地震地质 ›› 2022, Vol. 44 ›› Issue (1): 76-97.DOI: 10.3969/j.issn.0253-4967.2022.01.006
何翔1),2),3)(), 杜星星1),*(), 刘健1), 李艺豪1), 李群3)
收稿日期:
2021-01-06
修回日期:
2021-07-21
出版日期:
2022-02-20
发布日期:
2022-04-20
通讯作者:
杜星星
作者简介:
何翔, 男, 1995年生, 2021年于中南大学获地质资源地质工程专业硕士学位, 主要从事沉积盆地分析方面的研究, 电话: 18232182424, E-mail: 1593496879@qq.com。
基金资助:
HE Xiang1),2),3)(), DU Xing-xing1),*(), LIU Jian1), LI Yi-hao1), LI Qun3)
Received:
2021-01-06
Revised:
2021-07-21
Online:
2022-02-20
Published:
2022-04-20
Contact:
DU Xing-xing
摘要:
为查明第四纪以来武威盆地沉积过程和青藏高原东北缘隆升扩展特征, 文中采用沉积地层学和地层年代学方法, 对武威盆地的第四纪沉积地层进行研究。第四纪期间, 武威盆地沉积了下更新统玉门砾岩、 中更新统酒泉砾石层和上更新统—全新统戈壁砾石层。早更新世, 玉门砾岩来源于祁连山, 沉积于武威盆地南部走廊南山区; 中更新世, 酒泉砾石来源于走廊南山区和武威盆地西北缘坟门山, 沉积于武威盆地北部断陷盆地沉积区; 晚更新世以来, 戈壁砾石来源于走廊南山区、 坟门山和龙首山, 沉积于物源区周边地区。武威盆地及周边第四系的物源区和沉积区均呈现出自南向北发展的特征, 揭示了青藏高原东北缘隆升和向N扩展, 隆升时间南早北晚, 隆升强度南强北弱、 西强东弱。
中图分类号:
何翔, 杜星星, 刘健, 李艺豪, 李群. 武威盆地第四纪沉积过程及其构造意义[J]. 地震地质, 2022, 44(1): 76-97.
HE Xiang, DU Xing-xing, LIU Jian, LI Yi-hao, LI Qun. SEDIMENTARY PROCESS AND TECTONIC SIGNIFICANCE OF WUWEI BASIN DURING THE QUATERNARY[J]. SEISMOLOGY AND GEOLOGY, 2022, 44(1): 76-97.
图 1 区域构造地貌简图(底图取自SRTM 90m DEM数据) a 河西走廊盆地群及周边构造地貌简图(改自张北航, 2016; 陈宣华等, 2019a); b 武威盆地及周边构造地貌简图(雷惊昊等, 2017); c 坟门山及周边构造地貌简图。QLNF(祁连山北缘断裂)、 KTSF(宽滩山南缘断裂)、 HLSF(合黎山南缘断裂)、 LSSF(龙首山南缘断裂)、 LSNF(龙首山北缘断裂)和PDSF(盆地南缘断裂)的断层时代属性依据中国地震局地质研究所“全国活动断层展示系统”的数据; FMNF(坟门山北缘断裂)和FMSF(坟门山南缘断裂)的断层时代属性依据本次调查结果
Fig. 1 Regional morphotectonic map(base map from SRTM 90m DEM).
图 2 河西走廊盆地群中的NE向构造剖面图 a PM-1 酒西盆地内的NE向构造剖面图(改自Fang et al., 2005); b PM-2 武威盆地内的NE向构造剖面图(改自石应骏等, 1995; 程晓敢, 2006)。QLNF 祁连山北缘断裂; MB2F 庙北2号断裂; KTSF 宽滩山南缘断裂; PDSF 盆地南缘断裂; LSSF 龙首山南缘断裂
Fig. 2 NE structural profile in the Hexi Corridor Basin group.
沉积层 | 主要物源 | 主要砾级 | 胶结程度 | 分选性 | 主要磨圆度 |
---|---|---|---|---|---|
砾石层⑤ | 下古生界 | 粗砾级 | 未胶结 | 差 | 棱角状 |
黄土层④ | 未胶结 | ||||
砾石层③ | 下古生界 | 粗砾级 | 半胶结—未胶结 | 差 | 棱角状 |
砾石层② | 新生界、 中生界 | 中砾级 | 胶结—半胶结 | 中等偏好 | 次圆状 |
砾岩层① | 中生界、 古生界 | 粗砾级 | 胶结 | 中等偏差 | 次棱角状 |
表1 武威盆地第四纪沉积地层特征
Table 1 The characteristics of Quaternary sedimentary strata in the Wuwei Basin
沉积层 | 主要物源 | 主要砾级 | 胶结程度 | 分选性 | 主要磨圆度 |
---|---|---|---|---|---|
砾石层⑤ | 下古生界 | 粗砾级 | 未胶结 | 差 | 棱角状 |
黄土层④ | 未胶结 | ||||
砾石层③ | 下古生界 | 粗砾级 | 半胶结—未胶结 | 差 | 棱角状 |
砾石层② | 新生界、 中生界 | 中砾级 | 胶结—半胶结 | 中等偏好 | 次圆状 |
砾岩层① | 中生界、 古生界 | 粗砾级 | 胶结 | 中等偏差 | 次棱角状 |
图 5 武威盆地典型第四纪沉积地层的特征和界线照片 a 砾石层②与下伏古生代陆源碎屑岩的界线; b 黄土层④与下伏砾石层②的界线; c 砾石层③与下伏砾石层②的界线;d 砾石层⑤与下伏黄土层④的界线; e 黄土层④与下伏砾石层③的界线; f 砾岩层①与下伏中生代砂岩的界线
Fig. 5 Representative photos of Quaternary sedimentary strata and its boundaries in the Wuwei Basin.
方法 | 依据 |
---|---|
砾石定向排列法 | 砾石最大扁平面的倾向同古水流方向相反 |
砾石层沉积厚度法 | 砾石层厚度减薄的方向同古水流方向相同 |
砾石粒度法 | 砾石粒度减小的方向同古水流方向相同 |
砾石组分法 | 砾石相对母岩的方向同古水流方向相同 |
扇体展布法 | 扇体展布优势方向同古水流方向相同 |
表2 古水流方向的恢复方法
Table 2 The restoration method of paleocurrent direction
方法 | 依据 |
---|---|
砾石定向排列法 | 砾石最大扁平面的倾向同古水流方向相反 |
砾石层沉积厚度法 | 砾石层厚度减薄的方向同古水流方向相同 |
砾石粒度法 | 砾石粒度减小的方向同古水流方向相同 |
砾石组分法 | 砾石相对母岩的方向同古水流方向相同 |
扇体展布法 | 扇体展布优势方向同古水流方向相同 |
采样层位 | 样品编号 | U/μg·g-1 | Th/μg·g-1 | 环境剂量率 /Gy·ka-1 | 等效剂量/Gy | 校正年龄/ka |
---|---|---|---|---|---|---|
砾石层③ | D6224-OSL-1 | 4.99±0.15 | 34.9±1.05 | 6.93±0.31 | 190.56±7.52 | 27.49±1.63 |
砾石层② | D3175-OSL-1 | 4.08±0.12 | 9.71±0.29 | 3.20±0.14 | 377.82±10.51 | 118.02±5.96 |
表3 光释光样品的测年数据
Table 3 Data of optically stimulated luminescence samples
采样层位 | 样品编号 | U/μg·g-1 | Th/μg·g-1 | 环境剂量率 /Gy·ka-1 | 等效剂量/Gy | 校正年龄/ka |
---|---|---|---|---|---|---|
砾石层③ | D6224-OSL-1 | 4.99±0.15 | 34.9±1.05 | 6.93±0.31 | 190.56±7.52 | 27.49±1.63 |
砾石层② | D3175-OSL-1 | 4.08±0.12 | 9.71±0.29 | 3.20±0.14 | 377.82±10.51 | 118.02±5.96 |
图 6 河西走廊盆地群的第四系沉积序列柱状图 a 酒西盆地内老君庙剖面的第四系柱状图(改自Fang et al., 2005); b 张掖-民乐盆地内的第四系柱状图(改自谭美娟, 2016);c 武威盆地内的第四系柱状图; d 武威盆地南缘的第四系柱状图
Fig. 6 Quaternary sedimentary sequence histogram in the Hexi Corridor Basin group.
图 7 武威盆地纵剖面统计区间的位置和古水流流向图(底图数据取自Google Earth)
Fig. 7 Longitudinal section statistical interval position and palaeocurrent flow chart in the Wuwei Basin(base map from Google Earth).
图 8 纵剖面统计区间内的酒泉砾石特征 a 统计区间内酒泉砾石层的典型剖面; b 统计区间砾石的最大扁平面倾向及其优势古水流方向; c 统计区间内a、 b轴砾径分布的散点图; d 统计区间内a、 b轴的砾径累积曲线
Fig. 8 Characteristics of Jiuquan gravel in statistical interval of vertical section.
图 11 第四纪武威盆地的沉积过程示意图(资料参考石应骏等, 1995; 程晓敢, 2006) QLNF 祁连山北缘断裂; PDSF 盆地南缘断裂; FMNF 坟门山北缘断裂
Fig. 11 Sedimentary process diagram of the Wuwei Basin during the Quaternary (after SHI Ying-jun et al., 1995; CHENG Xiao-gan, 2006).
[1] | 艾晟, 张波, 樊春, 等. 2017. 武威盆地南缘断裂晚第四纪活动地表形迹与活动速率[J]. 地震地质, 39(2): 408-422. |
AI Sheng, ZHANG Bo, FAN Chun, et al. 2017. Surface track and slip rate of the fault along the southern margin of the Wuwei Basin in the late Quaternary[J]. Seismology and Geology, 39(2): 408-422. (in Chinese) | |
[2] | 安凯旋. 2019. 酒西盆地新生代沉积、 剥露过程及对青藏高原东北缘生长的启示[D]. 杭州:浙江大学: 1-126. |
AN Kai-xuan. 2019. Cenozoic sedimentary evolution and exhumation in Jiuxi Basin and its implications for the growth of northeastern Tibetan plateau[D]. Zhejiang University, Hangzhou: 1-126. (in Chinese) | |
[3] | 陈文彬, 徐锡伟. 2006. 阿拉善地块南缘的左旋走滑断裂与阿尔金断裂带的东延[J]. 地震地质, 28(2): 319-324. |
CHEN Wen-bin, XU Xi-wei. 2006. Sinistral strike-slip faults along the southern Alashan margin and eastwards extending of the Altun Fault[J]. Seismology and Geology, 28(2): 319-324. (in Chinese) | |
[4] | 陈宣华, 邵兆刚, 熊小松, 等. 2019a. 祁连造山带断裂构造体系、 深部结构与构造演化[J]. 中国地质, 46(5): 995-1020. |
CHEN Xuan-hua, SHAO Zhao-gang, XIONG Xiao-song, et al. 2019a. Fault system, deep structure and tectonic evolution of the Qilian orogenic belt, northwest China[J]. Geology in China, 46(5): 995-1020. (in Chinese) | |
[5] | 陈宣华, 邵兆刚, 熊小松, 等. 2019b. 祁连山北缘早白垩世榆木山逆冲推覆构造与油气远景[J]. 地球学报, 40(3): 377-392. |
CHEN Xuan-hua, SHAO Zhao-gang, XIONG Xiao-song, et al. 2019b. Early Cretaceous overthrusting of Yumu Mountain and hydrocarbon prospect on the northern margin of the Qilian orogenic belt[J]. Acta Geoscientica Sinica, 40(3): 377-392. (in Chinese) | |
[6] | 程晓敢. 2006. 祁连山北缘冲断带构造特征研究[D]. 杭州: 浙江大学: 1-97. |
CHENG Xiao-gan. 2006. Structural character study of thrust belt in northern margin of Qilian Mountains[D]. Zhejiang University, Hangzhou: 1-97. (in Chinese) | |
[7] | 方小敏. 2017. 青藏高原隆升阶段性[J]. 科技导报, 35(6): 42-50. |
FANG Xiao-min. 2017. Phased uplift of the Tibetan plateau[J]. Science & Technology Review, 35(6): 42-50. (in Chinese) | |
[8] | 甘肃省地质矿产局. 1997. 甘肃省岩石地层[M]. 武汉: 中国地质大学出版社. |
Bureau of Geology and Mineral Resources of Gansu Province. 1997. Regional Geology of Gansu Province[M]. China University of Geosciences Press, Wuhan. (in Chinese) | |
[9] | 国家地震局地质研究所, 国家地震局兰州地震研究所. 1993. 祁连山-河西走廊活动断裂系[M]. 北京: 地震出版社. |
Institute of Geology, State Seismological Bureau, Lanzhou Institute of Seismology, State Seismological Bureau. 1993. The Qilian Mountain-Hexi Corridor Active Fault System[M]. Seismological Press, Beijing. (in Chinese) | |
[10] | 何鹏举. 2018. 碎屑磷灰石裂变径迹热年代学记录的青藏高原东北缘祁连山新生代构造变形过程[D]. 兰州: 兰州大学: 1-113. |
HE Peng-ju. 2018. Cenozoic tectonic deformation process of the Qilianshan(northeastern Tibetan plateau)recorded by detrital apatite fission-track thermochronology[D]. Lanzhou University, Lanzhou: 1-113. (in Chinese) | |
[11] | 侯康明, 石亚缪, 张忻. 1999. 青藏高原北部NNW向构造活动方式及形成年代[J]. 地震地质, 21(2): 32-41 |
HOU Kang-ming, SHI Ya-miu, ZHANG Xin. 1999. Activity ways and formation age of the NNW tectonics in the northern Tibet Plateau[J]. Seismology and Geology, 21(2): 32-41. (in Chinese) | |
[12] | 胡梦珺, 冯淑琴, 李向锋, 等. 2018. 共和盆地黄河阶地砾石组构特征与环境意义[J]. 现代地质, 32(1): 145-153. |
HU Meng-jun, FENG Shu-qin, LI Xiang-feng, et al. 2018. Analysis on gravel fabric characteristics of the Yellow River’s terraces in Gonghe Basin and the environmental signification[J]. Geoscience, 32(1): 145-153. (in Chinese) | |
[13] | 胡小飞, 潘保田, 高红山, 等. 2013. 祁连山东段全新世河流阶地发育及其与气候变化的关系研究[J]. 第四纪研究, 33(4): 723-736. |
HU Xiao-fei, PAN Bao-tian, GAO Hong-shan, et al. 2013. Development of Holocene fluvial terraces in the eastern Qilianshan and its relationship with climatic changes[J]. Quaternary Sciences, 33(4): 723-736. (in Chinese) | |
[14] | 黄佳轮, 安凯旋, 陈汉林, 等. 2020. 野外砾石统计方法的应用与对比[J]. 浙江大学学报(理学版), 47(5): 601-614. |
HUANG Jia-lun, AN Kai-xuan, CHEN Han-lin, et al. 2020. Application and comparison of field gravel statistical methods[J]. Journal of Zhejiang University(Science Edition), 47(5): 601-614. (in Chinese) | |
[15] | 姜在兴. 2016. 风场-物源-盆地系统[M]. 北京: 科学出版社. |
JIANG Zai-xing. 2016. Sedimentary Dynamics of Windfield-Source-Basin System[M]. Science Press, Beijing. (in Chinese) | |
[16] | 雷惊昊, 李有利, 胡秀, 等. 2017. 东大河阶地陡坎对民乐-大马营断裂垂直滑动速率的指示[J]. 地震地质, 39(6): 1256-1266. |
LEI Jing-hao, LI You-li, HU Xiu, et al. 2017. Vertical slip rate of Minle-Damaying Fault indicated by scarps on terraces of Dongda River[J]. Seismology and Geology, 39(6): 1256-1266. (in Chinese) | |
[17] | 刘飞, 李有利, 雷惊昊, 等. 2019. 青藏高原东北缘永昌南山北麓洪积扇对气候变化与构造运动的响应[J]. 海洋地质与第四纪地质, 39(4): 163-173. |
LIU Fei, LI You-li, LEI Jing-hao, et al. 2019. Response of alluvial fans to climatic changes and fault activities in the north of south Yongchang Mountains, northeast margin of Tibet Plateau[J]. Marine Geology & Quaternary Geology, 39(4): 163-173. (in Chinese) | |
[18] | 刘文恒, 潘家永, 刘晓东, 等. 2019. 甘肃龙首山青山堡花岗岩成因及其构造意义: 元素地球化学、 锆石U-Pb年龄和Sr-Nd同位素约束[J]. 矿物岩石, 39(4): 26-40. |
LIU Wen-heng, PAN Jia-yong, LIU Xiao-dong, et al. 2019. Petrogenesis and tectonic implication of Qingshanbao pluton in Longshou Mountains, Gansu: Constraints from elemental geochemistry, zircon U-Pb age and Sr-Ndisotopes[J]. Journal of Mineralogy and Petrology, 39(4): 26-40. (in Chinese) | |
[19] | 鹿化煜, 王先彦, Vandenberghe J. 2014. 青藏高原东北部地貌演化与隆升[J]. 自然杂志, 36(3): 176-181. |
LU Hua-yu, WANG Xian-yan, Vandenberghe J. 2014. Landform evolution and the uplift of northeastern Tibetan plateau[J]. Chinese Journal of Nature, 36(3): 176-181. (in Chinese) | |
[20] | 潘宏勋, 葛肖虹, 刘俊来. 2000. 对祁连山北缘榆木山隆起的质疑[J]. 长春科技大学学报, 30(1): 9-13. |
PAN Hong-xun, GE Xiao-hong, LIU Jun-lai. 2000. Query to the Yumushan uplift on the north margin of Qilian Mountain[J]. Journal of Changchun University of Science and, 30(1): 9-13. (in Chinese) | |
[21] | 石应骏, 寸树苍, 张朝文. 1995. 龙首山推覆构造的发现及其地质意义[J]. 科学通报, 40(9): 812-813. |
SHI Ying-jun, CUN Shu-cang, ZHANG Chao-wen. 1995. Discovery of nappe structure in Longshou Mountain and its geological significance[J]. Chinese Science Bulletin, 40(9): 812-813. (in Chinese) | |
[22] | 宋博文, 徐亚东, 梁银平, 等. 2014. 中国西部新生代沉积盆地演化[J]. 地球科学(中国地质大学学报), 39(8): 1035-1051. |
SONG Bo-wen, XU Ya-dong, LIANG Yin-ping, et al. 2014. Evolution of Cenozoic sedimentary basins in western China[J]. Earth Science, 39(8): 1035-1051. (in Chinese) | |
[23] | 孙晓巍. 2019. 浑善达克沙地中更新世以来的光释光年代学研究[D]. 西安: 陕西师范大学: 1-60. |
SUN Xiao-wei. 2019. OSL chronology since the Middle Pleistocene in the Otindag sandy land[D]. Shaanxi Normal University, Xi'an: 1-60. (in Chinese) | |
[24] | 谭美娟. 2016. 河西走廊榆木山东麓第四纪地层研究[D]. 北京: 中国地质大学: 1-59. |
TAN Mei-juan. 2016. Study on Quaternary strata in Hexi Corridor of the eastern Yumu Mountain[D]. China University of Geosciences, Beijing: 1-59. (in Chinese) | |
[25] | 王成善, 朱利东, 刘志飞. 2004. 青藏高原北部盆地构造沉积演化与高原向北生长过程[J]. 地球科学进展, 19(3): 373-381. |
WANG Cheng-shan, ZHU Li-dong, LIU Zhi-fei. 2004. Tectonic and sedimentary evolution of basins in the north of Qinghai-Tibet Plateau and northward growing process of Qinghai-Tibet Plateau[J]. Advances in Earth Science, 19(3): 373-381. (in Chinese) | |
[26] | 王琪, 张培震, 牛之俊, 等. 2001. 中国大陆现今地壳运动和构造变形[J]. 中国科学(D辑), 31(7): 529-536. |
WANG Qi, ZHANG Pei-zhen, NIU Zhi-jun, et al. 2001. Crustal movement and tectonic deformation in Chinese mainland[J]. Science in China(Ser D), 31(7): 529-536. (in Chinese) | |
[27] |
杨海波, 杨晓平, 黄雄南. 2017. 祁连山北缘断裂带中段晚第四纪活动速率初步研究[J]. 地震地质, 39(1): 20-42. doi: 10.3969/j.issn.0253-4967.2017.01.002.
DOI |
YANG Hai-bo, YANG Xiao-ping, HUANG Xiong-nan. 2017. A preliminary study about slip rate of middle segment of the northern Qilian thrust fault zone since late Quaternary[J]. Seismology and Geology, 39(1): 20-42. (in Chinese) | |
[28] | 杨江海. 2012. 造山带碰撞隆升过程的碎屑沉积响应以北祁连志留系、 右江二叠-三叠系和大别山南麓侏罗系为例[D]. 武汉: 中国地质大学: 1-128. |
YANG Jiang-hai. 2012. Detrital record of collision and exhumation processes of orogen: Studies from the Silurian in north Qilian belt, the Permian-Triassic in Youjiang Basin and the Jurassic at Huangshi south of Dabie Mountains[D]. China University of Geosciences, Wuhan: 1-128. (in Chinese) | |
[29] | 杨利荣, 岳乐平, 王洪亮, 等. 2016. 祁连山及邻区第四纪地层区划与沉积序列[J]. 中国地质, 43(3): 1041-1054. |
YANG Li-rong, YUE Le-ping, WANG Hong-liang, et al. 2016. Quaternary stratigraphic realm and sedimentary sequence of the Qilian Mountain and adjacent areas[J]. Geology in China, 43(3): 1041-1054. (in Chinese) | |
[30] | 余吉远, 李向民, 马中平, 等. 2010. 北祁连构造带冷龙岭地区火山岩地球化学特征及年代学[J]. 地质科技情报, 29(4): 6-13. |
YU Ji-yuan, LI Xiang-min, MA Zhong-ping, et al. 2010. Geochemical characters and LA-ICP-MS zircon U-Pb dating of the Lenglongling volcanic rocks, tectonic belt of the north Qilian[J]. Bulletin of Geological Science and Technology, 29(4): 6-13. (in Chinese) | |
[31] | 云龙, 张进, 徐伟, 等. 2019. 甘肃北山南缘断裂的活动特征及其意义[J]. 地质论评, 65(4): 825-838. |
YUN Long, ZHANG Jin, XU Wei, et al. 2019. The active characteristics and its significance of the southern margin fault of Beishan area in Gansu Province[J]. Geological Review, 65(4): 825-838. (in Chinese) | |
[32] | 张北航. 2016. 河西走廊北缘晚中生代-新生代构造演化[D]. 北京: 中国地质大学: 1-49. |
ZHANG Bei-hang. 2016. Late Mesozoic-Cenozoic tectonic evolution of the northern Hexi Corridor[D]. China University of Geosciences, Beijing: 1-49. (in Chinese) | |
[33] | 张杰, 肖渊甫, 田晓敏, 等. 2015. 云南省南涧地区下白垩统南新组砾岩层砾组特征及其物源意义[J]. 高校地质学报, 21(2): 328-335. |
ZHANG Jie, XIAO Yuan-fu, TIAN Xiao-min, et al. 2015. Gravel fabric characteristics of the lower Cretaceous Nanxin Formation in the Nanjian region, Yunnan Province and the provenance significance[J]. Geological Journal of China Universities, 21(2): 328-335. (in Chinese) | |
[34] | 张进, 李锦轶, 李彦峰, 等. 2007. 阿拉善地块新生代构造作用: 兼论阿尔金断裂新生代东向延伸问题[J]. 地质学报, 81(11): 1481-1497. |
ZHANG Jin, LI Jin-yi, LI Yan-feng, et al. 2007. The Cenozoic deformation of the Alxa block in central Asia: Question on the northeastern extension of the Altyn Tagh Fault in Cenozoic time[J]. Acta Geologica Sinica, 81(11): 1481-1497. (in Chinese) | |
[35] | 张培震, 郑德文, 尹功明, 等. 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 26(1): 5-13. |
ZHANG Pei-zhen, ZHENG De-wen, YIN Gong-ming, et al. 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan plateau[J]. Quaternary Sciences, 26(1): 5-13. (in Chinese) | |
[36] | 赵澄林, 朱筱敏. 2001. 沉积岩石学[M]. 北京: 石油工业出版社. |
ZHAO Cheng-lin, ZHU Xiao-min. 2001. Sedimentary Petrology[M]. Petroleum Industry Press, Beijing. (in Chinese) | |
[37] | 赵启明. 2019. 酒东盆地近6Ma沉积碎屑磷灰石裂变径迹初步研究[D]. 兰州: 兰州大学: 1-45. |
ZHAO Qi-ming. 2019. A study on detrital apatite fission tracks in sediments of the Jiudong Basin since 6Ma[D]. Lanzhou University, Lanzhou: 1-45. (in Chinese) | |
[38] | 郑文俊. 2009. 河西走廊及其邻区活动构造图像及构造变形模式[D]. 北京: 中国地震局地质研究所: 1-183. |
ZHENG Wen-jun. 2009. Geometric pattern and active tectonics of the Hexi Corridor and its adjacent regions[D]. Institute of Geology, China Earthquake Administration, Beijing: 1-183. (in Chinese) | |
[39] |
Brooke S A S, Whittaker A C, Armitafe J J, et al. 2018. Quantifying sediment transport dynamics on alluvial fans from spatial and temporal changes in grain size, Death Valley, California[J]. Journal of Geophysical Research: Earth Surface, 123(8): 2039-2067.
DOI URL |
[40] |
Cheng F, Garzione C N, Mitra G, et al. 2019. The interplay between climate and tectonics during the upward and outward growth of the Qilian Shan orogenic wedge, northern Tibetan plateau[J]. Earth-Science Reviews, 198:102945.
DOI URL |
[41] |
Darby B J, Ritts B D, Yue Y J, et al. 2005. Did the Altyn Tagh Fault extend beyond the Tibetan plateau?[J]. Earth and Planetary Science Letters, 240(2): 425-435.
DOI URL |
[42] |
Fang X M, Zhao Z J, Li J J, et al. 2005. Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan plateau uplift[J]. Science in China(Ser D), 48(7): 1040-1051.
DOI URL |
[43] |
Fu K D, Fang X M, Gao J P, et al. 2007. Response of grain size of Quaternary gravels to climate and tectonics in the northern Tibetan plateau[J]. Science in China(Ser D), 50(1): 81-91.
DOI URL |
[44] |
Gaudemer Y, Tapponnier P, Meyer B, et al. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu(China)[J]. Geophysical Journal International, 120(3): 599-645.
DOI URL |
[45] |
He P J, Song C H, Wang Y D, et al. 2017. Cenozoic exhumation in the Qilian Shan, northeastern Tibetan plateau: Evidence from detrital fission track thermochronology in the Jiuquan Basin[J]. Journal of Geophysical Research: Solid Earth, 122(8): 6910-6927.
DOI URL |
[46] |
Jolivet M, Brunel M, Seward D, et al. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints[J]. Tectonophysics, 343(1-2): 111-134.
DOI URL |
[47] |
Küster Y, Hetzel R, Krbetschek M, et al. 2006. Holocene loess sedimentation along the Qilian Shan(China): Significance for understanding the processes and timing of loess deposition[J]. Quaternary Science Reviews, 25(1-2): 114-125.
DOI URL |
[48] | Ludwig K R. 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. The Berkeley Geochronology Center, California. |
[49] | McLane M. 1995. Sedimentology[M]. Oxford University Press, New York. |
[50] |
Song C H, Fang X M, Gao J P, et al. 2003. Magnetostratigraphy of Late Cenozoic fossil mammals in the northeastern margin of the Tibetan plateau[J]. Chinese Science Bulletin, 48(2): 188-193.
DOI URL |
[51] |
Song C H, Fang X M, Li J J, et al. 2001. Tectonic uplift and sedimentary evolution of the Jiuxi Basin in the northern margin of the Tibetan plateau since 13Ma BP [J]. Science in China(Ser D), 44(S1): 192-202.
DOI URL |
[52] |
Su Q, Yuan D Y, Zhang H P, et al. 2019. Geomorphic evidence for northeastward expansion of the eastern Qilian Shan, northeastern Tibetan plateau[J]. Journal of Asian Earth Sciences, 177:314-323.
DOI |
[53] |
Wang G C, Cao K, Zhang K X, et al. 2011. Spatio-temporal framework of tectonic uplift stages of the Tibetan plateau in Cenozoic[J]. Science in China(Ser D), 54(1): 29-44.
DOI URL |
[54] |
Wang W T, Zhang P Z, Yu J X, et al. 2016. Constraints on mountain building in the northeastern Tibet: Detrital zircon records from synorogenic deposits in the Yumen Basin[J]. Scientific Reports, 6(1): 1-8.
DOI URL |
[55] |
Yu J X, Zheng W J, Kirby E, et al. 2016. Kinematics of late Quaternary slip along the Yabrai Fault: Implications for Cenozoic tectonics across the Gobi Alashan block, China[J]. Lithosphere, 8(3): 199-218.
DOI URL |
[56] |
Yu J X, Zheng W J, Zhang P Z, et al. 2017. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China[J]. Tectonophysics, 721:28-44.
DOI URL |
[57] |
Yuan D Y, Ge W P, Chen Z W, et al. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies[J]. Tectonics, 32(5): 1358-1370.
DOI URL |
[58] |
Zhang H P, Zhang P Z, Zheng D W, et al. 2014. Transforming the Miocene Altyn Tagh fault slip into shortening of the north-western Qilian Shan: Insights from the drainage basin geometry[J]. Terra Nova, 26(3): 216-221.
DOI URL |
[59] | Zhang P Z, Molnar P, Xu X W. 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan plateau[J]. Tectonics, 26(5): TC5010. |
[60] |
Zhao Z J, Fang X M, Li J J, et al. 2001. Paleomagnetic dating of the Jiuquan Gravel in the Hexi Corridor: Implication on mid-Pleistocene uplift of the Qinghai-Tibetan plateau[J]. Chinese Science Bulletin, 46(23): 2001-2005.
DOI URL |
[61] |
Zheng W J, Zhang P Z, Ge W P, et al. 2013a. Late Quaternary slip rate of the south Heli Shan Fault(northern Hexi Corridor, NW China)and its implications for northeastward growth of the Tibetan plateau[J]. Tectonics, 32(2): 271-293.
DOI URL |
[62] |
Zheng W J, Zhang P Z, He W G, et al. 2013b. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics, 584:267-280.
DOI URL |
[1] | 刘庆, 刘韶, 张世民. 大凉山断裂带中段越西断裂晚第四纪古地震[J]. 地震地质, 2023, 45(2): 321-337. |
[2] | 左玉琦, 杨海波, 杨晓平, 詹艳, 李安, 孙翔宇, 胡宗凯. 阿拉善地块南缘北大山断裂的晚第四纪构造活动证据[J]. 地震地质, 2023, 45(2): 355-376. |
[3] | 原浩东, 李安, 黄伟亮, 胡宗凯, 左玉琦, 杨晓平. 西准噶尔地区托里断裂晚第四纪构造变形[J]. 地震地质, 2023, 45(1): 49-66. |
[4] | 张伟恒, 陈杰, 李涛, 邸宁, 姚远. 龙门山前陆冲断带南段三苏场背斜晚第四纪变形速率[J]. 地震地质, 2022, 44(6): 1351-1364. |
[5] | 冯晶晶, 赵勇伟, 李霓, 陈正全, 王丽竹, 刘永顺, 聂保锋, 张学斌. 琼北晚第四纪火山锥体形貌与喷发机制[J]. 地震地质, 2022, 44(5): 1107-1127. |
[6] | 宋婷, 沈旭章, 梅秀苹, 焦煜媛, 李敏娟, 苏小芸, 季婉婧. 利用接收函数频率特征研究青藏高原东北缘地区的莫霍面性质[J]. 地震地质, 2022, 44(5): 1290-1312. |
[7] | 杨文健, 赵波, 于红梅, 许建东, 潘波, 王锡娇. 琼北峨蔓地区火山地质与喷发历史[J]. 地震地质, 2022, 44(4): 859-875. |
[8] | 沈军, 戴训也, 肖淳, 焦轩凯, 白其乐格尔, 邓梅, 刘泽众, 夏方华, 刘玉, 刘明. 夏垫西断裂的晚第四纪活动性[J]. 地震地质, 2022, 44(4): 909-924. |
[9] | 徐伟, 刘志成, 王继, 高战武, 尹金辉. 西藏阿里地区喀喇昆仑断裂断错地貌及最近强震活动时代的初步研究[J]. 地震地质, 2022, 44(4): 925-943. |
[10] | 张驰, 李智敏, 任治坤, 刘金瑞, 张志亮, 武登云. 日月山断裂南段晚第四纪活动特征[J]. 地震地质, 2022, 44(1): 1-19. |
[11] | 张鹏, 汪勇, 范小平, 许奎, 刘嘉彬. 幕府山-焦山断裂镇江段第四纪活动性[J]. 地震地质, 2022, 44(1): 63-75. |
[12] | 常昊, 常祖峰, 刘昌伟. 金沙江断裂带活动与大型滑坡群的关系研究:以金沙江拿荣—绒学段为例[J]. 地震地质, 2021, 43(6): 1435-1458. |
[13] | 臧阳, 俞言祥, 孟令媛, 韩颜颜. 青藏高原东北缘地震波衰减特征及地震震源参数研究[J]. 地震地质, 2021, 43(6): 1638-1656. |
[14] | 杨晨艺, 李晓妮, 冯希杰, 朱琳, 李苗, 张恩会. 渭河盆地北缘口镇-关山断层的晚第四纪—现今的活动性[J]. 地震地质, 2021, 43(3): 504-520. |
[15] | 唐茂云, 刘静, 李翠平, 王伟, 张金玉, 许强. 青藏高原东南缘的新生代盆地古高度重建研究与进展[J]. 地震地质, 2021, 43(3): 576-599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||