地震地质 ›› 2022, Vol. 44 ›› Issue (2): 313-332.DOI: 10.3969/j.issn.0253-4967.2022.02.003
王雨晴1,2)(), 冯万鹏1,2),*(), 张培震1,2)
收稿日期:
2021-03-19
修回日期:
2021-07-02
出版日期:
2022-04-20
发布日期:
2022-06-14
通讯作者:
冯万鹏
作者简介:
王雨晴, 女, 1995年生, 2021年于中山大学获固体地球物理专业硕士学位, 主要从事InSAR技术与形变监测研究, E-mail: wangyq273@mail2.sysu.edu.cn。
基金资助:
WANG Yu-qing1,2)(), FENG Wan-peng1,2),*(), ZHANG Pei-zhen1,2)
Received:
2021-03-19
Revised:
2021-07-02
Online:
2022-04-20
Published:
2022-06-14
Contact:
FENG Wan-peng
摘要:
共轭断裂是恢复区域构造应力场方位的主要地质学证据之一, 其交角大小可能反映了当地的力学环境。交角约90°的情况是其中重要的一类, 但目前对其认知仍较为有限。为研究此类断层的构造指示意义, 文中以2019年10—12月菲律宾4次MW≥6.4地震序列为例, 采用InSAR空间测量学方法, 精细研究了该过程的地表形变特征, 进而确定了该地震断层系统的几何参数。结果显示, 这4次地震发生在走向为48.8°、 倾角为74.5°的右旋走滑断裂与走向为318.2°、 倾角为68.9°的左旋走滑断裂上, 可见2条断裂具有正交共轭的特征。经计算, 2条断层主要滑动矢量间的最小旋转角达29.28°, 在地震学意义上并不完全共轭。根据区域应力场结果, 该共轭系统的剪裂角平分线方向与区域压应力的方位基本一致。余震分布显示发震断层延伸到莫霍面边缘, 具备了成断层时潜在的韧性剪切条件。库仑应力模拟显示在共轭断裂系统中1支上的滑动过程可同时造成2支在交叉处一致的应力卸载作用, 表明共轭系统中的2条断层对区域应力场卸载具有等效性。在全球范围内, 搜集获取的共轭断层系统活动序列显示以“L”型展布的几何特征为主, 且呈现2支断层发育不平衡的现象, 该差异性很可能与断层之间的物性差异有关。
中图分类号:
王雨晴, 冯万鹏, 张培震. 交角约90°共轭断裂的现今形变及对构造应力场的指示意义——以2019年MW≥6.4菲律宾地震序列为例[J]. 地震地质, 2022, 44(2): 313-332.
WANG Yu-qing, FENG Wan-peng, ZHANG Pei-zhen. PRESENT DEFORMATION OF~90° INTERSECTING CONJUGATE FAULTS AND MECHANICAL IMPLICATION TO REGIONAL TECTONICS: A CASE STUDY OF 2019 MW≥6.4 PHILIPPINES EARTHQUAKE SEQUENCE[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(2): 313-332.
图 1 本研究搜集到的共轭断层系统活动序列的全球分布 CF 1 2006年土耳其西部地震; CF 2 2010—2011年伊朗东南部地震; CF 3 2008年巴基斯坦Ziarat地震; CF 4 2015年塔吉克斯坦与2016年中国新疆木吉地震; CF 5 2014年中国云南鲁甸地震; CF 6 1997年日本鹿儿岛地震; CF 7 2019年菲律宾Mindanao地震; CF 8 1987年阿拉斯加湾地震; CF 9 1994年内华达州Double Spring平原地震; CF 10 2019年加州Ridgecrest地震; CF 11 1987年加州迷信山地震; CF 12 1994年与2004年摩洛哥胡塞马地震; CF 13 2001年Wharton盆地地震; CF 14 2012年苏门答腊地震
Fig. 1 Global coseismic conjugate faults collected in this study.
分布 | 共轭 构造 | 位置 | 时间 | 经度 | 纬度 | 走向 /(°) | 倾向 /(°) | 滑动角 /(°) | 共轭角 /(°) | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
欧亚板块 | CF1 | 土耳其Gediz地堑 | 2006 | 26.68°E | 38.17°N | 238 | 85 | 177 | 84 | Aktar et al., |
26.63°E | 38.18°N | 334 | 80 | -9 | ||||||
CF2 | 阿拉伯-欧亚大陆 碰撞带东南缘 | 2010 | 59.18°E | 28.41°N | 212 | 88 | 180 | 82 | Walker et al., | |
2011 | 59.02°E | 28.20°N | 310 | 88 | -1 | |||||
CF3 | 印度-欧亚大陆 碰撞带西南缘 | 2008 | 67.42°E | 30.51°N | 312 | 73 | 174 | 76 | Pinel-Puysségur et al., | |
67.45°E | 30.40°N | 236 | 89 | -6 | ||||||
CF4 | 青藏高原西构造结 | 2015 | 72.78°E | 38.21°N | 214 | 83 | 8 | 108 | Feng et al., | |
2016 | 74.22°E | 39.23°N | 106 | 80 | -161 | |||||
CF5 | 青藏高原东构造结 | 2014 | 103.4°E | 27.1°N | 162 | 70 | -14 | 85 | 张勇等, | |
103.4°E | 27.1°N | 257 | 77 | -159 | ||||||
CF6 | 南海海槽 | 1997 | 130.28°E | 31.82°N | 280 | 75 | -14 | 94 | Toda et al., | |
130.28°E | 31.82°N | 14 | 77 | -164 | ||||||
CF7 | 菲律宾海沟 | 2019 | 125.18°E | 6.98°N | 44 | 60 | -160 | 96 | Li et al., | |
125.19°E | 6.68°N | 320 | 75 | 17 | ||||||
北美板块 | CF8 | 阿拉斯加海湾 | 1987 | 143.27°E | 58.59°N | 262 | 57 | -6 | 90 | Hwang et al., |
142.79°E | 58.68°N | 172 | 90 | 177 | ||||||
CF9 | 西盆岭省 | 1994 | 119.65°W | 38.82°N | 319 | 72 | 152 | 63 | Amelung et al., | |
119.69°W | 38.79°N | 202 | 69 | 88 | ||||||
CF10 | 东加利福尼亚 剪切带 | 1987 | 115.74°W | 32.96°N | 35 | 90 | 0 | 98 | Larsen et al., | |
115.75°W | 33.11°N | 133 | 78 | 178 | ||||||
CF11 | 东加利福尼亚 剪切带 | 2019 | 117.49°W | 35.67°N | 130 | 100 | 180 | 84 | Feng et al., | |
117.53°W | 35.65°N | 226 | 78 | 42 | ||||||
非洲 板块 | CF12 | 摩洛哥里夫山 逆冲褶皱带 | 1994 | 35.20°E | 4.06°S | 23 | 87 | -1 | 88 | Biggs et al., |
2004 | 35.14°E | 3.99°S | 295 | 87 | -179 | |||||
印度洋板块 | CF13 | Wharton盆地东部 | 2000 | 97.45°E | 13.8°S | 165 | 87 | -2 | 90 | Robinson et al., |
97.45°E | 13.8°S | 75 | 82 | 173 | ||||||
CF14 | Wharton盆地北部 | 2012 | 93.06°E | 2.31°N | 286 | 75 | 170 | 90 | Yue et al., | |
93.06°E | 2.31°N | 16 | 80 | -10 |
表1 本研究搜集到的现今共轭断层系统的活动序列
Table1 Recent coseismic conjugate events collected in this study
分布 | 共轭 构造 | 位置 | 时间 | 经度 | 纬度 | 走向 /(°) | 倾向 /(°) | 滑动角 /(°) | 共轭角 /(°) | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
欧亚板块 | CF1 | 土耳其Gediz地堑 | 2006 | 26.68°E | 38.17°N | 238 | 85 | 177 | 84 | Aktar et al., |
26.63°E | 38.18°N | 334 | 80 | -9 | ||||||
CF2 | 阿拉伯-欧亚大陆 碰撞带东南缘 | 2010 | 59.18°E | 28.41°N | 212 | 88 | 180 | 82 | Walker et al., | |
2011 | 59.02°E | 28.20°N | 310 | 88 | -1 | |||||
CF3 | 印度-欧亚大陆 碰撞带西南缘 | 2008 | 67.42°E | 30.51°N | 312 | 73 | 174 | 76 | Pinel-Puysségur et al., | |
67.45°E | 30.40°N | 236 | 89 | -6 | ||||||
CF4 | 青藏高原西构造结 | 2015 | 72.78°E | 38.21°N | 214 | 83 | 8 | 108 | Feng et al., | |
2016 | 74.22°E | 39.23°N | 106 | 80 | -161 | |||||
CF5 | 青藏高原东构造结 | 2014 | 103.4°E | 27.1°N | 162 | 70 | -14 | 85 | 张勇等, | |
103.4°E | 27.1°N | 257 | 77 | -159 | ||||||
CF6 | 南海海槽 | 1997 | 130.28°E | 31.82°N | 280 | 75 | -14 | 94 | Toda et al., | |
130.28°E | 31.82°N | 14 | 77 | -164 | ||||||
CF7 | 菲律宾海沟 | 2019 | 125.18°E | 6.98°N | 44 | 60 | -160 | 96 | Li et al., | |
125.19°E | 6.68°N | 320 | 75 | 17 | ||||||
北美板块 | CF8 | 阿拉斯加海湾 | 1987 | 143.27°E | 58.59°N | 262 | 57 | -6 | 90 | Hwang et al., |
142.79°E | 58.68°N | 172 | 90 | 177 | ||||||
CF9 | 西盆岭省 | 1994 | 119.65°W | 38.82°N | 319 | 72 | 152 | 63 | Amelung et al., | |
119.69°W | 38.79°N | 202 | 69 | 88 | ||||||
CF10 | 东加利福尼亚 剪切带 | 1987 | 115.74°W | 32.96°N | 35 | 90 | 0 | 98 | Larsen et al., | |
115.75°W | 33.11°N | 133 | 78 | 178 | ||||||
CF11 | 东加利福尼亚 剪切带 | 2019 | 117.49°W | 35.67°N | 130 | 100 | 180 | 84 | Feng et al., | |
117.53°W | 35.65°N | 226 | 78 | 42 | ||||||
非洲 板块 | CF12 | 摩洛哥里夫山 逆冲褶皱带 | 1994 | 35.20°E | 4.06°S | 23 | 87 | -1 | 88 | Biggs et al., |
2004 | 35.14°E | 3.99°S | 295 | 87 | -179 | |||||
印度洋板块 | CF13 | Wharton盆地东部 | 2000 | 97.45°E | 13.8°S | 165 | 87 | -2 | 90 | Robinson et al., |
97.45°E | 13.8°S | 75 | 82 | 173 | ||||||
CF14 | Wharton盆地北部 | 2012 | 93.06°E | 2.31°N | 286 | 75 | 170 | 90 | Yue et al., | |
93.06°E | 2.31°N | 16 | 80 | -10 |
图 2 菲律宾地震序列的构造背景图 红色沙滩球代表此次地震序列的GCMT震源机制解; 蓝色沙滩球代表近代地震(1992年至此次地震序列前)的GCMT震源机制解; 黄色五角星代表此次地震序列的震中位置; 红点代表余震; 黑色箭头代表菲律宾海板块和巽他板块之间的相对板块运动
Fig. 2 Tectonic background of the 2019 Philippines earthquake sequence.
地震 | 时间 | 干涉图 | 卫星 | 轨道 | 轨道 编号 | 干涉对日期 | LOS向 最大隆升 /m | LOS向 最大沉降 /m |
---|---|---|---|---|---|---|---|---|
EQ1 | 2019-10-16 | Intf1 | Sentinel-1 | 升轨 | T69 | 2019-10-14—2019-10-26 | ||
Intf2 | Sentinel-1 | 降轨 | T163 | 2019-10-02—2019-10-26 | ||||
EQ2和EQ3 | 2019-10—29和 2019-10-31 | Intf3 | ALOS-2 | 升轨 | T136 | 2019-10-19—2019-11-02 | 0.42 | 0.11 |
Intf4 | ALOS-2 | 降轨 | T23 | 2019-09-30—2019-11-25 | 0.30 | 0.56 | ||
EQ4 | 2019-12-15 | Intf5 | Sentinel-1 | 升轨 | T69 | 2019-12-13—2019-12-25 | 0.23 | 0.22 |
Intf6 | Sentinel-1 | 降轨 | T163 | 2019-12-13—2019-12-19 | 0.14 | 0.32 | ||
Intf7 | ALOS-2 | 降轨 | T23 | 2019-11-25—2020-01-06 | 0.32 | 0.27 |
表2 2019年菲律宾地震序列所用的InSAR数据与LOS向形变
Table2 InSAR data and LOS deformation of the 2019 Philippines earthquake sequence
地震 | 时间 | 干涉图 | 卫星 | 轨道 | 轨道 编号 | 干涉对日期 | LOS向 最大隆升 /m | LOS向 最大沉降 /m |
---|---|---|---|---|---|---|---|---|
EQ1 | 2019-10-16 | Intf1 | Sentinel-1 | 升轨 | T69 | 2019-10-14—2019-10-26 | ||
Intf2 | Sentinel-1 | 降轨 | T163 | 2019-10-02—2019-10-26 | ||||
EQ2和EQ3 | 2019-10—29和 2019-10-31 | Intf3 | ALOS-2 | 升轨 | T136 | 2019-10-19—2019-11-02 | 0.42 | 0.11 |
Intf4 | ALOS-2 | 降轨 | T23 | 2019-09-30—2019-11-25 | 0.30 | 0.56 | ||
EQ4 | 2019-12-15 | Intf5 | Sentinel-1 | 升轨 | T69 | 2019-12-13—2019-12-25 | 0.23 | 0.22 |
Intf6 | Sentinel-1 | 降轨 | T163 | 2019-12-13—2019-12-19 | 0.14 | 0.32 | ||
Intf7 | ALOS-2 | 降轨 | T23 | 2019-11-25—2020-01-06 | 0.32 | 0.27 |
图 3 InSAR观测与最佳滑动模型的InSAR拟合的比较 a、 b、 c F1累积滑移同震干涉图(Intf4)、 模拟及残差; d、 e、 f F2累积滑移同震干涉图(Intf6)、模拟及残差。 Azi表示卫星飞行方向, LOS表示卫星视线方向
Fig. 3 Comparison of the observed and predicted coseismic InSAR results based on the best-fit earthquake slip models.
断裂 | 来源 | 东经/(°) | 北纬/(°) | 走向/(°) | 倾角/(°) | 滑动角/(°) | 震级/MW |
---|---|---|---|---|---|---|---|
F1 | USGS | 125.178 | 6.910 | 36 | 71 | 177 | 6.5 |
GCMT | 125.110 | 6.960 | 39 | 67 | -165 | 6.5 | |
InSAR(Li et al., | 125.184 | 6.987 | 44 | 60 | -160 | 6.5 | |
InSAR(Zhao et al., | 125.220 | 6.930 | 43 | 60 | -169 | 6.6 | |
InSAR(本研究) | 125.168 | 6.960 | 48.8 | 74.5 | -174.1 | 6.56 | |
F2 | USGS | 125.174 | 6.697 | 319 | 82 | -34 | 6.8 |
GCMT | 125.150 | 6.710 | 319 | 78 | 13 | 6.7 | |
InSAR(Li et al., | 125.186 | 6.675 | 320 | 75 | 17 | 6.7 | |
InSAR(Zhao et al., | 125.230 | 6.660 | 316 | 66 | 21 | 6.8 | |
InSAR(本研究) | 125.178 | 6.680 | 318.2 | 68.9 | 9.6 | 6.81 |
表3 不同来源的震源机制结果
Table3 Focal mechanism results from different sources
断裂 | 来源 | 东经/(°) | 北纬/(°) | 走向/(°) | 倾角/(°) | 滑动角/(°) | 震级/MW |
---|---|---|---|---|---|---|---|
F1 | USGS | 125.178 | 6.910 | 36 | 71 | 177 | 6.5 |
GCMT | 125.110 | 6.960 | 39 | 67 | -165 | 6.5 | |
InSAR(Li et al., | 125.184 | 6.987 | 44 | 60 | -160 | 6.5 | |
InSAR(Zhao et al., | 125.220 | 6.930 | 43 | 60 | -169 | 6.6 | |
InSAR(本研究) | 125.168 | 6.960 | 48.8 | 74.5 | -174.1 | 6.56 | |
F2 | USGS | 125.174 | 6.697 | 319 | 82 | -34 | 6.8 |
GCMT | 125.150 | 6.710 | 319 | 78 | 13 | 6.7 | |
InSAR(Li et al., | 125.186 | 6.675 | 320 | 75 | 17 | 6.7 | |
InSAR(Zhao et al., | 125.230 | 6.660 | 316 | 66 | 21 | 6.8 | |
InSAR(本研究) | 125.178 | 6.680 | 318.2 | 68.9 | 9.6 | 6.81 |
图 5 研究区1992年以来地震的震源机制解根据P、 T、 B轴倾伏角的分类
Fig. 5 Plunge angles of P, T and B axes derived from the focal mechanism solutions of the earthquakes since 1992 in the study area.
图 6 研究区的区域应力分析 a 地震矩张量反演的研究区区域应力图(应力数据来自GFZ全球应力统计结果(Heidbach et al., 2018)); b 应力数据玫瑰图
Fig. 6 Analysis of the regional stress fields in the study area.
图 8 余震分布剖面图 a 剖面AA'; b 剖面BB'。红色沙滩球显示4次MW≥6.4地震的震源机制; 灰点为余震位置。图中震源机制球为剖面后方的半球在该剖面上的投影
Fig. 8 Aftershocks distributions along two profiles, AA' and BB'.
[1] | 陈开平, 马瑾. 1994. 共轭角为什么会大于90°[J]. 地震地质, 16(4): 298-299. |
CHEN Kai-ping, MA Jin. 1994. Why can conjugate angles be greater than 90°?[J]. Seismology and Geology, 16(4): 298-299. (in Chinese) | |
[2] | 侯泉林, 程南南, 石梦岩, 等. 2018. 不同构造层次岩石变形准则的融合与发展[J]. 岩石学报, 34(6): 1792-1800. |
HOU Quan-lin, CHENG Nan-nan, Shi Meng-yan,et al. 2018. The union of various rock deformation criteria at different structural levels and its further development[J]. Acta Petrologica Sinica, 34(6): 1792-1800. (in Chinese) | |
[3] |
屈春燕, 单新建, 张国宏, 等. 2014. 时序InSAR断层活动性观测研究进展及若干问题探讨[J]. 地震地质, 36(3): 731-748. doi: 10.3969/j.issn.0253-4967.2014.03.015.
DOI |
QU Chun-yan, SHAN Xin-jian, ZHANG Guo-hong,et al. 2014. The research progress in measurement of fault activity by time series InSAR and discussion of related issues[J]. Seismology and Geology, 36(3): 731-748. (in Chinese) | |
[4] |
谭皓原, 王志. 2019. 南菲律宾深部速度结构及其构造意义[J]. 地震地质, 41(6): 1366-1379. doi: 10.3969/j.issn.0253-4967.2019.06.004.
DOI |
TAN Hao-yuan, WANG Zhi. 2019. Deep velocity structure and its tectonic implications in southern Philippines[J]. Seismology and Geology, 41(6): 1366-1379. (in Chinese) | |
[5] | 童亨茂, 王明阳, 郝化武, 等. 2011. 最大有效力矩准则的理论拓展[J]. 地质力学学报, 17(4): 312-321. |
TONG Heng-mao, WANG Ming-yang, HAO Hua-wu,et al. 2011. Theoretical development of maximum effective moment criterion[J]. Journal of Geomechanics, 17(4): 312-321. (in Chinese) | |
[6] | 万天丰. 1984. 关于共轭断裂剪切角的讨论[J]. 地质评论, 30(2): 106-113. |
WAN Tian-feng. 1984. Discussion of the shear angle of conjugate fractures[J]. Geological Review, 30(2): 106-113. (in Chinese) | |
[7] | 曾佐勋. 1991. 共轭剪切角的实验研究[J]. 地质科技情报, 10(4): 45-49. |
ZENG Zuo-xun. 1991. An experimental research on conjugate shear angles[J]. Geological Science and Technology Information, 10(4): 45-49. (in Chinese) | |
[8] | 张逸昆. 2007. 共轭剪切角的流变学意义[J]. 地质力学学报, 13(3): 212-219. |
ZHANG Yi-kun. 2007. Rheologic implications of conjugate shear angles[J]. Journal of Geomechanics, 13(3): 212-219. (in Chinese) | |
[9] | 张勇, 陈运泰, 许力生, 等. 2015. 2014年云南鲁甸 MW6.1 地震: 一次共轭破裂地震[J]. 地球物理学报, 58(1): 153-162. |
ZHANG Yong, CHEN Yun-tai, XU Li-sheng,et al. 2015. The 2014 MW6.1 Ludian, Yunnan, earthquake: A conmplex conjugated ruptured earthquake[J]. Chinese Journal of Geophysics, 58(1): 153-162. (in Chinese) | |
[10] | 郑亚东, 王涛, 王新社. 2007a. 最大有效力矩准则及相关地质构造[J]. 地学前缘, 14(4): 49-60. |
ZHENG Ya-dong, WANG Tao, WANG Xin-she. 2007a. The maximum effective moment criterion(MEMC)and related geological structures[J]. Earth Science Frontiers, 14(4): 49-60. (in Chinese) | |
[11] | 郑亚东, 王涛, 王新社. 2007b. 最大有效力矩准则的理论与实践[J]. 北京大学学报(自然科学版), 43(2): 145-156. |
ZHENG Ya-dong, WANG Tao, WANG Xin-she. 2007b. Theory and practice of the maximum effective moment criterion(MEMC)[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 43(2): 145-156. (in Chinese) | |
[12] | 郑亚东, 张进江, 王涛. 2009. 实践发展中的最大有效力矩准则[J]. 地质力学学报, 15(3): 209-217. |
ZHENG Ya-dong, ZHANG Jin-jiang, WANG Tao. 2009. The maximum-effective-moment criterion developing in practice[J]. Journal of Geomechanics, 15(3): 209-217. (in Chinese) | |
[13] |
Aktar M, Karabulut H, Özalaybey S,et al. 2007. A conjugate strike-slip fault system within the extensional tectonics of western Turkey[J]. Geophysical Journal International, 171(3): 1363-1375.
DOI URL |
[14] |
Álvarez-Gómez J A. 2019. FMC: Earthquake focal mechanisms data management, cluster and classification[J]. SoftwareX, 9: 299-307.
DOI URL |
[15] | Amelung F, Bell J W. 2003. Interferometric synthetic aperture radar observations of the 1994 Double Spring Flat, Nevada, earthquake(M5.9): Main shock accompanied by triggered slip on a conjugate fault[J]. Journal of Geophysical Research: Solid Earth, 108(B9): ETG10-1-ETG10-11. |
[16] |
Anderson E M. 1905. The dynamics of faulting[J]. Transactions of the Edinburgh Geological Society, 8(3): 387-402.
DOI URL |
[17] | Anderson E M. 1951. The Dynamics of Faulting and Dyke Formation with Applications to Britain(Second Edition)[M]. Oliver and Boyd, Edinburgh. |
[18] |
Barrier E, Huchon P, Aurelio M. 1991. Philippine fault: A key for Philippine kinematics[J]. Geology, 19(1): 32-35.
DOI URL |
[19] |
Bautista B C, Bautista M L P, Oike K,et al. 2001. A new insight on the geometry of subducting slabs in northern Luzon, Philippines[J]. Tectonophysics, 339(3-4): 279-310.
DOI URL |
[20] |
Bekaert D P S, Walters R J, Wright T J,et al. 2015. Statistical comparison of InSAR tropospheric correction techniques[J]. Remote Sensing of Environment, 170: 40-47.
DOI URL |
[21] |
Benson P M, Vinciguerra S, Meredith P G,et al. 2008. Laboratory simulation of volcano seismicity[J]. Science, 322(5899): 249-252.
DOI URL |
[22] |
Biggs J, Bergman E, Emmerson B,et al. 2006. Fault identification for buried strike-slip earthquakes using InSAR: The 1994 and 2004 Al Hoceima, Morocco earthquakes[J]. Geophysical Journal International, 166(3): 1347-1362.
DOI URL |
[23] |
Biggs J, Wright T J. 2020. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade[J]. Nature Communications, 11(1): 10-13.
DOI URL |
[24] |
Burgmann R, Rosen P A, Fielding E J. 2000. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 28(1): 169-209.
DOI URL |
[25] |
Byerlee J. 1978. Friction of rocks[J]. Pure and Applied Geophysics, 116: 615-626.
DOI URL |
[26] |
Childs C, Worthington R P, Walsh J J,et al. 2019. Conjugate relay zones: Geometry of displacement transfer between opposed-dipping normal faults[J]. Journal of Structural Geology, 118: 377-390.
DOI URL |
[27] |
Dziewonski A M, Chou T A, Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. Journal of Geophysical Research, 86(B4): 2825-2852.
DOI URL |
[28] |
Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13017 earthquakes[J]. Physics of the Earth and Planetary Interiors, 200-201: 1-9.
DOI URL |
[29] | Farr T G, Rosen P A, Caro E,et al. 2007. The Shuttle Radar Topography Mission[J]. Reviews of Geophysics, 45: RG2004-1-RG2004-33. |
[30] |
Feng W, Li Z, Elliott J R,et al. 2013. The 2011 MW6.8 Burma earthquake: Fault constraints provided by multiple SAR techniques[J]. Geophysical Journal International, 195(1): 650-660.
DOI URL |
[31] |
Feng W, Samsonov S, Liang C,et al. 2019. Source parameters of the 2017 MW6.2 Yukon earthquake doublet inferred from coseismic GPS and ALOS-2 deformation measurements[J]. Geophysical Journal International, 216(3): 1517-1528.
DOI URL |
[32] | Feng W, Samsonov S, Qiu Q,et al. 2020. Orthogonal fault rupture and rapid postseismic deformation following 2019 Ridgecrest, California, earthquake sequence revealed from geodetic observations[J]. Geophysical Research Letters, 47(5): 1-10. |
[33] |
Feng W, Tian Y, Zhang Y,et al. 2017. A slip gap of the 2016 MW6.6 Muji, Xinjiang, China, earthquake inferred from Sentinel-1 TOPS interferometry[J]. Seismological Research Letters, 88(4): 1054-1064.
DOI URL |
[34] |
Fialko Y, Jin Z. 2021. Simple shear origin of the cross-faults ruptured in the 2019 Ridgecrest earthquake sequence[J]. Nature Geoscience, 14: 513-518.
DOI URL |
[35] |
Griggs D T. 1936. Deformation of rocks under high confining pressures: I. Experiments at room temperature[J]. The Journal of Geology, 44(5): 541-577.
DOI URL |
[36] | Hammarstrom J M, Bookstrom A A, Demarr M W,et al. 2014. Porphyry copper assessment of East and Southeast Asia: Philippines, Taiwan(Republic of China), Republic of Korea(South Korea), and Japan[R]. Reston, US Geological Survey. |
[37] |
Harris R A, Segall P. 1987. Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas Fault(USA)[J]. Journal of Geophysical Research, 92(B8): 7945-7962.
DOI URL |
[38] |
Heidbach O, Rajabi M, Cui X,et al. 2018. The World Stress Map database release 2016: Crustal stress pattern across scales[J]. Tectonophysics, 744: 484-498.
DOI URL |
[39] |
Hersbach H, Bell B, Berrisford P,et al. 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049.
DOI URL |
[40] |
Hill E M, Yue H, Barbot S,et al. 2015. The 2012 MW8.6 Wharton Basin sequence: A cascade of great earthquakes generated by near-orthogonal, young, oceanic mantle faults[J]. Journal of Geophysical Research: Solid Earth, 120(5): 3723-3747.
DOI URL |
[41] |
Hussain E, Hooper A, Wright T J,et al. 2016. Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements[J]. Journal of Geophysical Research: Solid Earth, 121(12): 9000-9019.
DOI URL |
[42] |
Hwang L J, Kanamori H. 1992. Rupture processes of the 1987-1988 Gulf of Alaska earthquake sequence[J]. Journal of Geophysical Research, 97(B13): 19881-19908.
DOI URL |
[43] |
Kagan Y Y. 2007. Simplified algorithms for calculating double-couple rotation[J]. Geophysical Journal International, 171(1): 411-418.
DOI URL |
[44] |
Kapp P, Taylor M, Stockli D,et al. 2008. Development of active low-angle normal fault systems during orogenic collapse: Insight from Tibet[J]. Geology, 36(1): 7-10.
DOI URL |
[45] |
Larsen S, Reilinger R, Neugebauer H,et al. 1992. Global positioning system measurements of deformations associated with the 1987 Superstition Hills earthquake: Evidence for conjugate faulting[J]. Journal of Geophysical Research, 97(B4): 4885-4902.
DOI URL |
[46] | Laske G, Masters G, Ma Z,et al. 2013. Update on CRUST1.0: A 1-degree global model of earth’s crust[C]. Vienna: EGU General Assembly. |
[47] |
Lee J S. 1948. The strain ellipsoid and shear planes in rocks[J]. Bulletin of the Geological Society of China, 28(1-2): 13-24.
DOI URL |
[48] |
Lee J S, Chen C H, Lee M T. 1948. Experiments with clay on shear fractures[J]. Bulletin of the Geological Society of China, 28(1-2): 25-32.
DOI URL |
[49] | Li B, Li Y, Jiang W,et al. 2020a. Conjugate ruptures and seismotectonic implications of the 2019 Mindanao earthquake sequence inferred from Sentinel-1 InSAR data[J]. International Journal of Applied Earth Observation and Geoinformation, 90: 102127-1-102127-11. |
[50] |
Li Y, Tian Y, Yu C,et al. 2020b. Present-day interseismic deformation characteristics of the Beng Co-Dongqiao conjugate fault system in central Tibet: Implications from InSAR observations[J]. Geophysical Journal International, 221(1): 492-503.
DOI URL |
[51] | Liang C, Ampuero J P, Pino Muñoz D, 2021. Deep ductile shear zone facilitates near-orthogonal strike-slip faulting in a thin brittle lithosphere[J]. Geophysical Research Letters, 48(2): 1-9. |
[52] |
McCaffrey R, Zwick P C, Bock Y,et al. 2000. Strain partitioning during oblique plate convergence in northern Sumatra: Geodetic and seismologic and numerical modeling[J]. Journal of Geophysical Research, 105(B12): 28363-28376.
DOI URL |
[53] |
Meng L, Ampuero J P, Stock J,et al. 2012. Earthquake in a maze: Compressional rupture branching during the 2012 MW8.6 Sumatra earthquake[J]. Science, 337(6095): 724-726.
DOI PMID |
[54] |
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 1135-1154.
DOI URL |
[55] |
Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 82(2): 1018-1040.
DOI URL |
[56] |
Paterson M S, Weiss L E. 1966. Experimental deformation and folding in phyllite[J]. Geological Society of America Bulletin, 77(4): 343-374.
DOI URL |
[57] |
Perfettini H, Frank W B, Marsan D,et al. 2018. A model of aftershock migration driven by afterslip[J]. Geophysical Research Letters, 45(5): 2283-2293.
DOI URL |
[58] |
Pinel-Puysségur B, Grandin R, Bollinger L,et al. 2014. Multifaulting in a tectonic syntaxis revealed by InSAR: The case of the Ziarat earthquake sequence(Pakistan)[J]. Journal of Geophysical Research: Solid Earth, 119(7): 5838-5854.
DOI URL |
[59] |
Robinson D P, Henry C, Das S,et al. 2001. Simultaneous rupture along two conjugate planes of the Wharton Basin earthquake[J]. Science, 292(5519): 1145-1148.
PMID |
[60] | Sandwell D, Mellors R, Tong X,et al. 2016. GMTSAR: An InSAR processing system based on generic mapping tools(second edition)[R]. Scripps Institution of Oceanography, UC San Diego. |
[61] | Smoczyk G M, Hayes G P, Hamburger M W,et al. 2013. Seismicity of the Earth 1900-2012 Philippine Sea plate and vicinity[R]. US Geological Survey, Reston. |
[62] | Taylor M, Yin A, Ryerson F J,et al. 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan plateau[J]. Tectonics, 22(4): 18-1-18-21. |
[63] |
Thatcher W, Hill D P. 1991. Fault orientations in extensional and conjugate strike-slip environments and their implications[J]. Geology, 19(11): 1116-1120.
DOI URL |
[64] | Toda S, Stein R. 2003. Toggling of seismicity by the 1997 Kagoshima earthquake couplet: A demonstration of time-dependent stress transfer[J]. Journal of Geophysical Research, 108(B12): 1-12. |
[65] | von Kármán T. 1911. Festigkeitsversuche unter allseitigem Druck[J]. Zeitschrift des Verein Deutscher Ingenieure, 55(42): 1749-1757(in German). |
[66] |
Walker R T, Bergman E A, Elliott J R,et al. 2013. The 2010-2011 south Rigan(Baluchestan)earthquake sequence and its implications for distributed deformation and earthquake hazard in southeast Iran[J]. Geophysical Journal International, 193(1): 349-374.
DOI URL |
[67] | Wang Y, Chang L, Feng W,et al. 2021. Topography-correlated atmospheric signal mitigation for InSAR applications in the Tibetan plateau based on global atmospheric models[J]. International Journal of Remote Sensing, 42(11): 4364-4382. |
[68] |
Watterson J. 1999. The future of failure: Stress or strain?[J]. Journal of Structural Geology, 21(8-9): 939-948.
DOI URL |
[69] | Wessel P, Smith W H F, Scharroo R,et al. 2013. Generic mapping tools: Improved version released[J]. Eos, Transactions American Geophysical Union, 94(45): 409-410. |
[70] |
Yin A, Taylor M H. 2011. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. GSA Bulletin, 123(9/10): 1798-1821.
DOI URL |
[71] |
Yue H, Lay T, Koper K D. 2012. En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes[J]. Nature, 490(7419): 245-249.
DOI URL |
[72] | Zhao L, Qu C, Shan X,et al. 2021. Coseismic deformation and multi-fault slip model of the 2019 Mindanao earthquake sequence derived from Sentinel-1 and ALOS-2 data[J]. Tectonophysics, 799: 228707-1-228707-13. |
[73] |
Zheng Y, Wang T, Ma M,et al. 2004. Maximum effective moment criterion and the origin of low-angle normal faults[J]. Journal of Structural Geology, 26(2): 271-285.
DOI URL |
[1] | 徐芳, 鲁人齐, 王帅, 江国焰, 龙锋, 王晓山, 苏鹏, 刘冠伸. 基于多元约束方法的2020年四川青白江MS5.1地震构造研究[J]. 地震地质, 2022, 44(1): 220-237. |
[2] | 华俊, 赵德政, 单新建, 屈春燕, 张迎峰, 龚文瑜, 王振杰, 李成龙, 李彦川, 赵磊, 陈晗, 范晓冉, 王绍俊. 2021年青海玛多MW7.3地震InSAR的同震形变场、断层滑动分布及其对周边区域的应力扰动[J]. 地震地质, 2021, 43(3): 677-691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||