthquake-driven subsurface biosphere[J]. Geophysical Research Letters, 39(17): 245-255. |
[46] |
Hong W L, Yang T F, Walia V,et al. 2010. Nitrogen as the carrier gas for helium emission along an active fault in NW Taiwan[J]. Applied Geochemistry, 25(4): 593-601.
DOI URL |
[47] | Huang J L, Zhao D P, Zheng S H. 2002. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China[J]. Journal of Geophysical Research: Solid Earth, 107(B10): ESE13-1-ESE13-14. |
[48] |
Kameda J, Saruwatari K, Tanaka H,et al. 2004. Mechanisms of hydrogen generation during the mechanochemical treatment of biotite within D2O media[J]. Earth, Planets and Space, 56(12): 1241-1245.
DOI URL |
[49] | Kameda J, Saruwatari K, Tanaka H. 2003. H2 generation in wet grinding of granite and single-crystal powders and implications for H2 concentration on active faults[J]. Geophysical Research Letters, 30(20): SDE10.1-SDE10.5. |
[50] |
Kennedy B M, Kharaka Y K, Evans W C,et al. 1997. Mantle fluids in the San Andreas fault system, California[J]. Science, 278(5341): 1278-1281.
DOI URL |
[51] |
King C Y. 1978. Radon emanation on San Andreas Fault[J]. Nature, 271(5645): 516-519.
DOI URL |
[52] | King C Y. 1980. Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes[J]. Journal of Geophysical Research: Solid Earth, 85(B6): 3065-3078. |
[53] |
King C Y, King B, Evans W C,et al. 1996. Spatial radon anomalies on active faults in California[J]. Applied Geochemistry, 11(4): 497-510.
DOI URL |
[54] |
King C Y, Zhang W, Zhang Z. 2006. Earthquake-induced groundwater and gas changes[J]. Pure and Applied Geophysics, 163(4): 633-645.
DOI URL |
[55] |
King C Y. 1984. Impulsive radon emanation on a creeping segment of the San Andreas Fault, California[J]. Pure and Applied Geophysics, 122(2-4): 340-352.
DOI URL |
[56] | Sato M, McGee K A. 1981. Continuous monitoring of hydrogen on the south flank of Mount St. Helens[J]. United States Geological Survey Professional Paper, 1250: 209-219. |
[57] |
Sato M, Sutton A, McGee K A. 1984. Anomalous hydrogen emissions from the San Andreas Fault observed at the Cienega Winery, central California[J]. Pure and Applied Geophysics, 122(2-4): 376-391.
DOI URL |
[58] |
Sugisaki R, Anno H, Adachi M,et al. 1980. Geochemical features of gases and rocks along active faults[J]. Geochemical Journal, 14(3): 101-112.
DOI URL |
[59] |
Sugisaki R, IDo M, Takeda H,et al. 1983. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity[J]. The Journal of Geology, 91(3): 239-258.
DOI URL |
[60] |
Sun X L, Si X Y, Xiang Y,et al. 2017. Soil mercury spatial variations in the fault zone and corresponding influence factors[J]. Terrestrial Atmospheric and Oceanic Sciences, 28(3): 283-294.
DOI URL |
[61] |
Sun X L, Yang P T, Xiang Y,et al. 2018. Across-fault distributions of radon concentrations in soil gas for different tectonic environments[J]. Geosciences Journal, 22(2): 227-239.
DOI URL |
[62] | Tanner A B. 1964. Radon migration in the ground: A review [G]// Adams J A S, Lowder W M(eds). Natural Radiation Environment. University of Chicago Press, Chicago, Illinois, USA: 161-190. |
[63] |
Toutain J P, Baubron J C. 1999. Gas geochemistry and seismotectonics: A review[J]. Tectonophysics, 304(1): 1-27.
DOI URL |
[64] |
Wakita H, Nakamura Y, Kita I,et al. 1980. Hydrogen release: New indicator of fault activity[J]. Science, 210(4466): 188-190.
PMID |
[65] |
Walia V, Lin S J, Fu C C,et al. 2010. Soil-gas monitoring: A tool for fault delineation studies along Hsinhua Fault(Tainan), southern Taiwan[J]. Applied Geochemistry, 25(4): 602-607.
DOI URL |
[66] |
Walia V, Yang T F, Lin S J,et al. 2013. Temporal variation of soil gas compositions for earthquake surveillance in Taiwan[J]. Radiation Measurements, 50: 154-159.
DOI URL |
[67] |
Wang D, He L, Shi X,et al. 2006. Release flux of mercury from different environmental surfaces in Chongqing, China[J]. Chemosphere, 64(11): 1845-1854.
DOI URL |
[68] |
Wiersberg T, Erzinger J. 2008. Origin and spatial distribution of gas at seismogenic depths of the San Andreas Fault from drill-mud gas analysis[J]. Applied Geochemistry, 23(6): 1675-1690.
DOI URL |
[69] |
Xiang Y, Sun X L, Liu D Y,et al. 2020. Spatial distribution of Rn, CO2, Hg, and H2 concentrations in soil gas across a thrust fault in Xinjiang, China[J]. Frontiers in Earth Science, 8:554924. doi: 10.3389/feart.2020.554924.
DOI |
[70] |
Yang T, Chou C, Chen C,et al. 2003. Exhalation of radon and its carrier gases in SW Taiwan[J]. Radiation Measurements, 36(1): 425-429.
DOI URL |
[71] |
Yang T, Fu C C, Walia V,et al. 2006. Seismo-geochemical variations in SW Taiwan: Multi-parameter automatic gas monitoring results[J]. Pure and Applied Geophysics, 163(4): 693-709.
DOI URL |
[72] |
Zhou X C, Chen Z, Cui Y J. 2016. Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan MS8.0 earthquake in western Sichuan, China[J]. Environmental Geochemistry and Health, 38(5): 1067-1082.
DOI URL |
[73] |
Zhou X, Du J G, Chen Z,et al. 2010. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake, southwestern China[J]. Geochemical Transactions, 11(5): 1-10.
DOI URL |
[74] | Zhu M, Zhou R, Yin D,et al. 2003. Stress emission of helium and argon in coal seams[J]. Science in China(Ser D), 46(6): 547-560. |
[1] | 蒋雨函, 王子思, 刘佳琪, 梁卉, 周启超, 高小其. 中国地震断裂带氢气观测研究现状[J]. 地震地质, 2023, 45(3): 622-637. |
[2] | 王喜龙, 罗银花, 金秀英, 杨梦尧, 孔祥瑞. 辽南地区断裂带的断层土壤气地球化学特征及其对区域应力调整的指示[J]. 地震地质, 2023, 45(3): 710-734. |
[3] | 王江, 陈志, 张帆, 张志相, 张素欣. 雄安新区主要断裂带土壤气体的Rn与CO2脱气特征[J]. 地震地质, 2023, 45(3): 735-752. |
[4] | 张文亮, 李营, 刘兆飞, 胡乐, 路畅, 陈志, 韩晓昆. 六盘山东麓断裂带土壤气体He浓度的空间分布特征及其与构造活动之间的关系[J]. 地震地质, 2023, 45(3): 753-771. |
[5] | 王博, 崔凤珍, 刘静, 周永胜, 徐胜, 邵延秀. 玛多 MS7.4地震断层土壤气特征与地表破裂的相关性[J]. 地震地质, 2023, 45(3): 772-794. |
[6] | 李晓妮, 杨晨艺, 李高阳, 冯希杰, 黄引弟, 李陈侠, 李苗, 裴跟弟, 王万合. 渭河盆地东南缘渭南塬前北侧分支断层的浅部结构及晚第四纪活动[J]. 地震地质, 2023, 45(2): 484-499. |
[7] | 蒋雨函, 高小其, 杨朋涛, 刘冬英, 孙小龙, 向阳, 朱成英, 汪成国. 新疆北天山地区断裂带断层土壤气的地球化学特征[J]. 地震地质, 2022, 44(6): 1597-1614. |
[8] | 朱成英, 闫玮, 麻荣, 李志海, 汪成国, 黄建明, 周晓成. 2017年8月9日精河MS6.6地震宏观烈度及其余震分布的断层气体地球化学表征[J]. 地震地质, 2022, 44(5): 1225-1239. |
[9] | 秦晶晶, 刘保金, 王志才, 酆少英, 邓小娟, 花鑫升, 李倩. 利用地震反射剖面探测研究安丘-莒县断裂板泉段的浅部构造特征[J]. 地震地质, 2022, 44(2): 349-362. |
[10] | 杨晨艺, 李晓妮, 冯希杰, 朱琳, 李苗, 张恩会. 渭河盆地北缘口镇-关山断层的晚第四纪—现今的活动性[J]. 地震地质, 2021, 43(3): 504-520. |
[11] | 何付兵, 徐锡伟, 何振军, 张晓亮, 刘立岩, 张巍, 魏波, 倪敬波. 利用浅层地震反射剖面探测研究大兴断裂北段新近纪—第四纪的构造特征[J]. 地震地质, 2020, 42(4): 893-908. |
[12] | 张磊, 高小其, 包创, 李静, 李旭茂. 呼图壁地下储气库构造气体地球化学特征[J]. 地震地质, 2018, 40(5): 1059-1071. |
[13] | 周晓成, 王传远, 柴炽章, 司学芸, 雷启云, 李营, 谢超, 刘胜昌. 海原断裂带东南段土壤气体地球化学特征[J]. 地震地质, 2011, 33(1): 123-132. |
[14] | 邵永新, 李振海, 陈宇坤, 任峰, 姚政权. 天津断裂第四纪活动性研究[J]. 地震地质, 2010, 32(1): 80-89. |
[15] | 胡先明, 张永久, 谢蓉华, 韩进, 邵玉平. 紫坪铺水库区小地震震源机制研究[J]. 地震地质, 2009, 31(4): 676-685. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||